簡易檢索 / 詳目顯示

研究生: 林琪家
Chi-Jia Lin
論文名稱: 疏水性兼半導體性鎳基金屬有機框架材料微米晶體之電性研究
Electrical Properties in Hydrophobic Semiconducting Nickel-based Metal-Organic Framework Microcrystals
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
呂光烈
Kuang-Lieh Lu
林麗瓊
Li-Chyong Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 98
中文關鍵詞: 疏水性半導體性金屬有機框架材料光電導特性
外文關鍵詞: hydrophobic, semiconducting, metal organic framework, photoconductivity
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討 [Ni2(HFDP)1(BPYM)1(4H2O)]·H2O (以下論文簡稱為 NiHB )疏水性金屬有機框架化合物 (metal-organic framework, MOF) 微米晶體之電傳輸特性。研究中所使用的 NiHB MOF 微米晶體具有三方晶系 (Trigonal crystal system) 結構。透過接觸角量測得出其角度為 125° ,顯示極佳的疏水性。元件製作上是利用機械剝離法將 NiHB 單晶分離成微米晶體,並利用聚焦式離子束 (focused-ion beam) 技術製作微米晶體之歐姆電極。暗電導量測顯示其電導率最高可達 208 S/cm 。熱探針量測結果顯示此 MOF 晶體為 p 型半導體。變溫暗電導量測顯示此 MOF 晶體具備半導體性的電傳導行為,並擁有極低的活化能,最低僅有 0.02 meV ,顯示電荷經由跳躍傳輸 (hopping transport) 時幾乎不需要熱能的輔助。此結果顯示 NiHB 微米晶體具備極佳的結晶品質與有序的晶格,可提供電荷在一個比較沒有阻礙的環境進行跳躍傳輸。
    另外,從光電導 (photoconductivity) 量測結果發現此 MOF 微米晶體具有明顯的光電流反應,隨著雷射強度增加,光電流也呈現非線性的上升趨勢。於不同波長的雷射照射下,發現 NiHB 微米晶體對紫光具有最佳的光電流反應。不同波長的條件下, NiHB 微米晶體也都表現出不錯的反應率 (responsivity) 與光電導增益 (gain) 。藉由時間解析光電導量測發現此 MOF 晶體良好的光電導效率乃是源自於長載子活期 (carrier lifetime) 。透過環境變化光電導量測,可進一步證明此 MOF 晶體遵循表面主導之光電導機制。


    The electrical properties of the [Ni2(HFDP)1(BPYM)1(4H2O)]·H2O (NiHB) metal-organic framework (MOF) microcrystals with trigonal structure and hydrophobic character were investigated. The ohmic contacts of the microcrystals were fabricated by using focused-ion beam method. The I-V measurements show the NiHB crystals with high conductivity up to 208 S/cm. Presence of several charge transport channels is attributed to the highly conductive nature of the NiHB crystals. Hot probe measurement shows p-type semiconducting characteristic. Temperature-dependent conductivity measurements reveal the extremely low activation energies for charge transport at the range of 0.025.3 meV. The high conductivity and low activation energy suggest highly ordered lattice structure in this MOF microcrystals.
    Additionally, the NiHB MOF crystals also exhibit substantial photocurrent response. The photocurrent increases nonlinearly with the increase of light intensity. The MOF crystals show optimal photoresponse to the wavelength at 405 nm (violet light) compared to other wavelengths. The optimal photoconductive gain is 2200 and the carrier lifetime is as long as several seconds. The ambience-dependent photoconductivity measurement implies the surface-dominant photoconduction mechanism in the NiHB crystals.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 第二章 樣品介紹 3 第三章 實驗方法 5 3.1 NiHB MOF 之形貌與結構特性檢測 5 3.1.1 原子力顯微鏡 (atomic force microscope, AFM) 5 3.1.2 拉曼散射光譜儀 (Raman scattering spectroscope) 8 3.1.3 X光繞射儀 (X-ray diffractometer, XRD) 10 3.1.4 掃描式電子顯微鏡 (scanning electron microscope, SEM) 13 3.1.5 雙束型聚焦式離子束系統 (dual-beam focused-ion beam, FIB) 15 3.1.6 接觸角量測儀 (contact angle meter) 19 3.2 金屬有機框架元件製作 22 3.2.1 元件基板製作 22 3.2.2 NiHB MOF 微米晶體分離 23 3.2.3 微米結構電極製作 26 3.3 微米材料之暗電導特性研究 29 3.3.1 電流對電壓曲線量測 (current-voltage measurement) 29 3.3.2 熱探針量測 (hot probe measurement) 31 3.3.3 溫度變化之電性量測 (temperature-dependent measurement) 33 3.4 微米材料之光電導特性研究 35 3.4.1 功率相依之光電導量測 (power-dependent photocurrent measurement) 35 3.4.2 環境變化之光電導量測 (ambience-dependent photocurrent measurement) 36 第四章 結果與討論 37 4.1 NiHB MOF 晶體之形貌結構及特性分析 37 4.1.1 NiHB MOF 微米材料之表面形貌與結構分析 37 4.1.2 NiHB MOF 晶體結構 40 4.1.3 NiHB MOF 疏水特性檢測 44 4.2 NiHB MOF 元件尺寸量測 45 4.2.1 NiHB MOF 微米結構 SEM 量測 45 4.2.2 NiHB MOF 微米結構 AFM 厚度量測 45 4.3 NiHB MOF 暗電導分析 49 4.3.1 NiHB MOF 電導率計算 49 4.3.2 NiHB MOF 熱探針量測 54 4.3.3 NiHB MOF 溫度變化之暗電導量測 56 4.4 NiHB MOF 光電導特性 62 4.4.1 NiHB MOF 功率相依光電導 62 4.4.2 NiHB MOF 不同雷射波長之光電導反應 64 4.4.3 NiHB MOF 光電導效率 66 4.4.4 NiHB MOF 環境變化光電導量測 72 4.5 NiHB MOF 光電導特性結果比較 75 第五章 結論 76 參考資料 77

    [1] O. M. Yaghi, H. Li, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels”, J. Am. Chem. SOC., 117, 10401-10402 (1995).
    [2] Q. Yang, Q. Xu, H. L. Jiang, “Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis”, Chem. Soc. Rev., 46, 4774-4808 (2017).
    [3] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, “Metal–organic frameworks in biomedicine”, Chem. Rev., 112, 1232-1268 (2012).
    [4] L. J. Small, R. C. Hill, J. L. Krumhansl, M. E. Schindelholz, Z. Chen, K. W. Chapman, X. Zhang, S. Yang, M. Schröder, T. M. Nenoff, “Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas”, ACS applied materials & interfaces, 11, 27982-27988 (2019).
    [5] X. Liu, Dr. M. Kozlowska, T. Okkali, D. Wagner, Dr. T. Higashino, Dr. G. B. Weiß, S. M. Marschner, Dr. Z. Fu, Q. Zhang, Prof. H. Imahori, Prof. S. Bräse, Prof. W. Wenzel, Prof. C. Wöll, Dr. L. Heinke, “Photoconductivity in Metal–Organic Framework (MOF) Thin Films”, Angewandte Chemie International Edition, 58, 9590-9595 (2019).
    [6] V. Stavila, A. A. Talin, M. D. Allendorf, “MOF-based electronic and opto-electronic devices”, Chem. Soc. Rev., 43, 5994-6010 (2014).
    [7] A. B. Ruth, H. Liu, “Recent Hydrophobic Metal-Organic Frameworks and Their Applications”, Materials, 11, 2250 (2018).
    [8] B. Wang, W. Liang, Z. Guo, W. Liu, “Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature”, Chem. Rev., 44, 336-361 (2015).
    [9] Z. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, S. M. Cohen, “Polymer−Metal−Organic Frameworks (polyMOFs) as Water Tolerant Materials for Selective Carbon Dioxide Separations”, J. Am. Chem. SOC., 138, 920-925 (2016).
    [10] J. Zhou, B. Wang, “Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage”, Chem. Soc. Rev., 46, 6927-6945 (2017).
    [11] S. Kitagawa, R. Matsuda, “Chemistry of coordination space of porous coordination polymers”, Coordination Chem. Rev., 251, 2490-2509 (2007).
    [12] L. S. Xie, G. Skorupskii, M. Dincă, “Electrically Conductive Metal–Organic Frameworks”, Chem. Rev., 120, 8536-8580 (2020).
    [13] V. Rubio-Giménez, S. Tatay, C. Martí-Gastaldo, “Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale”, Chem. Soc. Rev., 49, 5601-5638 (2021).
    [14] X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, “From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity”, Chem. Sci., 4, 983 (2013).
    [15] E. Castaldelli, K. I. Jayawardena, D. C. Cox, G. J. Clarkson, R. I. Walton, L. L. Quang, J. Chauvin, S. R. P. Silva, G. J. F. Demets, “Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework”, Nature communications, 8, 1-8 (2017).
    [16] S. Wang, T. Kitao, N. Guillou, M. Wahiduzzaman, C. M. Corcos, F. Nouar, A. Tissot, L. Binet, N. Ramsahye, S. D. Vinot, S. Kitagawa, S. Seki, Y. Tsutsui, V. Briois, N. Steunou, G. Maurin, T. Uemura, C. Serre, “A phase transformable ultrastable titanium-carboxylate framework for photoconduction”, Nature communications, 9, 1-9 (2018).
    [17] A. R. Millward, O. M. Yaghi, “Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature”, J. Am. Chem. SOC. Communication, 127, 17998-17999 (2015)
    [18] Y. C. Jung, B. Bhushan, “Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag”, ACS Nano, 3, 4155-4163 (2009).
    [19] Y. Liu, Y. Wei, M. Liu, Y. Bai, G. Liu, X. Wang, S. Shang, W. Gao, C. Du, J. Chen, Y. Liu, “Two-Dimensional Metal-Organic Framework Film for Realizing Optoelectronic Synaptic Plasticity”, Angew. Chem. Int. Ed., 60, 1 – 7 (2021).
    [20] F. Braet, R. De Zanger, E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy, 186, 84-87 (1997).
    [21] P. Carra, B. T. Thole, M. Altarelli, X. Wang, “X-ray circular dichroism and local magnetic fields”, Physical Review Letters, 70, 694 (1993).
    [22] B. D. Cullity, S. R. Stock, “Elements of X-ray diffraction”, Prentice Hall, New Jersey (2001).
    [23] A. Beiser, “Concepts of Modern Physics”, McGraw-Hill Education (India) Pvt Limited (2003).
    [24] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization”, IOP Publishing, Bristol (1994).
    [25] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development”, IEEE Trans. Electron. Packag. Manuf, 26, 141-149 (2003).
    [26] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng, 14, R15-R34 (2004).
    [27] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, 1, 924–939 (2005).
    [28] T. Young, “III. An essay on the cohesion of fluids”, Royal Society, 95, 65-87 (1805).
    [29] K.A.V. Systems Engineering. (https://www.used-electronic-equipment-buy-and-sell.com/equipment/digidrop-gbx/?lang=zh-hant)
    [30] R. S. Hebbar, A. M. Isloor, A. F. Ismail, “Chapter 12 - Contact Angle Measurements”, Membrane Characterization, 219-225 (2017).
    [31] A. Samanta, Q. Wang, S. K. Shaw, H. Ding, “Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors”, Materials & Design, 192, 108744 (2020).
    [32] Y. M. Chang, H. Kim, J. H. Lee, Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett, 91970, 211102 (2010).
    [33] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder effects in focused-ion-beam-deposited Pt contacts on GaN nanowires”, Nano Lett, 5, 2029-2033 (2005).
    [34] 楊紘瑋, “硒化銦奈米結構之光電導特性研究”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2017).
    [35] 朱煜文, “二硫化鎢層狀半導體之電子結構與電傳輸特性”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [36] 許光勳, “銅基金屬有機框架材料微米晶體之電傳輸性質”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2020).
    [37] A. Pathak, J. W. Shen, M. Usman, L. F. Wei, S. Mendiratta, Y. S. Chang, B. Sainbileg, C. M. Ngue, R. S. Chen, M. Hayashi, T. T. Luo, F. R. Chen, K. H. Chen, T. W. Tseng, L. C. Chen, K. L. Lu, “Integration of a (–Cu–S–)n plane in a metal–organic framework affords high electrical conductivity”, Nature communications, 10, 1-7 (2019).
    [38] G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, “Hot-Probe method for evaluation of impurities concentration in semiconductors”, Microelectronics Journal, 37, 910-915 (2006).
    [39] A. J. Clough, J. M. Skelton, C. A. Downes, A. A. de la Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, “Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework”, J. Am. Chem. SOC., 139, 10863-10867 (2017).
    [40] R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. St. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Cánovas, “High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework”, Nature Materials, 17, 1027-1032 (2018).
    [41] Y. Song, M. Xu, X. Liu, Z. Li, C. Wang, Q. Jia, Z. Zhang, M. Du, “A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF)”, Electrochimica Acta, 368, 137609 (2021).
    [42] P. Bhattacharya, “Semiconductor optoelectronic devices”, Prentice Hall, 8, 346-351 (1997).
    [43] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys, 79, 7433-7473 (1996).
    [44] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires”, Appl. Phys. Lett., 91, 223106 (2007).
    [45] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition”, Nanoscale Res. Lett, 8, 443 (2013).
    [46] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, “On the photoconduction properties of low 93 resistivity TiO2 nanotubes”, Nanotechnology, 21, 445703 (2010).
    [47] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires”, Nanotechnology, 22, 425702 (2011).
    [48] H. M. Huang, R. S. Chen, H. Y. Chen, T. W. Liu, C. C. Kuo, C. P. Chen, H. C. Hsu, L. C. Chen, K. H. Chen, Y. J. Yang, “Photoconductivity in single AlN nanowires by subband gap excitation”, Appl. Phys. Lett., 96, 062104 (2010).
    [49] X. Liu, D. Wagner, S. M. Marschner, S. Bräse, C. Wöll, L. Heinkea, “Conduction and Photoconduction in Fullerene- and Porphyrin-Containing Metal-Organic Framework Thin Films”, ECS Transactions, 98, 15-20 (2020).

    無法下載圖示 全文公開日期 2027/02/02 (校內網路)
    全文公開日期 2027/02/02 (校外網路)
    全文公開日期 2027/02/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE