簡易檢索 / 詳目顯示

研究生: 李維
Wei Li
論文名稱: Carbon paper光感測器之製備與特性研究
The characteristics and fabrication of carbon paper photodetector
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 李奎毅
Kuei-Yi Lee
​陳瑞山
Ruei-San Chen
何清華
Ching-Hwa Ho
王蒼容
Chun-Long Wang
蘇忠傑
Jung-Chieh Su
林保宏
Pao-hung Lin
王倫
Lon Wang
陳榮治
Jung-Chih Chen
宋國明
Guo-Ming Sung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 108
中文關鍵詞: 碳材料光感測器光電流光電導光響應度
外文關鍵詞: Carbon material, Photodetector, Photocurrent, Photoconductivity, Photoresponsivity
相關次數: 點閱:496下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種獨特且新穎的碳材料,稱為 Carbon paper 係通過熱化學氣相沉積( TCVD)方法 所合成該種新型碳材 Carbon paper不僅展現和其他碳材一樣良好 的導電性質更是在一些光電領域展現出不容忽視的特性。該 Carbon paper的製備過程非常安全且簡單經過一些量測,這些 Carbon paper在光響應方面 擁有難以忽視的潛力。使用 Carbon paper所製備之光偵測器 測得 112  A的光電流 另外也分別檢測了光電導率以及光響應度,其分別為 1.12 S cm-1 和 112 A W-1 cm-2。後續通過使用氮電漿處理,成功地調變 Carbon paper的光電特性材料中的晶格缺損或缺位以及碳氮原子間新的鍵結有助於Carbon paper的光響應表現。在摻雜後之Carbon paper光偵測器中所量測的最高光電流為 2502  A。與其他碳相關材料之光偵測器的研究結果相比,摻雜後之Carbon paper光偵測器之光導率和光響應度的性能都相對優異不少,分別為 25 S cm-1和 3305 A W-1 cm-2。


    Through the thermal chemical vapor deposition (TCVD) method, we synthesized the unique carbonaceous material, called carbon paper. This novel carbon paper not only retains the great conductivity of others carbon materials but also exhibits excellent ability in the optoelectronic field. Moreover, the fabrication of this carbon paper is simple and safe. These carbon papers have great potential for their distinct performance in the photoresponse. The 112  A photocurrent was obtained using pristine carbon paper photodetector. Furthermore, the photoconductivity and photoresponsivity were also measured, which were 1.12 S cm-1 and 112 A W-1 cm-2, respectively. By using nitrogen plasma treatment, the optoelectronic properties of carbon paper was improved apparently. The defects in materials and the bonding between carbon atoms and nitrogen atoms contributed to the photoresponse in carbon paper. The highest photocurrent was 2502  A, which was obtained in the doped carbon paper photodetector. The performances in photoconductivity and photoresponsivity were significant compared with other carbon-relative photodetectors research, the values were 25 S cm-1 and 3305 A W-1 cm-2, respectively.

    Abstract (Chinese)………………………………………………...……………II Abstract (English)………………………………..………………...…….……III Acknowledgment……………………………………………………..……….IV Chapter 1 Introduction………………………………………………………….1 1.1 Photodetector..………...……………………………………………….2 1.1.1 Photoelectric effect……………………………………………...3 1.1.2 Photoconductive effect…………………….……………………6 1.1.3 Photo-thermoelectric effect……………………………….…….7 1.1.4 Photoconductivity……………………………………….……...8 1.1.5 Quantum efficiency and photoresponsivity………….…….…..10 1.1.6 Normalized photoresponsivity……………………………..…..12 1.2 Carbon materials…………………………………….………………..13 1.2.1 History of carbon materials………………………………….....13 1.2.2 Application of carbon materials on photodetectors………….…18 1.2.3 Carbon paper.……………………………………………..……19 1.3 Motivation………………………………………………………….…21 Chapter 2 Experimental methodology…………………………………………23 2.1 Experimental procedure…………………………………….………...23 2.2 Carbon paper fabrication procedure…………………………….…….24 2.3 Plasma treatment system……………………………………….……..27 2.4 Analysis of characteristics………………………………………….…29 2.4.1 Scanning electron microscopy………………………………....29 2.4.2 Transmission electron microscopy……………………….……31 2.4.3 Raman spectroscopy…………………………………….……..32 VII 2.4.4 X-ray photoelectron spectroscopy……………………….…….35 2.5 The fabrication of carbon paper photodetector…………….…….……37 2.6 Optoelectric measurement……………………………………………38 Chapter 3 Results and discussion……………………………………………...41 3.1 Growth of carbon paper………………………………………….……41 3.1.1 Morphology of carbon paper………………………….……….41 3.1.2 Morphology of carbon paper doped with nitrogen plasma….…49 3.2 Raman analysis……………………………………………………….53 3.3 X-ray photoelectron spectroscopy analysis……………………….…..57 3.4 Photodetector measurement…………………………………….…….61 3.4.1 Photocurrent……………………………………………….…..61 3.4.2 Photoconductivity……………………………………………..69 3.4.3 Normalized photoresponsivity……………………….…….…..74 3.5 Summary…………………………………………………….………..79 Chapter 4 Conclusions……………………...…………………………………85 Reference………………………………………………………………….......86

    [1] A. Einstein, “Concerning an heuristic point of view toward the emission and transformation of l ight,” Ann. Phys., Vol. 17, pp. 132-148, 1905.
    [2] W. W. Campbell, “Light sensitive devices and their applications,” J. Opt. Soc. Am., vol. 30, pp. 248-257, 1940.
    [3] X. Dai, M. Tchernycheva, and C. Soci “Chapter three - compound semiconductor nanowire photodetectors,” Semicond., vol. 94, pp. 75-107, 2016.
    [4] D. S. Schneider, A. Grundmann, A. Bablich, V. Passi, S. Kataria, H. Kalisch, M. Heuken, A. Vescan, D.Neumaier, and M. C. Lemme, “Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2,” ACS Photonics, vol. 7, pp. 1388−1395, 2020.
    [5] H. B. Kwok and R. H. Bube, “Thermoelectric and photothermoelectric effects in semiconductors: CdS single crystals,” J. Appl. Phys., vol. 44, pp. 138-144, 1973.
    [6] T. Kobayashi and T. Sueta, “Time-expansion type phototube for the observation of low-power-level picosecond lightpulses,” Jpn. J. Appl. Phys., vol. 14, pp. 1-4, 1975.
    [7] V. Arjun, K. P. Muthukumaran, K. Ramachandran, A. Nithya, and S. Karuppuchamy, “Fabrication of efficient and stable planar perovskite solar cell using copper oxide as hole transport material,” J. Alloys Compd., vol. 923, p. 166285, 2022.
    [8] L. Zheng, K.Wang, T. Zhu, L. Liu, J. Zheng, and X. Gong, “Solution-processed ultrahigh detectivity photodetectors by hybrid perovskite incorporated with heterovalent neodymium cations,” ACS Omega, vol. 4, pp.15873–15878, 2019.
    [9] C. Wang, J. Ying, H.-C. Mou, A.-X. Tian, and X.-L. Wang, “Multi-functional photoelectric sensors based on a series of isopolymolybdate-based compounds for detecting different ions,” Inorg. Chem. Front., vol. 7, pp. 3882–3894, 2020.
    [10] K. S. Zhuravlev, A. L. Chizh, K. B. Mikitchuk, A. M. Gilinsky, I. B. Chistokhin, N. A. Valisheva, D. V. Dmitriev, A. I. Toropov, and M. S. Aksenov, “High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission,” J. Semicond., vol. 43, p. 012302, 2022.
    [11] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, "Mechanisms of photoconductivity in atomically thin MoS2," Nano Lett., vol. 14, pp. 6165-6170, 2014.
    [12] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Photocurrent generation with two-dimensional van der Waals semiconductors," Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015.
    [13] A. Molki, “Simple demonstration of the Seebeck effect,” Sci. Educ. Rev., vol. 9, pp. 103-107, 2010.
    [14] Y. G. Gurevich and J. E. Velazquez-Perez, “Peltier effect in semiconductors,” Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley and Sons, pp.1-21, 2014.
    [15] S. Pei, C. Shen, C. Zhang, N. Ren, and S. You, “Characterization of the interfacial Joule heating effect in the electrochemical advanced oxidation process,” Environ. Sci. Technol., vol. 53, pp. 4406−4415, 2019.
    [16] J. Huang, Z. Huang, Y. Yang, H. Zhu, and T. Lian, “Multiple excitondissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue,” J. Am. Chem. Soc., Vol. 132, pp. 4858–4864, 2010.
    [17] M. Anandan, H.-F. Hsieh, F.-C. Liu, C.-Y. Chen, K.-Y. Lee, L.-C. Chao, C.-H. Ho, and R.-S. Chen, “High-responsivity broad-band sensing and photoconduction mechanism in direct-gap α-In2Se3 nanosheet photodetectors,” Nanotechnology, vol. 31, p. 465201, 2020.
    [18] R. John, A. Ashokreddy, C. Vijayan, and T. Pradeep, "Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition," Nanotechnology, vol. 22, p. 165701, 2011.
    [19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [20] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, “A major constituent of brown algae for use in high-capacity Li-ion batteries,” Science, vol. 334, pp. 75-79, 2011.
    [21] Y. Zhang, S. F. Ali, E. Dervishi, Y. Xu, Z. Li, D. Casciano, and A. S. Biris, “Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells,” ACS Nano, vol. 4, no. 6, pp. 3181–3186, 2010.
    [22] M. I. Katsnelson and K. S. Novoselov, “Graphene: new bridge between condensed matter physics and quantum electrodynamics,” Sol. Commun., vol. 143, p. 3, 2007.
    [23] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
    [24] S. V. Morosov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities ingraphene and its bilayer,” Phys. Rev. Lett., vol. 100, p. 016602, 2008.
    [25] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [26] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1 nm diameter,” Nature, vol. 363, pp. 603–605, 1993.
    [27] J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon nanotubes,” Carbon, vol. 33, pp. 893-902, 1995.
    [28] R. Maheswaran and B. P. Shanmugavel, “A critical review of the role of carbon nanotubes in the progress of next generation electronic applications,” J. Electron. Mater., vol. 51, pp. 2786–2800, 2022.
    [29] B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Commun., vol. 4, no. 1811, 2013.
    [30] A. Urich, K. Unterrainer, and T. Mueller, “Intrinsic response time of graphene photodetectors,” Nano Lett., vol. 11, pp. 2804−2808, 2011.
    [31] S. Makhseed, M. Sebastian, A. Ganesan, A. Husain, “Broadband optical limiting in nanohybrids of graphene grafted peripheral (non-peripheral) pyrene substituted phthalocyanines with a low linear absorption,” Opt. Laser Technol., vol. 157, p. 108676, 2023.
    [32] X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, “Chip-integrated ultrafast graphene photodetector with high responsivity,” Nat. Photon, vol. 7, pp. 883–887, 2013.
    [33] A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, “CMOS-compatible graphene photodetector covering all optical communication bands,” Nat. Photon, vol. 7, pp. 892–896, 2013.
    [34] L. Yang, S. Wang, Q. Zeng, Z. Zhang, and L. M. Peng, “Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection,” Small, vol. 9, pp. 1225–1236, 2013.
    [35] L. Zhang, Y. Wu, L. Deng, Y. Zhou, C. Liu, and S. Fan, “Photodetection and photo switch based on polarized optical response of macroscopically aligned carbon nanotubes,” Nano Lett., vol. 16, pp. 6378–638, 2016.
    [36] M. Scagliotti, M. Salvato, M. D. Crescenzi, M. Boscardin, and P. Castrucci, “Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response,” Appl. Nanosci., vol. 8, pp. 1053–1058, 2018.
    [37] S. Iqbal, H. Khatoon, A. H. Pandit, and S. Ahmad, “Recent development of carbon-based materials for energy storage devices,” Mater. Sci. Technol., vol. 2, pp. 417-428, 2019.
    [38] L. Xiang, H. Zhang, Y. Hu, and L.-M. Peng, “Carbon nanotube-based flexible electronics,” J. Mater. Chem. C, vol. 6, pp. 7714-7727, 2018.
    [39] A. D. Goswami, D. H. Trivedi, N. L. Jadhav, and D. V. Pinjari, “Sustainable and green synthesis of carbon nanomaterials: a review,” J. Environ. Chem. Eng., vol. 9, p. 106118, 2021.
    [40] C. C. Moura, R. S. Tare, R. O. C. Oreffo, and S. Mahajan, “Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration,” J. R. Soc. Interface, vol. 13, pp. 1-13, 2016.
    [41] G. P. Kotchey, B. L. Allen, H. Vedala, N. Yanamala, A. A. Kapralov, Y. Y. Tyurina, J. Klein-Seetharaman, V. E. Kagan, and A. Star, "The enzymatic oxidation of graphene oxide," ACS Nano, vol. 5, pp. 2098-2108, 2011.
    [42] K. Jasuja, J. Linn, S. Melton, and Vikas Berry, "Microwave-reduced uncapped metal nanoparticles on graphene: tuning catalytic, electrical, andRaman properties," J. Phys. Chem. Lett., vol. 1, pp. 1853-1860, 2010.
    [43] L. M. Malard, M. A. Pimenta, G Dresslhaus, and M. S. Dresslhaus, "Raman spectroscopy in graphene," Phys. Rep., vol. 473, pp. 51-87, 2009.
    [44] S. Reich and C. Thomsen, "Raman spectroscopy of graphite," Philos. Trans. R. Soc. Lond. A, vol. 362, pp. 2271-2288, 2004.
    [45] H. Wang, T. Maiyalagan, and X. Wang, "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications," ACS Catal., vol. 2, pp. 781-794, 2012.
    [46] H.-M. Jeong, J.-W. Lee, W.-H. Shin, Y.-J. Choi, H.-J. Shin, J.-K. Kang, and J.-W. Choi, "Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes," Nano Lett., vol. 11, pp. 2472-2477, 2011.
    [47] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, 'Nitrogen-doped graphene and its application in electrochemical biosensing," ACS Nano, vol. 4, pp. 1790-1798, 2010.
    [48] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J.-R. Gong, "Controllable -doping of graphene," Nano Lett., vol. 10, pp. 4975-4980, 2010.
    [49] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, and J. Shi, “N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light,” Carbon, vol. 99, pp. 111-117, 2016.
    [50] K.-A. Tsai, P.-Y. Hsieh, T.-H. Lai, C.-W. Tsao, H. Pan, Y.-G. Lin, and Y.-J. Hsu, “Nitrogen-doped graphene quantum dots for remarkable solar hydrogen production,” ACS Appl. Energy Mater., vol. 3, pp. 5322−5332, 2020.
    [51] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G Yu, "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties," Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [52] X.-B. Wang, Y.-Q. Liu, D.-B. Zhu, L. Zhang, H.-Z. Ma, N. Yao, and B.-L. Zhang, "Controllable growth, structure, and low field emission of well-aligned CNx nanotubes," J. Phys. Chem. B, vol. 106, pp. 2186-2190, 2002.
    [53] J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jimenez-Mateos, "Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials," J. Am. Chem. Soc., vol. 118, pp. 8071-8076, 1996.
    [54] S. Ryu, L. Liu, S. Berciaud, Y.-J. Yu, H. Liu, P. Kim, G W. Flynn, and L. E: Brus, "Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate," Nano Lett., vol. 10, pp. 4944-4951, 2010.
    [55] Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, and K. Hashimoto “Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation,” Nat Commun., vol. 4, no. 2390, 2013.
    [56] V. Arul and M. G. Sethuraman, “Hydrothermally green synthesized nitrogen-doped carbon dots from phyllanthus emblica and their catalytic ability in the detoxification of textile effluents,” ACS Omega, vol. 4, pp. 3449−3457, 2019.
    [57] J. Jia, X. Zhang, C. Jiang, W. Huang, and Y. Wang “Visible-light-driven nitrogen-doped carbon quantum dots decorated g-C3N4/Bi2WO6 Z-scheme composite with enhanced photocatalytic activity and mechanism insight,” J. Alloys Compd., vol. 835, p. 155180, 2020.
    [58] I.-Y. Jeon, H.-J. Noh, and J.-B. Baek, “Nitrogen-doped carbon nanomaterials: synthesis, characteristics, and applications,” Chem. Asian J., vol. 15, pp. 2282 –2293, 2020.[59] E. György, Á. P. d. Pino, J. Roqueta, B. Ballesteros, L. Cabana, and G. Tobias, “Effect of laser radiation on multi-wall carbon nanotubes: study of shell structure and immobilization process,” J. Nanopart. Res., vol. 15, p. 1852, 2013.
    [60] E. Seliverstova, N. Ibrayev, E. Menshova, and E. Alikhaidarova, “Laser modification of structure and optical properties of N-doped graphene oxide,” Mater. Res. Express, vol. 8, p. 115601, 2021.
    [61] H. Tan, W. Si, W. Peng, Y. Wang, D. Liu, L. Wang, C. Jiang, L. Di, J. Liang, and F. Hou, “Laser direct writing derived robust carbon nitride films with efficient photon‐to‐electron conversion for multifunctional photoelectrical applications,” Carbon Energy, vol. 4, pp. 1228-1241, 2022.
    [62] O. Stroyuk, O. Raievskabcd, and D. R. T. Zahn, “Graphitic carbon nitride nanotubes: a new material for emerging applications,” RSC Adv., vol. 10, pp. 34059–34087, 2020.
    [63] H.-F. Cheng, Y.-S. Hsieh, Y.-C. Chen, and I-N. Lin, “Laser irradiation effect on electron field emission properties of carbon nanotubes,” Diam. Relat. Mater., vol. 13, pp. 1004–1007, 2004.
    [64] F. Li, M. Li, Y. Luo, M. Li, X. Li, J. Zhang, and L. Wang “The synergistic effect of pyridinic nitrogen and graphitic nitrogen of nitrogen-doped graphene quantum dots for enhanced TiO2 nanocomposites’ photocatalytic performance,” Catalysts, vol. 8, p. 438, 2018.
    [65] Y. Xu, Y. Mo, J. Tian, P. Wang, H. Yu, and J. Yu, “The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites,” Appl. Catal. B: Environ., vol. 181, pp. 810–817 ,2016.
    [66] R. Kumar, M. A. Khan, A.V. Anupama, S. B. Krupanidhi, and B. Sahoo,“Infrared photodetectors based on multiwalled carbon nanotubes: insights into the effect of nitrogen doping,” Appl. Surf. Sci., vol. 538, p. 148187, 2021.
    [67] T. Pal, D. Joung, S. Ghosh, A. Chunder, L. Zhai, and S. I. Khondaker, “High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors,” J. Mater. Res., vol. 33, pp. 3999-4006, 2018.
    [68] G. Wang, M. Zhang, D. Chen, Q. Guo, X. Feng, T. Niu, X. Liu, A. Li, J.Lai, D. Sun, Z. Liao, Y. Wang, P. K. Chu, G. Ding, X. Xie, Z. Di, and X. Wang, “Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors,” Nat. Commun., vol. 9, p. 5168, 2018.
    [69] M. Anandan, H.-F. Hsieh, F.-C. Liu, C.-Y. Chen, K.-Y. Lee, L.-C. Chao, C.-H. Ho, and R.-S. Chen, “High-responsivity broad-band sensing and photoconduction mechanism in direct-gap α-In2Se3 nanosheet photodetectors,” Nanotechnology, vol. 31, p. 465201, 2020.
    [70] W. Tang, C. Liu, L. Wang, X. Chen, M. Luo, W. Guo, S. W. Wang, and W. Lu, “MoS2 nanosheet photodetectors with ultrafast response,” Appl. Phys. Lett. vol. 111, p. 153502, 2017.
    [71] J. Wu, Z. Hu, Z. Jin, S. Lei, H. Guo, K. Chatterjee, J. Zhang, Y. Yang, Bo Li, Y. Liu, J. Lai, R. Vajtai, B. Yakobson, M. Tang, J. Lou, and P. M. Ajayan, “Spiral growth of SnSe2 crystals by chemical vapor deposition,” Adv. Mater. Interfaces, vol. 3, p. 1600383, 2016.
    [72] Z. Q. Zheng, J. D. Yao, and G. W. Yang, “Growth of centimeter-scale high-quality In2Se3 films for transparent, flexible, and high-performance photodetectors,” J. Mater. Chem. C, vol. 4, pp. 8094-8103, 2016.
    [73] W. Luo, Y. Cao, P. Hu, K. Cai, Q. Feng, F. Yan, T. Yan, X. Zhang, and K.Wang, “Gate tuning of high-performance InSe-based photodetectors using graphene electrodes,” Adv. Optical Mater., vol. 3, pp. 1418–1423, 2015.
    [74] H. Chen, J. Zhu, Y. Cao, J. Wei, B. Lv, Q. Huc, and J.-l. Sun, “Significantly enhanced photoresponse of carbon nanotube films modified with cesium tungsten bronze nanoclusters in the visible to short-wave infrared range,” RSC Adv., vol. 11, pp. 39646–39656, 2021.

    無法下載圖示 全文公開日期 2028/07/26 (校內網路)
    全文公開日期 2028/07/26 (校外網路)
    全文公開日期 2028/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE