簡易檢索 / 詳目顯示

研究生: 李秉儒
Bing-Ru Li
論文名稱: 具有高響應度與快速回復之金屬氧化物光感測薄膜電晶體之元件開發與研究
Investigation on the photo oxide thin-film-transistors with high responsivity and fast recovery
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
顏文正
Wen-zheng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 161
中文關鍵詞: 金屬氧化物薄膜電晶體光感測器
外文關鍵詞: Metal oxide, thin-film-transistors, Photo-detector
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬氧化物薄膜電晶體除了可以當開關元件之外,其還可以當作光電晶體,相較於過去的光電二極體,其具有更高的響應度與靈敏度。本篇論文提出使用氧化銦鋅錫做為光感測薄膜電晶體的主動層,利用其具寬能隙且較過去較常見之氧化銦鎵鋅光感測薄膜電晶體具更多氧空缺含量,藉此來研製出具高響應度之光感測器,此外,本篇將氧化銦鋅錫搭配高介電常數之絕緣層二氧化鉿,除了能提高載子遷移率、降低次臨界電壓擺幅與臨界電壓外,還能藉其具更高的閘極電容來幫助元件經照光時,其激發所產生之光電子、電洞對能更有效的分離,來進一步提升響應度。過去金屬氧化物光感測薄膜電晶體具有嚴重延遲光電流的問題,而本篇論文將利用射頻濺鍍機來沉積絕緣層,藉著提高主動層與絕緣層之間的界面缺陷,來提供光電子、電洞對復合時有額外的位子使延遲光電流被大幅改善。此外,為了驗證後續所研製出高響應度光感測薄膜電晶體之正確性,也研製出氧化銦鎵鋅薄膜電晶體與過去文獻進行比較,最後則進行氧化
    銦鋅錫之厚度與元件後退火溫度之調變,找出元件之最佳製程參數,其載子遷移率、次臨界電壓擺幅與臨界電壓分別為 61.7 cm2/V.S、0.9 V、0.3 V/Decade,而響應度、靈敏度、外部量子效率可以達到 1.7×10^6 A/W、1.9×10^4、6.9×10^6 el./ph.,在過去的文獻與發展有重大的突破。


    In this work, the electro-optical characteristics of the thin-film transistor based phototransistor (photo-TFT) employed with the InZnSnO (IZTO) as the active layer were demonstrated for the first time. The photo-TFT was fabricated with the high dielectric constant (high-k) gate insulator of HfO2 to enhance the carrier mobility. The carrier mobility of the a-IZTO photo-TFT reaches 45.3 cm2/V∙s, which is beneficial to the photo-TFT to provide high photo-response under illumination. The critical detection parameters of the photo-TFT, such as responsivity and sensitivity are 1.7 × 10^6 A/W、 1.0 × 10^4, respectively. In addition, the a-IZTO photo-TFT with HfO2 as gate insulator by sputtering has high interface defects, which has fast recovery in spite of low operation voltage (VDS = 2 V). In comparison on other researches, the detection ability of the a-IZTO photo-TFT is superior than the photo-TFT with other metal-oxide semiconductors. As a result, it is believed that the a-IZTO photo TFT has high potential for utilizing in the photodetector.

    目錄 論文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第1章 序論 1 1.1 研究背景 1 1.2 研究動機與方向 5 1.3 論文大綱 6 第2章 材料介紹與理論基礎 7 2.1 閘極絕緣層高介電材料 7 2.1.1 高介電材料的興起 7 2.1.2 高介電材料的選擇 8 2.1.3 常見的高介電材料的種類 11 2.1.4 高介電材料HfO2之製程方式 13 2.2 光感測薄膜電晶體與金屬氧化物半導體介紹 13 2.2.1.光感測薄膜電晶體之種類概述與操作機制 13 2.2.2.金屬氧化物光感測半導體材料介紹 16 2.2.3.金屬氧化物薄膜電晶體結構 21 2.2.4.金屬氧化物膜電晶體基本操作模式 23 2.3 光感測薄膜電晶體元件參數萃取方式 27 2.3.1 載子遷移率(Mobility, μ) 27 2.3.2 臨界電壓 (Threshold Voltage, Vth) 29 2.3.3 次臨界斜率 (Subthreshold Swing, S.S) 30 2.3.4 開關電流比(On/Off Current Ratio, IOn/IOff) 30 2.3.5 響應度 (Responsivity)、靈敏度(Sensitivity) 31 2.3.6 外部量子效率(external quantum efficiency, EQE) 32 2.3.7 半導體參數分析儀 (Semiconductor Parameter Analyzer) 32 2.4 薄膜之材料特性分析 33 2.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 33 2.4.2 原子力顯微鏡 (Atomic Force Microscope, AFM) 33 2.4.3 紫外可見光光譜儀 (UV/Vis) 34 2.4.4 X射線光電子能譜 (X-ray photoelectron spectroscopy, XPS) 35 2.4.5 薄膜厚度輪廓測量儀 (α-step) 36 第3章 以氧化銦鎵鋅(IGZO)做主動層搭載SiO2與High-k絕緣層之光感測器薄膜電晶體光電特性及材料分析 37 3.1 簡介 37 3.2 實驗說明 38 3.3 實驗步驟 39 3.3.1 IGZO/SiO2 Photo-TFT實驗步驟 39 3.3.2 IGZO/HfO2 Photo-TFT實驗步驟 42 3.4 IGZO主動層搭載SiO2絕緣層之光電特性分析 49 3.5 IGZO主動層搭載HfO2絕緣層之光電特性分析 65 3.6 結果與討論 82 第4章 以氧化銦鋅錫(IZTO)做為主動層搭配High-k絕緣層之光感測器薄膜電晶體光電特性及材料分析 83 4.1 簡介 83 4.2 實驗說明 84 4.3 實驗步驟 85 4.4 於不同主動層厚度之IZTO/HfO2 Photo-TFT的光電特性分析 90 4.5 於不同退火溫度之IZTO/HfO2 Photo-TFT的光電特性分析 114 4.6 結果與討論 132 第5章 總結與未來展望 133 5.1 總結 133 5.2 未來展望 134 參考文獻 135

    [1] X. Fang et al., "Influence of Exciton Localization on the Emission and Ultraviolet Photoresponse of ZnO/ZnS Core-Shell Nanowires," ACS Appl Mater Interfaces, vol. 7, no. 19, pp. 10331-6, May 20 2015.
    [2] J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, "ZnO-based ultraviolet avalanche photodetectors," Journal of Physics D: Applied Physics, vol. 46, no. 30, 2013.
    [3] D. L. Jiang et al., "Realization of unbiased photoresponse in amorphous InGaZnO ultraviolet detector via a hole-trapping process," Applied Physics Letters, vol. 106, no. 17, 2015.
    [4] Q. Yang, Y. Liu, Z. Li, Z. Yang, X. Wang, and Z. L. Wang, "Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell," Angew Chem Int Ed Engl, vol. 51, no. 26, pp. 6443-6, Jun 25 2012.
    [5] D. L. Jiang, X. Z. Ma, L. Li, and Z. K. Xu, "Optoelectrical Properties of a Heterojunction with Amorphous InGaZnO Film on n-Silicon Substrate," Journal of Electronic Materials, vol. 46, no. 10, pp. 6084-6088, 2017.
    [6] G. M. Ali and P. Chakrabarti, "ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors," Journal of Physics D: Applied Physics, vol. 43, no. 41, 2010.
    [7] S. Knobelspies et al., "Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil," Sensors (Basel), vol. 18, no. 2, Jan 26 2018.
    [8] S. E. Ahn et al., "Metal oxide thin film phototransistor for remote touch interactive displays," Adv Mater, vol. 24, no. 19, pp. 2631-6, May 15 2012.
    [9] A. Khosropour and A. Sazonov, "Microcrystalline Silicon Photodiode For Large Area NIR Light Detection Applications," IEEE Electron Device Letters, vol. 38, no. 2, pp. 225-227, 2017.
    [10] J. Ha, S. Yoon, J. S. Lee, and D. S. Chung, "Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity," Nanotechnology, vol. 27, no. 9, p. 095203, Mar 4 2016.
    [11] X. Chu et al., "Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization," ACS Appl Mater Interfaces, vol. 4, no. 9, pp. 4976-80, Sep 26 2012
    [12] M.-S. Park, M. Razaei, K. Barnhart, C. L. Tan, and H. Mohseni, "Surface passivation and aging of InGaAs/InP heterojunction phototransistors," Journal of Applied Physics, vol. 121, no. 23, 2017.
    [13] T.-H. Huang and M.-C. Wu, "Efficient light output power for InGaP/GaAs heterojunction bipolar transistors incorporated with InGaAs quantum wells," Solid-State Electronics, vol. 121, pp. 12-15, 2016.
    [14] F. d. S. Campos, N. Faramarzpour, O. Marinov, M. J. Deen, and J. W. Swart, "Photodetection With Gate-Controlled Lateral BJTs From Standard CMOS Technology," IEEE Sensors Journal, vol. 13, no. 5, pp. 1554-1563, 2013.
    [15] G.-E. Chang, R. Basu, B. Mukhopadhyay, and P. K. Basu, "Design and Modeling of GeSn-Based Heterojunction Phototransistors for Communication Applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 6, pp. 425-433, 2016.
    [16] S. Lee et al., "Impact of transparent electrode on photoresponse of ZnO-based phototransistor," Applied Physics Letters, vol. 103, no. 25, 2013.
    [17] J. T. Jang et al., "Study on the photoresponse of amorphous In-Ga-Zn-O and zinc oxynitride semiconductor devices by the extraction of sub-gap-state distribution and device simulation," ACS Appl Mater Interfaces, vol. 7, no. 28, pp. 15570-7, Jul 22 2015.
    [18] S. Knobelspies et al., "Flexible a-IGZO Phototransistor for Instantaneous and Cumulative UV-Exposure Monitoring for Skin Health," Advanced Electronic Materials, vol. 2, no. 10, 2016.
    [19] H. Zhu et al., "One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor," Carbon, vol. 100, pp. 201-207, 2016.
    [20] A. Pierre, A. Gaikwad, and A. C. Arias, "Charge-integrating organic heterojunction phototransistors for wide-dynamic-range image sensors," Nature Photonics, vol. 11, no. 3, pp. 193-199, 2017.
    [21] P. T. Liu, D. B. Ruan, X. Y. Yeh, Y. C. Chiu, G. T. Zheng, and S. M. Sze, "Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture," Sci Rep, vol. 8, no. 1, p. 8153, May 25 2018.
    [22] C.-S. Fuh, P.-T. Liu, W.-H. Huang, and S. M. Sze, "Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, 2014.
    [23] S. W. Heo et al., "Improved performance of flexible polymer light emitting diodes with an indium-zinc-tin-oxide transparent anode by controlling the thermal treatment temperature," Journal of Industrial and Engineering Chemistry, vol. 53, pp. 68-76, 2017.
    [24] J. Su et al., "Annealing temperature effects on the structural and electrical properties of N-doped In-Zn-Sn-O thin film transistors," Journal of Alloys and Compounds, vol. 801, pp. 33-39, 2019.
    [25] L. Linfeng and P. Junbiao, "High-Performance Indium–Gallium–Zinc Oxide Thin-Film Transistors Based on Anodic Aluminum Oxide," IEEE Transactions on Electron Devices, vol. 58, no. 5, pp. 1452-1455, 2011.
    [26] K. H. Ji et al., " Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With SiNx and SiO2 Gate Dielectrics," IEEE Electron Device Letters, vol. 31, no. 12, pp. 1404-1406, 2010.
    [27] C. L. Fan, F. P. Tseng, and C. Y. Tseng, "Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO(2) Gate Dielectrics by CF(4) Plasma Treatment," Materials (Basel), vol. 11, no. 5, May 17 2018.
    [28] L. E. Aygun, F. B. Oruc, F. B. Atar, and A. K. Okyay, "Dynamic Control of Photoresponse in ZnO-Based Thin-Film Transistors in the Visible Spectrum," IEEE Photonics Journal, vol. 5, no. 2, pp. 2200707-2200707, 2013.
    [29] K. S. Cho et al., "Color-selective photodetection from intermediate colloidal quantum dots buried in amorphous-oxide semiconductors," Nat Commun, vol. 8, no. 1, p. 840, Oct 10 2017.
    [30] M. G. Yun et al., "Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process," Sci Rep, vol. 6, p. 31991, Aug 24 2016.
    [31] B. Y. Tsui and H. W. Chang, "Formation of interfacial layer during reactive sputtering of hafnium oxide," Journal of Applied Physics, vol. 93, pp. 10119-10124, 2003.
    [32] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
    [33] P. Zurcher, C. J. Tracy, R. E. Jones Jr, P. Alluri, P. Y. Chu, B. Jiang, M. Kim, B. M. Melnick, M. V. Raymond, D. Roberts, T. P. Remmel, T. L. Tsai, B. E. White, S. Zafar and S. J. Gillespie, "Barium Strontium Titanate Capacitors for Embedded Dram," Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
    [34] A. Grill, "Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices," Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
    [35] K. J. Hubbard and D. G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
    [36] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. C. Stork, Z. Yu, M. Zeitzoff and J. C. S. Woo, "The impact of High-k gate dielectrics and metal gate electrodes on Sub-100 nm MOSFETs," IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [37] M. H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D. H. Ko, J. H. Lee, N. I. Lee and K. Fujihara, "Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition," Applied Physics Letters, vol. 81, no. 3, pp. 472-474, 2002.
    [38] M. H. Cho, D. H. Ko, Y. G. Choi, K. Jeong, I. W. Lyo, D. Y. Noh, H. J. Kim and C. N. Whang, "Thickness dependence of Y2O3 films grown on an oxidized Si surface," Journal of Vacuum Science & Technology A, vol. 19, no. 1, pp. 200-206, 2001.
    [39] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi and J. Lee, "Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon," Applied Physics Letters, vol. 74, no. 21, pp. 3143-3145, 1999.
    [40] V. Mikhelashvili and G. Eisenstein, "Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation," Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, 2001.
    [41] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B, vol. 18, no. 3, pp. 1785-1791, 2000.
    [42] G. D. Wilk, R. M. Wallace and J. M. Anthony, "High-K gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
    [43] D. C. Hsu, Y. K. Chang, M. T. Wang, P. C. Juan, Y. L. Wang and J. Y. M. Lee, "The positive bias temperature instability of nn-channel metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric," Applied Physics Letters, vol. 92, p. 202901, 2008.
    [44] B. H. Lee, L. Kang, W. J. Qi, R. Nieh, Y. Jeon, K. Onishi and J. C. Lee, "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application," Technical Digest-International Electron Devices Meeting., vol. 1999, pp. 133-136, 1999.
    [45] I. Barin, Thermochemical Data of Pure Substances, VCH, Weiheim, 1989.
    [46] J.-Y. Li, S.-P. Chang, M.-H. Hsu, and S.-J. Chang, "Photo-Electrical Properties of MgZnO Thin-Film Transistors With High-k Dielectrics," IEEE Photonics Technology Letters, vol. 30, no. 1, pp. 59-62, 2018.
    [47] A. Convertino, A. Valentini, T. Ligonzo and R. Cingolani, "Organic–inorganic dielectric multilayer systems as high reflectivity distributed Bragg reflectors," Applied Physics Letters, vol. 71, p. 732, 1997.
    [48] N. Miyata, M. Ichikawa, T. Nabatame, T. Horikawa and A. Toriumi, "Thermal stability of a thin HfO2/ultrathin SiO2/Si structure: Interfacial Si oxidation and silicidation," Japanese Jouranl of Applied Physics, vol. 42, pp. 138-140, 2003.
    [49] K. J. Choi, W. C. Shin and S. G. Yoon, "Ultrathin HfO2 gate dielectric grown by plasma-enhanced chemical vapor deposition using Hf[OC(CH3)3]4 as a precursor in the absence of O2," Journal of Materials Research, vol. 18, no. 1, pp. 60-65, 2003.
    [50] L. Pereira, A. Marques, H. Aguas, N. Nedev, S. Georgiev, E. Fortunato and R. Martins, "Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application," Materials Science and Engineering B, vol. 109, pp. 89-93, 2004.
    [51] O. Renault, D. Samour, D. Rouchon, P. Holliger, A. M. Papon, D. Blin and S. Marthon, "Interface properties of ultra-thin HfO2 films grown by atomic layer deposition on SiO2/Si," Thin Solid Films, vol. 428, pp. 190-194, 2003.
    [52] F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, "Photodetectors based on graphene, other two-dimensional materials and hybrid systems," Nat Nanotechnol, vol. 9, no. 10, pp. 780-93, Oct 2014.
    [53] X. Liu et al., "The effect of oxygen content on the performance of low-voltage organic phototransistor memory," Organic Electronics, vol. 15, no. 7, pp. 1664-1671, 2014.
    [54] İ. Karteri, Ş. Karataş, and F. Yakuphanoglu, "Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators," Journal of Materials Science: Materials in Electronics, vol. 27, no. 5, pp. 5284-5293, 2016.
    [55] B. Yao et al., "Investigation of the source-drain electrodes/the active layer contact-effect on the performance of organic phototransistor," Synthetic Metals, vol. 233, pp. 58-62, 2017.
    [56] Z. Tao, X. Liu, W. Lei, and J. Chen, "High sensitive solar blind phototransistor based on ZnO nanorods/IGZO heterostructure annealed by laser," Materials Letters, vol. 228, pp. 451-455, 2018.
    [57] V. Q. Dang et al., "Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector," Small, vol. 11, no. 25, pp. 3054-65, Jul 1 2015.
    [58] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, “Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor, ” Philosophical Magazine Part B, vol. 81, no. 5, pp. 501-515, 2001.
    [59] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang and B. Lewis, "A study of low temperature crystallization of amorphous thin film indium-tin-oxide," Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
    [60] M. Yasukawa, H. Hosono, N. Ueda and H. Kawazoe, "Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film.," Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
    [61] E. Arca, K. Fleischer and I. V. Shvets, "Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide," Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
    [62] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono,"p-channel thin-film transistor using p-type oxide semiconductor, SnO," Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
    [63] H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, "Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial film," Applied Physics Letters, vol. 82, no. 7, p. 1048, 2003.
    [64] A. J. Bosman and C. Crevecoeur, "Mechanism of the Electrical Conduction in Li-Doped NiO," Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
    [65] M. L. Tu, Y. K. Su and C. Y. Ma, "Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering," Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
    [66] D. C. Look, G. M. Renlund, R. H. Burgener II and J. R. Sizelove, "As-doped p-type ZnO produced by an evaporation/sputtering process," Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
    [67] Y. Ohya, H. Saiki and Y. Takahashi, "Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide," Journal of Materials Science, vol. 29, no. 15, pp. 4099-4103, 1994.
    [68] R. L. Huffman, "Zno-channel thin-film transistors: Channel mobility," Journal of Applied Physics, vol. 95, no. 10, pp. 5813-5819, 2004.
    [69] S. H. Kim, C. H. Ahn, M. G. Yun, S. W. Cho, and H. K. Cho, "Anomalous tin chemical bonding in indium-zinc-tin oxide films and their thin film transistor performance," Journal of Physics D: Applied Physics, vol. 47, no. 48, 2014.
    [70] C.-S. Fuh, P.-T. Liu, W.-H. Huang, and S. M. Sze, "Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, 2014.
    [71] C. Avis, H. R. Hwang, and J. Jang, "Effect of channel layer thickness on the performance of indium-zinc-tin oxide thin film transistors manufactured by inkjet printing," ACS Appl Mater Interfaces, vol. 6, no. 14, pp. 10941-5, Jul 23 2014.
    [72] J.-Y. Noh et al., "Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors," Journal of Applied Physics, vol. 113, no. 18, 2013.
    [73] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In–Ga–Zn–O thinfilm transistors," Science and Technology of Advancedmaterials, vol. 11, p. 044305, 2010.
    [74] H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
    [75] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, "Amorphous transparent conductive oxide InGaO3(ZnO)m (m ≤ 4): A Zn 4s conductor," Philosophical Magazine B, vol. 81, no. 5, pp. 501-515, 2001.
    [76] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi and S. Kaneko, "Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors," Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
    [77] 戴亞翔, TFT-LCD 面板的驅動與設計, 五南圖書出版社股份有限公司, 2008.
    [78] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim and C. J. Kim, "Control of threshold voltage in ZnO-based oxide thin film transistors," Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
    [79] P. Barquinha, L. Pereira, G. Gonalves, R. Martins and E. Fortunato, "The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs," Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
    [80] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song and C. S. Hwang, "Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors," Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157H159, 2008.
    [81] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya and H. Hosono, "Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors," Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011.
    [82] J. Yu, S. W. Shin, K.-H. Lee, J.-S. Park, and S. J. Kang, "Visible-light phototransistors based on InGaZnO and silver nanoparticles," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 33, no. 6, 2015.
    [83] B. H. Kang, W. G. Kim, J. Chung, J. H. Lee, and H. J. Kim, "Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection," ACS Appl Mater Interfaces, vol. 10, no. 8, pp. 7223-7230, Feb 28 2018.
    [84] H. M. Lee, H. J. Jeong, K. C. Ok, Y. S. Rim, and J. S. Park, "Near-Infrared Photoresponsivity of ZnON Thin-Film Transistor with Energy Band-Tunable Semiconductor," ACS Appl Mater Interfaces, vol. 10, no. 36, pp. 30541-30547, Sep 12 2018.
    [85] Y. S. Chun, S. Chang and S. Y. Lee, "Effects of gate insulators on the performance of a-IGZO TFT fabricated," Microelectronic Engineering, vol. 88, no. 7, pp. 1590-1593, 2011.
    [86] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [87] W.-T. Chen and H.-W. Zan, "High-Performance Light-Erasable Memory and Real-Time Ultraviolet Detector Based on Unannealed Indium–Gallium–Zinc–Oxide Thin-Film Transistor," IEEE Electron Device Letters, vol. 33, no. 1, pp. 77-79, 2012.
    [88] I. Noviyana et al., "High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide," Materials (Basel), vol. 10, no. 7, Jun 26 2017.
    [89] Y. H. Lin and J. C. Chou, "Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material," Journal of Nanomaterials, vol. 2014, p. 347858, 2014.
    [90] B. Yao et al., "Correlating optimal electrode buffer layer thickness with the surface roughness of the active layer in organic phototransistors," Synthetic Metals, vol. 193, pp. 35-40, 2014.
    [91] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [92] S. Y. Lee, S. Chang and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol. 518, no. 11, pp. 3030-3032, 2010.
    [93] J. Q. Song, L. X. Qian, "Improved performance of amorphous InGaZnO thin-film transistor by Hf incorporation in La2O3 gate dielectric", IEEE Transactions on Device and Materials Reliability, 2018.
    [94] J. Jeong and Y. Hong, "Debye Length and Active LayerThickness-Dependent Performance Variations of Amorphous Oxide-Based TFTs", Transactions on Electron Devices, vol. 59, no. 3, p. 310, 2012.
    [95] P. V. Pesavento, R. J. Chesterfield, C. R. Newman, and C. D. Frisbie, "Gated four-probe measurements on pentacene thin-film transistors: Contact resistance as a function of gate voltage and temperature," Journal of Applied Physics, vol. 96, no. 12, pp. 7312-7324, 2004.
    [96] J. H. Park et al., "Low-temperature, high-performance solution-processed thin-film transistors with peroxo-zirconium oxide dielectric," ACS Appl Mater Interfaces, vol. 5, no. 2, pp. 410-7, Jan 23 2013.
    [97] S. W. Heo et al., "Improved performance of flexible polymer light emitting diodes with an indium-zinc-tin-oxide transparent anode by controlling the thermal treatment temperature," Journal of Industrial and Engineering Chemistry, vol. 53, pp. 68-76, 2017.
    [98] J. Su et al., "Annealing temperature effects on the structural and electrical properties of N-doped In-Zn-Sn-O thin film transistors," Journal of Alloys and Compounds, vol. 801, pp. 33-39, 2019.
    [99] C. Ting-Hao, C. Shoou-Jinn, C. J. Chiu, W. Chih-Yu, J. Yen-Ming, and W. Wen-Yin, "Bandgap-Engineered in Indium–Gallium–Oxide Ultraviolet Phototransistors," IEEE Photonics Technology Letters, vol. 27, no. 8, pp. 915-918, 2015.
    [100] Y. Xie et al., "Combined control of the cation and anion to make ZnSnON thin films for
    visible-light phototransistors with high responsivity," Journal of Materials Chemistry C, vol. 5, no. 26, pp. 6480-6487, 2017.

    無法下載圖示 全文公開日期 2024/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE