簡易檢索 / 詳目顯示

研究生: 邱晨紘
Chen-Hong Ciou
論文名稱: 金屬氧化物奈米管之光電導應用
Metallic Oxide Nanotube in Photoconduction Application
指導教授: 林保宏
Pao-hung Lin
李奎毅
Kuei-yi Lee
口試委員: 黃鶯聲
Ying-sheng Huang
陳瑞山
Ruei-san Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: 光電導二氧化鈦氧化鋅奈米碳管熱退火
外文關鍵詞: Photoconductor, Titanium dioxide, Zinc oxide, Carbon nanotube, Annealing
相關次數: 點閱:250下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要探討熱退火溫度對於二氧化鈦(Titanium dioxide, TiO2)與氧化鋅(Zinc oxide, ZnO)的影響, 光電導效率及表面物理機制. 利用定義歸一化增益(Γn), 去除實驗參數的貢獻, 分別探討TiO2與ZnO之光電導效率. 可以發現將TiO2奈米管熱退火750oC後, 其光電導效率比原始的TiO2奈米管光電導效率約高了100倍, 推測原因為熱退火提供能量使得內部結晶性變得更好, 以至於電子在內部傳輸的阻力減少, 使得光電導效率提升. 在ZnO的部分, 光電導效率也與溫度有著相依的關係, 隨著熱退火的溫度越高, 原本的混亂多晶相會轉變為有序的多晶相, 且由於ZnO只擁有單一晶相, 所以當其結晶性越好時, 光電導效率也會隨之提升. 另外, 觀察藉由環境變化之光電導量測去探討奈米線之氧分子效應, 結果顯示金屬氧化物的光電流於氧氣下減少的機制與氧化物半導體的氧敏化機制相同, 真空環境下的光電流高於氧氣環境下的光電流, 其原因為氧氣分子的吸附會捕捉奈米線表面的電子而變成帶負電的氧負離子, 導致光電流下降, 所以在氧分子減少時, 光電流就會上升.


    In this thesis, we investigated the relationship of the annealing temperature with the photoconduction efficiency and physical mechanism of titanium dioxide and zinc oxide. The normalized gains, which determine the intrinsic photoconduction efficiencies, were defined and compared in two kinds of metallic oxide. By excluding the contributions of experimental parameters, our results indicated the magnitude of normalized gains of TiO2 nanowire (NW) for post-annealed TiO2 NW was one hundred times higher than pristine TiO2 NW. This could be due to the crystalline could be enhanced by the annealing procedure. Therefore, the photoconduction efficiency increased with the decreasing of the resistance. Meanwhile, the photoconduction efficiency of ZnO also had the same relationship with annealing temperature. The crystalline of ZnO changed from disordered polycrystalline to ordered polycrystalline, and therefore increased the photoconduction efficiency. Besides, the molecular effect of TiO2 NW and ZnO NW were investigated by the environmental dependent photoconductivity measurement. In vacuum, the photocurrent was higher than in oxygen due to the oxygen molecular capture the electrons and absorbed on the surface of oxide semiconductor. The research exhibited that the result consistent with the mechanism of oxide semiconductor.

    圖索引 圖1.1 光電導元件示意圖.----------------------------------------------------------1 圖1.2 圖 1.2 光電導機制示意圖 (a)架構圖, (b)未照光, (c)照光.---------3 圖1.3 表面能帶彎曲示意圖(a)奈米線半導體, (b)p-type半導體, (c)n-type半導體.-------------------------------------------------------------------------4 圖1.4 利用TEM觀察CNT由(a)五層, (b)兩層, (c)七層石墨烯組成.-----7 圖1.5 不同捲曲向量所形成的SWCNT.----------------------------------------7 圖1.6 (a)TiO2的Anatase 晶相, (b)TiO2的Rutile 晶相結構圖.-----------9 圖1.7 圖1.8 ZnO的Hexagonal wurtzite 晶相結構圖.-------------------------------- 金屬之n-type半導體(a)φm>φs, (b)φm<φs接面之能階圖.--------- 11 13 圖2.1 實驗流程圖.------------------------------------------------------------------ 15 圖2.2 電子束蒸鍍系統.------------------------------------------------------------- 16 圖2.3 (a)電漿示意圖, (b)PECVD系統.------------------------------------------ 18 圖2.4 熱化學氣相沉積系統示意圖.---------------------------------------------- 19 圖2.5 溫度與成長時間對照圖.---------------------------------------------------- 20 圖2.6 MOCVD系統實體圖.-------------------------------------------------------- 21 圖2.7 圖2.8 圖2.9 MOCVD示意圖.-------------------------------------------------------------- TCVD示意圖.----------------------------------------------------------------- 溫度與成長時間對照圖.---------------------------------------------------- 22 23 23 圖2.10 TCVD系統示意圖.--------------------------------------------------------- 24 圖2.11 溫度與熱退火時間對照圖.------------------------------------------------- 24 圖2.12 聚焦離子束系統.------------------------------------------------------------- 26 圖2.13 單根奈米線示意圖.---------------------------------------------------------- 26 圖2.14 Raman量測系統實體圖.----------------------------------------------------- 27 圖2.15 特性X光軌域示意圖.------------------------------------------------------- 29 圖2.16 布拉格定律幾何示意圖.---------------------------------------------------- 29 圖2.17 Hitachi S-3000H掃描式電子顯微鏡.------------------------------------- 30 圖2.18 圖2.19 圖2.20 鍍金機.------------------------------------------------------------------------- 穿透式電子顯微鏡系統. ---------------------------------------------------- (a)低溫四點探針量測系統實體圖, (b)Keithley 4200-SCS實體圖.---------------------------------------------------------------------------- 30 31 32 圖3.1 (a)未經氫電漿處理之CNT, (b)經過氫電漿處理之CNT.------------- 33 圖3.2 (a)TiO2/CNT, (b)ZnO/CNT之SEM圖.----------------------------------- 35 圖3.3 (a)CNT, (b)TiO2/CNT, (c)ZnO/CNT之TEM影像.-------------------- 37 圖3.4 (a)TiO2/CNT之拉曼譜線圖, (b)紅圈部分之拉曼譜線圖.------------ 38 圖3.5 (a)ZnO/CNT奈米線成長於Si基板上之XRD譜線圖, (b)紅圈部分的XRD譜線圖.--------------------------------------------------------------- 40 圖3.6 (a)TiO2/CNT, (b)ZnO/CNT之SEM圖.----------------------------------- 42 圖3.7 (a)TiO2/CNT, (b)ZnO/CNT之I-V圖.------------------------------------- 44 圖3.8 (a)TiO2/CNT, (b)ZnO/CNT之光電流響應圖.---------------------------- 47 圖3.9 TiO2/CNT奈米線在大氣中所量測之Γ-I關係圖.---------------------- 48 圖3.10 TiO2/CNT奈米線在大氣中所量測之Γn-I關係圖.-------------------- 49 圖3.11 TiO2奈米線在氧氣, 大氣及真空中之i-t圖.---------------------------- 51 圖3.12 TiO2之氧敏化機制電子傳輸模型.---------------------------------------- 52 圖3.13 在氧氣及真空中之能帶彎曲效應電子傳輸模型.---------------------- 53 圖3.14 圖3.15 (a)TiO2/CNT, (b)ZnO/CNT之環境變化光流量測圖.------------------ (a)TiO2/CNT之Γn-I與熱退火溫度關係圖, (b)ZnO/CNT之Γn-I與熱退火溫度關係圖.---------------------------------------------------------- 54 56 表索引 表1.1 CNT特性------------------------------------------------------------------------ 8 表1.2 TiO2之Anatase 與Rutile晶相之特性-------------------------------------- 10 表1.3 ZnO相關特性------------------------------------------------------------------ 11 表2.1 電子束蒸鍍系統之鋁, 鐵薄膜條件---------------------------------------- 17 表2.2 PECVD蝕刻條件-------------------------------------------------------------- 17 表2.3 TCVD成長CNT於Si基板上之條件--------------------------------------- 20 表2.4 表2.5 表2.6 MOCVD成長TiO2之參數--------------------------------------------------- TCVD成長ZnO之參數------------------------------------------------------ TCVD熱退火之參數---------------------------------------------------------- 22 24 25 表3.1 TiO2/CNT與ZnO/CNT之電導率------------------------------------------- 45

    參考文獻

    [1] B. G. Streetman and S. K. Banerjee, Solid state electronic devices. New Jersey: Prentice Hall, 2007.
    [2] T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, “Recent developments in one-dimensional inorganic nanostructures for photodetectors,” Adv. Funct. Mater., vol. 20, pp. 4233-4248, 2010.
    [3] R. S. Chen, C. Y. Lu, K. H. Chen, and L. C. Chen, “Molecule-modulated photoconductivity and gain-amplified selective gas sensing in polar GaN nanowires,” Appl. Phys. Lett., vol. 95, pp. 233119-1-233119-3, 2009.
    [4] H. Y. Chen, R. S. Chen, F. C. Chang, L. C. Chen, K. H. Chen, and Y. J. Yang, “Size-dependent photoconductivity and dark conductivity of m-axial GaN nanowires with small critical diameter,” Appl. Phys. Lett., vol. 95, pp. 143123-1-143123-3, 2009.
    [5] P. Ball and L. Garwin, “Science at the atomic scale,” Nature, vol. 355, pp. 761-766, 1992.
    [6] S. Iijima, T. Ichihashi, and Y. Ando, “Pentagons, heptagons and negative curvature in graphite microtubule growth,” Nature, vol. 356, pp. 776-778, 1992.
    [7] E. Dervishi, Z. Li, Y. Xu, V. Saini, A. R. Biris, D. Lupu, and A. S. Biris, “Carbon nanotubes: synthesis, properties, and applications,” Part. Sci. Technol., vol. 27, pp. 107-125, 2009.
    [8] T. D. Makris, L. Giorgi, R. Giorgi, N. Lisi, and E. Salernitano, “CNT growth on alumina supported nickel catalyst by thermal CVD,” Diam. Relat. Mater., vol. 14, pp. 815-819, 2005.
    [9] W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, and Q. Xin, “Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell,” Carbon, vol. 40, pp. 791-794, 2002.
    [10] C. Chen, W. Chen, and Y. Zhang, “Synthesis of carbon nano-tubes by pulsed laser ablation at normal pressure in metal nano-sol,” Phys. E, vol. 28, pp. 121-127, 2005.
    [11] R. Bhatia, V. Prasad, and R. Menon, “Probing the inter-tube transport in aligned and random multiwall carbon nanotubes,” J. Appl. Phys., vol. 109, pp. 053713-1-053713-5, 2011.
    [12] C. Li, E. T. Thostenson, and T. W. Chou, “Sensors and actuators based on carbon nanotubes and their composites: A review,” Compos. Sci. Technol., vol. 68, pp. 1227-1249, 2008.
    [13] R. Shah, X. Zhang, and S. Talapatra, “Electrochemical double layer capacitor electrodes using aligned carbon nanotubes grown directly on metals,” Nanotechnology, vol. 20, pp. 395202-1-395202-5, 2009.
    [14] C. Liu, K. S. Kim, J. Baek, Y. Cho, S. Han, S. W. Kim, N. K. Min, Y. Choi, J. U. Kim, and C. J. Lee, “Improved field emission properties of double-walled carbon nanotubes decorated with Ru nanoparticles,” Carbon, vol. 47, pp. 1158-1164, 2009.
    [15] D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, “Protonated titanates and TiO2 nanostructured materials: synthesis, properties, and applications,” Adv. Mater., vol. 18, pp. 2807-2824, 2006.
    [16] M. K. Bera, C. Mahata, and C. K. Maiti, “Reliability of ultra-thin titanium dioxide(TiO2) films on strained-Si,” Thin Solid Films, vol. 517, pp. 27-30, 2008.
    [17] S. K. Kim, W. D. Kim, K. M. Kim, C. S. Hwang, and J. Jeong, “High dielectric constant TiO2 thin films on a Ru electrode grown at 250°C by atomic-layer deposition,” Appl. Phys. Lett., vol. 85, pp. 4112-4114, 2004.
    [18] B. Hudec, K. Hušekova, A. Tarre, J. H. Han, S. Han, A. Rosova, W. Lee, A. Kasikov, S. J. Song, J. Aarik, C. S. Hwang, and K. Frohlich, “Electrical properties of TiO2-based MIM capacitors deposited by TiCl4 and TTIP based atomic layer deposition processes,” Microelectron. Eng., vol. 88, pp. 1514-1516, 2011.
    [19] K. Prasad, D. V. Pinjari, A. B. Pandit, and S. T. Mhaske, “Phase transformation of nanostructured titanium dioxide from anatase-to-rutile via combined ultrasound assisted sol-gel technique,” Ultrason. Sonochem., vol. 17, pp. 409-415, 2010.
    [20] Y. Djaoued, S. Badilescu, P. V. Ashrit, D. Bersani, P. P. Lottici, and J. Robichaud, “Study of anatase to rutile phase transition in nanocrystalline titania films,” J. Sol-gel Sci. Technol., vol. 24, pp. 255-264, 2002.
    [21] C. A. Chen, K. Y. Chen, Y. S. Huang, D. S. Tsai, K. K. Tiong, and F. Z. Chien, “X-ray diffraction and Raman scattering study of thermal-induced phase transformation in vertically aligned TiO2 nanocrystals grown on sapphire(100) via metal organic vapor deposition,” J. Cryst. Growth, vol. 310, pp. 3663-3667, 2008.
    [22] F. Alvarez-Ramirez and Y. Ruiz-Morales, “Ab initio molecular dynamics calculations of the phase transformation mechanism for the formation of TiO2 titanate-type nanosheets from anatase,” Chem. Mater., vol. 19, pp. 2947-2959, 2007.
    [23] Y. Hu, H. L. Tsai, and C. L. Huang, “Effect of brookite phase on the anatase-rutile transition in titania nanoparticles,” J. Eur. Ceram. Soc., vol. 23, pp. 691-696, 2003.
    [24] P. Wagner and R. Helbig, “Halleffekt und anisotropie der beweglichkeit der elektronen in ZnO,” J. Phys. Chem. Solids, vol. 35, pp. 327-335, 1974.
    [25] R. S. Mane, W. J. Lee, H. M. Pathan, and S. H. Han, “Nanocrystalline TiO2/ZnO thin films: Fabrication and application to dye-sensitized solar cells,” J. Phys. Chem. B, vol. 109, pp. 24254-24259, 2005.
    [26] Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, C. S. Lao, J. H. Song, J. Y. Gan, and Z. L. Wang, “RuO2 nanowires and RuO2/TiO2 core/shell nanowires: from synthesis to mechanical, optical, electrical, and photoconductive properties,” Adv. Mater., vol. 19, pp. 143-149, 2007.
    [27] J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, “Silicon vertically integrated nanowire field effect transistors,” Nano Lett., vol. 6, pp. 973-977, 2006.
    [28] J. Mieszawska, R. Jalilian, G. U. Sumanasekera, and F. P. Zamborini, “The synthesis and fabrication of one-dimensional nanoscale heterojunctions,” Small, vol. 3, pp. 722-756, 2007.
    [29] C. J. Hu, Y. H. Lin, C. W. Tang, M. Y. Tsai, W. K. Hsu, and H. F. Kuo, “ZnO-coated carbon nanotubes: flexible piezoelectric generators,” Adv. Mater., vol. 23, pp. 2941-2945, 2011.
    [30] J. Liu, X. Li, and L. Dai, “Water-assisted growth of aligned carbon nanotube–ZnO heterojunction arrays,” Adv. Mater., vol. 18, pp. 1740-1744, 2006.
    [31] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature, vol. 415, pp. 617-620, 2002.
    [32] L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nature Mater., vol. 4, pp. 435-446, 2005.
    [33] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature, vol. 449, pp. 885-889, 2007.
    [34] B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys., vol. 97, pp. 114302-1-114302-11, 2005.
    [35] J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nature Nanotechnol., vol. 6, pp. 568-572, 2011.
    [36] S. H. Tsai, H. C. Chang, H. H. Wang, S. Y. Chen, C. A. Lin, S. A. Chen, Y. L. Chueh, and J. H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano, vol. 5, pp. 9501-9510, 2011.
    [37] C. Y. Hsu, D. H. Lien, S. Y. Lu, C. Y. Chen, C. F. Kang, Y. L. Chueh, W. K. Hsu, and J. H. He, “Supersensitive, ultrafast, and broad-band light-harvesting scheme employing carbon nanotube/TiO2 core-shell nanowire geometry,” ACS Nano, vol. 6, pp. 6687-6692, 2012.
    [38] H. Yu, X. Quan, S. Chen, H. Zhao, and Y. Zhang, “TiO2–carbon nanotube heterojunction arrays with a controllable thickness of TiO2 layer and their first application in photocatalysis,” J. Photoch. Photobio. A, vol. 200, pp. 301-306, 2008.
    [39] W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, and S. Xie, “Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor,” Appl. Phys. Lett., vol. 70, pp. 2684-2686, 1997.
    [40] Q. Wu, L. Yu, Y. Ma, Y. Liao, R. Fang, L. Zhang, X. Chen, and K. Wang, “Raman investigation of amorphous carbon in diamond film treated by laser,” J. Appl. Phys., vol. 93, pp. 94-100, 2003.
    [41] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep., vol. 409, pp. 47-99, 2005.
    [42] M. Scepanovic, M. Grujic-Brojcin, Z. D. Dohcevic-Mitrovic, and Z. V. Popovic, “Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy,” Sci. Sinter., vol. 41, pp. 67-73, 2009.
    [43] C. S. Huang, C. Y. Yeh, Y. H. Chang, Y. M. Hsieh, C. Y. Ku, and Q. T. Lai, “Field emission properties of CNT–ZnO composite materials,” Diam. Relat. Mater., vol. 18, pp. 452-456, 2009.
    [44] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, pp. 041301-1-041301-103, 2005.
    [45] Y. Geng, Z. Y. Xie, S. S. Xu, Q. Q. Sun, S. J. Ding, H. L. Lu, and D. W. Zhang, “Effects of rapid thermal annealing on structural, luminescent, and electrical properties of Al-doped ZnO films grown by atomic layer deposition,” ECS J. Solid State Sci. Technol., vol. 1, pp. 45-48, 2012.
    [46] P. Bhattacharya, Semiconductor optoelectronic devices. New Jersey: Prentice Hall, 1997.
    [47] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, pp. 7433-7473, 1996.
    [48] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, and J. R. Morante, “On the photoconduction properties of low resistivity TiO2 nanotubes,” Nanotechnology, vol. 21, pp. 445703-1-445703-6, 2010.
    [49] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “High-gain photoconductivity in semiconducting InN nanowires,” Appl. Phys. Lett., vol. 95, pp. 162112-1-162112-3, 2009.
    [50] J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, L. Fernandez-Romero, T. Andreu, A. Cirera, A. Romano-Rodriguez, A. Cornet, J. R. Morante, S. Barth, and S. Mathur, “Toward a systematic understanding of photodetectors based on individual metal oxide nanowires,” J. Phys. Chem. C, vol. 112, pp. 14639-14644, 2008.
    [51] R. S. Chen, C. A. Chen, H. Y. Tsai, W. C. Wang, and Y. S. Huang, “Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain,” J. Phys. Chem. C, vol. 116, pp. 4267-4272, 2012.
    [52] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [53] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett., vol. 93, pp. 112115-1-112115-3, 2008.

    無法下載圖示 全文公開日期 2018/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE