簡易檢索 / 詳目顯示

研究生: 林柏辛
Bo-sin Lin
論文名稱: 複晶矽薄膜電晶體於主動式有機發光二極體顯示器之新式畫素電路設計
A Novel Pixel Circuit Design Using Poly-Si TFTs for AMOLED Displays
指導教授: 范慶麟
Ching-lin Fan
口試委員: 李志堅
Chih-Chien Lee
顏文正
Vincent Yen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 114
中文關鍵詞: 低溫多晶矽薄膜電晶體主動有機發光二極體畫素電路
外文關鍵詞: low temperature poly-Si thin film transistor, active matrix-organic light emitting diode, pixel circuit
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於平面顯示器具有輕、薄、低功耗、廣視角及全彩化之特點,因此在應用上都具有相當大的潛力。在眾多不同種類的平面顯示器中,有機電激發光二極體顯示器因為具備有高亮度、視角廣、體積薄、省電、自發光..等優點,所以將會有大量的焦點集中在有機電激發光二極體顯示器上。
    在本論文中,我們探討以低溫多晶矽薄膜電晶體(LTPS-TFTs)驅動之主動有機發光二極體(AMOLEDs)電壓補償畫素電路。相較於非晶矽薄膜電晶體,低溫多晶矽薄膜電晶體(LTPS-TFTs)擁有較好的電流驅動能力及較佳的可靠度,並且可以用來整合畫素電路及週邊的驅動電路於同一塊玻璃基板上,但是由於LTPS-TFT製程的關係,導致LTPS-TFT產生特性上的差異,因此藉由本篇論文提出了新型的驅動電路來補償臨界電壓的差異、IR-Drop的問題。
    首先,先對傳統畫素驅動電路(2T1C)進行模擬與結果討論,根據模擬結果,傳統驅動電路容易受到不同元件特性的影響,造成傳統畫素驅動電路之電流的不穩定。為了克服傳統驅動電路的不穩定性,因此提出了一個新的電壓驅動之主動式有機電激發光二極體的補償電路,以及經過改良並提升開口率的兩個驅動電路,分別是5T2C畫素電路,4T2C、3T1C畫素電路。5T2C為最初設計的電路,模擬結果顯示有激電機發光二極體的平均電流錯誤率僅1.54%,對於Power line之IR-Drop達到1V的影響也僅是大約15%,這將對於驅動電晶體之臨界電壓以及IR-Drop的影響性有顯著的降低。後來藉由刪除5T2C畫素電路之一顆電晶體來提升開口率成為4T2C的驅動電路可達到提昇面板亮度的目,根據模擬的結果可以得知,有激電機發光二極體的平均電流錯誤率僅1.53%,對於Power line之IR-Drop達到1V的影響也僅是大約15%,此改良電路成功地補償臨界電壓及IR-Drop的問題。接下來針對4T2C來作改良,目的在於使開口率提升並使有機電激發光二極體平均電流之錯誤率能有所下降,因此去掉一顆電晶體、一個電容成為3T1C驅動電路,這將大大提升開口率,依照模擬的結果,有激電機發光二極體的平均電流錯誤率為1.41%,對於Power line之IR-Drop達到1V的影響維持在15%以下。
    總而言之,本論文中所提出的三個畫素驅動電路可有效補償低溫多晶矽薄膜電晶體所造成之元件特性的差異,同時明顯的提升有激電機發光二極體之電流的均勻性,對於未來主動式有機電激發光二極體應用極具潛力。


    As a result of flat panel displays have the potential for slim profile, light weight, low power consumption, wide viewing angle, full color, etc. Therefore flat panel displays are essential for various applications. Among of numerous different flat panel displays, Organic Light Emitting Diode (OLED) display has some fingerprint as high brightness, wide viewing angle, light weight, low power, and producing light by itself, Display industry will pay attention to OLED display.
    In this thesis, voltage programming method of driving circuits for active-matrix-organic light-emitting-diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) have been investigated. Contrasting to amorphous silicon (a-Si) TFTs, LTPS-TFTs are provide with the higher current driving capability and the better reliability, and used to implement pixel circuits and driving circuits on a single glass substrate. But LTPS-TFT process by ELA, enable LTPS-TFT to produce the mutant problem of the characteristic. Therefore, the new voltage programming method of pixel circuit has been proposed, in order to compensate issues on variation of the threshold voltage, and IR-Drop phenomenon.
    First of all, conventional 2T1C pixel circuit is interpreted for simulation results and discussions. The simulation results show that output current of conventional 2T1C pixel circuit is instable owing to various characteristics in TFTs. A new pixel design and two modified to promote aperture ratio voltage programming pixel circuits have been proposed, which are 5T2C, 4T2C, and 3T1C, respectively. The 5T2C circuit is first designed, not only the simulation result shows the average error rate of the OLED current is about 1.54% but also the IR-Drop of power line downs to 1 V. result in error rate of the OLED current is about 15%, The circuit will substantially decrease the effects include the threshold voltage and IR-Drop. Subsequently, by way of eliminating a TFT of 5T2C pixel circuit that improve the aperture ratio to become 4T2C pixel circuit, Go a step further, the goal is reached to improve luminance of display. The simulation results show that 4T2C can successfully avoid the threshold voltage of driving TFT and IR-Drop of power line issues. Because the average error rate of the OLED current is about 1.53% and the IR-Drop of power line downs to 1 V. result in error rate of the OLED current is about 15%. Continuously, in order to improve aperture ratio and reduce the average error rate of the OLED current, the 4T2C pixel circuit is modified to cancel a TFT, and a capacitor, and form the 3T1C pixel circuit that can greatly increase aperture ratio. The simulation results show that the average error rate of the OLED current is about 1.41% and the IR-Drop of power line downs to 1 V. result in error rate of the OLED current is below 15%.
    In conclusion, these three proposed pixel circuits all successfully compensate for characteristics variation of LTPS-TFT and the threshold voltage variation of driving TFT and improve the current uniformity for AMOLED greatly. Therefore, the circuit designs possess the potential for the AMOLED panel application in the future.

    論文摘要 I Abstract III Table of Content VI List of Figures VIII Chapter 1 Introduction 1 1.1 Inferiority of Liquid Crystal Display 1 1.2 Organic Light Emitting Diode Display as a Hopeful Substitution 2 1.2.1 Structure for OLED 3 1.2.2 Advantageous position of OLED 6 1.3 Motivation 7 1.4 Organization of this thesis 8 Chapter 2 Fundamental Concepts for OLED Display 11 2.1 OLED Display Driving Models 11 2.1.1 OLED in Passive Matrix Addressing 11 2.1.2 OLED in Active Matrix Addressing 13 2.2 The Comparison of AMOLED Between a-Si and LTPS TFT 15 2.3 The Difference Between Driving TFT 17 Chapter 3 Pixel Driving Circuits for AMOLED 19 3.1 Introduction 19 3.2 Voltage Programmed Circuits 21 3.2.1 Diode-connected compensation in P-type driving TFT 21 3.2.2 Diode-connected compensation in N-type driving TFT 23 3.2.3 Source follower connection 25 3.3 Current Programmed Circuit 27 Chapter 4 Conventional 2T1C and A Novel Pixel Circuit using LTPS-TFTs for AMOLEDs 30 4.1 Introduction 30 4.2 AIM-SPICE and Poly-Si TFT Model 33 4.2.1 AIM-SPICE Simulation 33 4.2.2 Poly-Si TFT Model in AIM-SPICE 33 4.3 Conventional Pixel Design in Voltage Programming 35 4.3.1 Pixel Circuit Operation 35 4.3.2 Simulation Results and Discussions 36 4.4 Proposed Pixel Design in Voltage Programming 43 4.4.1 Pixel circuit operation 43 4.4.2 Simulation results and discussions 47 4.5 Modified Pixel Circuit in Voltage Programming (I) 58 4.5.1 Pixel circuit operation 58 4.5.2 Simulation results and discussions 62 4.6 Modified Pixel Circuit in Voltage Programming (II) 73 4.6.1 Pixel circuit operation 73 4.6.2 Simulation results and discussions 77 4.7 Summary 88 Chapter 5 Conclusions and Future Works 90 5.1 Conclusions 90 5.2 Future works 91 Reference 92

    Chapter 1
    [1.1] A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J. Hughes, “Application of amorphous silicon field effect transistors in addressable liquid crystal display panels,” Appl. Phys., vol. 24, pp. 357, 1981.
    [1.2] M. Pope, H. Kallmann, and P. Magnante, “Electroluminescence in organic crystals,” J. Chem. Phys., vol. 38, 1963, pp. 2042~3043.
    [1.3] C. W. Tang and S. A. Vanslyke, “Organic electroluminescent diodes, ” Appl. Phys. Lett., vol.51, 1987, pp. 913-915.
    [1.4] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10.
    [1.5] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318
    [1.6] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
    [1.7] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, pp. 690–692, Oct. 2004.
    [1.8] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.
    [1.9] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
    [1.10] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007.
    [1.11] Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208.
    [1.12] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915.
    [1.13] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., vol. 25, no. 11, Nov 2004, pp. 728–730.
    Chapter 2
    [2.1] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
    [2.2] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., 1997, vol. 28, pp. 1073-1076.
    [2.3] S. Xiong, B. Guo, C. Wu, Y. Chen, Y. Hao, Z. Zhou, and H. Yang, “A novel design of sub-frame and current driving method for PM-OLED,” in SID Tech. Dig., 2002, pp. 1174-1177. 89
    [2.4] S. J. Kim, and O. K. Kwon, “Low-power driving method and circuit for passive matrix organic electro-luminescent displays,” in Proceedings of International Display Workshops, 2002, pp. 1195-1198.
    [2.5] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878.
    [2.6] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005.
    [2.7] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLEDs, in SID Tech. Dig., 2004, pp. 1504-1507.
    [2.8] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., vol. 39, pp. S291-S295, 2001.
    [2.9] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, 1983, pp.597-599.
    [2.10] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, 1986, pp.1672-1674.
    [2.11] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, 1987, pp.185-187.
    [2.12]A. R. Hepbum, J. M. Marshall, C. Main, M, J. Powell, and C. V. Berkel, “Metastable defects in amorphous-silicon thin film transistors”, Phys. Rev. Lett., Vol.56, No.20, 1986, pp. 2215-2218 .
    [2.13] Mutsumi Kimura, Ichio Yudasaka, Sadao Kanbe, Hidekazu Kobayashi, Hiroshi Kiguchi, Shun-ichi Seki, Satoru Miyashita, Tatsuya Shimoda, Tokuro Ozawa, Kiyofumi Kitawada, Takashi Nakazawa, Wakao Miyazawa, and Hiroyuki Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, pp.2282-2288, 1999.
    [2.14] Masaya Nakai, Hiroyuki Fujii, Tsuyoshi Tsujioka, Yuji Hamada, and Hisakazu Takahashi, “Degradation of organic layers of organic light emitting devices by continuous operation,” Jpn. J. Appl. Phys., vol. 41, pp. 881-884, 2002.
    Chapter 3
    [3.1] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R.G. Stewart, A. Ipri, C. N. King, P. J. Green, R.T. Flegal, S. Pearson, W.A. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J.C. Sturm, “The Impact of the Transient Response of Orgarnic Light Emitting Diodes on the Design of Active Matrix OLED Displays”, IEEE International Electron Device Meeting, p. 875, 1998
    [3.2] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Parche, “Polysilicon VGA active matrix OLED displays—Technology and performance,” in IEDM Tech. Dig., 1998, pp. 871–874.
    [3.3] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp. 7–10.
    [3.4] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46,no. 12, pp. 2282–2288, Dec. 1999.
    [3.5] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no. 1, pp. 100–104, Sep. 2005.
    [3.6] J. H. Lee, J. H. Kim, andM. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp. 897–899, Dec. 2005.
    [3.7] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, no. 5, pp. 280–282, May 2004.
    [3.8] J. H. Lee, W. J. Nam, S. M. Han, and M. K. Han, “OLED pixel design employing novel current scaling scheme”, SID, International Symp. Proc., p.490, 2003
    [3.9] Sang Hoon Jung, Hee Sun Shin, Jae Hoon Lee and Min Koo Han, “An AMOLED pixel for VT compensation of TFT and a p-type LTPS shift register by employing 1 phase clock signal,” in Proc. SID Tech. Dig., 2005, pp. 300–303.
    [3.10] J. H. Lee, J. H. Kim, and M. K. Han, “A New a-Si:H TFT Pixel Circuit Compensating the Threshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, pp.897-899 December 2005
    [3.11] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of Brightnes Uniformity by a New Voltage-Modulated Pixel Design for AMOLED Displays,” IEEE Electron Device Lett., Vol. 27, No. 9, pp.743-745September 2006.
    [3.12] Jae Hoon Lee, Woo Jin Nam, Sang Myeon Han and Min Koo Han, “OLED pixel design employing a novel current scaling scheme,” in SID Tech. Dig.,2003, pp. 490-493.
    Chapter 4
    [4.1] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, IEDM Tech. Dig. (1998) p. 871–874.
    [4.2] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process,” SID Tech. Dig. (2002) p. 899-901.
    [4.3] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In: SID Tech Dig, 2004. p. 264–7.
    [4.4] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “ Full-Color Organic EL Display,”, SID, International Symp. Proc., p. 7, 1998.
    [4.5] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, no. 12, pp. 2282–2288, Dec. 1999.
    [4.6] R. Dawson, Z. Shen, D. A. Furest, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875–878.
    [4.7] M. J. Powell, C. Berkel, and J. R. Hughes, “Time and temperature dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 54, Jan. 1989, pp. 1323–1325.
    [4.8] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, Sep. 2004, pp. 1477–1486.
    [4.9] T. F. Chen, C. F. Yeh, and J. C. Lou, “Investigation of grain boundary control in the drain junction on laser-crystalized poly-si thin film transistors,” IEEE Electron Device Lett., vol. 24, no. 7, pp. 457–459, Jul. 2003.
    [4.10] S. J. Bae, H. S. Lee, J. Y. Lee, J. Y. Park, and C.W. Han, “A novel pixel design for an active matrix organic light emitting diode display,” in Proc. IDRC, 2000, pp. 358–361.
    [4.11] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318.
    [4.12] J. C. Goh, H. J. Chung, and J. Jang, “A new pixel circuit for active matrix organic light emitting diodes,” IEEE Electron Device Lett., vol. 23, no. 9, pp. 544–546, Sep. 2002.
    [4.13] Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, pp. 1199–1208, 2001.
    [4.14] Y. C. Lin, H. P. D. Shieh, and J. Kanicki, “A novel current-scaling a-Si:H TFTs pixel electrode circuit for AM-OLEDs,” IEEE Trans. Electron Devices, vol. 52, pp. 1123–1131, June 2005.
    [4.15] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, pp. 728–730, Nov. 2004.
    [4.16] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,” IEEE Electron Device Lett., Vol. 25, No. 10, pp. 690-692, October 2004
    [4.17] S. H. Jung, H. S. Shin, J. H. Lee and M. K. Han, “An AMOLED Pixel for the VT Compensation of TFT and a p-Type LTPS Shift Register by Employing 1 Phase Clock Signal,” in SID Tech. Dig., 2005, pp.300–303.
    [4.18] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee and M. K. Han, “A New a-Si:H TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED,” in SID Tech. Dig., 2004, pp.264–267.
    [4.19] J. H. Lee, J. H. Kim, and M. K. Han, “A New a-Si:H TFT Pixel Circuit Compensating the Threshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED,” IEEE Electron Device Lett., Vol. 26, No. 12, pp. 897-899 December 2005

    無法下載圖示 全文公開日期 2013/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE