簡易檢索 / 詳目顯示

研究生: 郭柏良
Bo-Liang Guo
論文名稱: 新型電壓編碼畫素電路設計使用低溫複晶矽薄膜電晶體於主動有機發光二極體顯示器之應用
The New Voltage Programming Pixel Circuit with LTPS-TFTs Driving for AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 顏文正
none
李志堅
none
徐世祥
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 85
中文關鍵詞: 畫素電路主動式有機發光二極體
外文關鍵詞: pixel circuit, AMOLED
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期而言,主動矩陣式有機發光二極體(AMOLED)由於其非常優異的特性而受到市場上相當的矚目,例如,高亮度、輕質量、快的反應速度和廣視角等等的優勢。低溫多晶矽薄膜電晶體是被廣泛的應用於當主動矩陣式有機發光二極體中設計的驅動元件由於其相當高的電流驅動能力。當電子移動率較高時,在一個給定的畫素設計面積時將可以獲得較大的開口率,或是在一個給定的開口率時將可以獲得較高的解析度,於是可以用來設計更高畫質的顯示器。更可以用來將原有的一些外部電路進一步的整合於面板內,制造出更輕質便利且美觀的顯示器。
        然而,在實際上,低溫多晶矽薄膜電晶體因為在製程中經過分子雷射的退火再結晶會導致一些電性上的不均勻,這是一個非常嚴重且不可避免的問題。在傳統的2T1C畫素電路中,便可以很清楚的發現由於以上電性的問題造成全畫面影像的不均勻和品質的衰退。且當有機發光二極體經過長時間的操作,會使其造成內部結晶造成一些亮度衰退,而這也會造成顯示器畫面品質的影響。
        因此,我們發表了三個新型的電壓編碼補償的畫素電路,二個5T1C與一個6T1C,並且這三個電路都可以針對以上的電性衰退進行有效的補償。而電路也已經經由AIM-SPICE軟體的驗證和模擬。
        在第一個5T1C畫素電路中,經由軟體的模擬驗證可得知其平均電流錯誤率在驅動元件臨界電壓偏移±0.33伏特下約為0.5%,其平均電流錯誤率在發光元件臨界電壓偏移+0.33伏特下約為10%,還有其電流平均錯誤率在IR DROP為0.3伏特時為8%,尤以上數據顯示不管驅動元件和發光元件已經發生衰退且電性不均勻情況下,其輸出的有機發光二極體電流可以穩定的被控制。
        在第二個5T1C畫素電路中,經由軟體的模擬驗證可得知其平均電流錯誤率在驅動元件臨界電壓偏移±0.33伏特下約為0.8%,其平均電流錯誤率在發光元件臨界電壓偏移+0.33伏特下約為4.7%,還有其電流平均錯誤率在IR DROP為0.3伏特時為5.8%,尤以上數據顯示不管驅動元件和發光元件已經發生衰退且電性不均勻情況下,其輸出的有機發光二極體電流可以穩定的被控制。
        在6T1C畫素電路中,經由軟體的模擬驗證可得知其平均電流錯誤率在驅動元件臨界電壓偏移±0.33伏特下約為3.7%,還有其電流平均錯誤率在IR DROP為0.3伏特時為8.9%,尤以上數據顯示不管驅動元件和發光元件已經發生衰退且電性不均勻情況下,其輸出的有機發光二極體電流可以穩定的被控制。
        由以上的結果顯示,由於有機發光二極體是一個電流控制元件,所以其發光亮度和輸出的電流是呈現正相關對比的,我們可以得知經由去補償驅動元件和發光元件的電性而達到了預期的顯示畫面品質。因此,我們肯定的相信在此論文所發表的兩個新型畫素電路設計是有著相當不錯的穩定電流驅動能力且也是相當適合於應用在大尺寸和高解析度的主動式有激發光二極體顯示器面板中。


    Active matrix organic light-emitting diode (AMOLED) has recently attracted much attention due to its high brightness, light weight, fast response-time, and wide viewing angle. Low-temperature polycrystalline-silicon (LTPS) thin-film transistors (LTPS-TFTs) have been widely considered as pixel elements for AMOLED due to their high current-driving capability. The high electron mobility of LTPS-TFTs can achieve larger aperture ratio for a given pixel size of AMOLED and a higher resolution display to get the better image quality. Furthermore, a very light-weight display with few external interconnections is possible, because the peripheral circuits and the pixel driver circuits both using LTPS-TFTs can be integrated onto the same substrate.
    However, the LTPS-TFTs still have the issue of non-uniformity of threshold voltage due to the excimer laser annealing (ELA) process. In the conventional two-TFTs pixel circuit for AMOLED, various threshold voltages of driving TFT (DTFT) cause the non-uniform gray-scale over the display area. In addition, the long time operation for OLED will cause the brightness to drop off as the OLED threshold voltage degradation.
    Therefore, in order to overcome the above-mentioned issues, we have proposed three novel voltage-modulated structures for AMOLED pixel circuit as 5T1C, 5T1C* and 6T1C. These circuits can compensate both the DTFT threshold voltage deviation and the OLED degradation. The proposed circuits are also verified by SPICE simulator.
    In the 5T1C simulation, results show that the average OLED current error rate under ΔVTH = ±0.33 V is 0.5%, the average OLED current error rate underΔVTH_O = +0.33 V is 10% and the average current error rate under IR Drop voltage = 0.3 V is 8%. It can effectively reproduces almost identical OLED current regardless of the DTFT threshold voltage deviation and OLED degradation.
    In the 5T1C* simulation results show that the average OLED current error rate under ΔVTH = ±0.33 V is 0.8%, the average OLED current error rate underΔVTH_O = +0.33 V is 4.7% and the average current error rate under IR Drop voltage = 0.3 V is 5.8%. It can effectively reproduces almost identical OLED current regardless of the DTFT threshold voltage deviation and OLED degradation.
    In the 6T1C simulation results show that the average OLED current error rate under ΔVTH = ±0.33 V is 3.7%, and the average current error rate under IR Drop voltage = 0.3 V is 8.9%. It can effectively reproduces almost identical OLED current regardless of the DTFT threshold voltage deviation and OLED degradation.
    The above results show that the image non-uniformity of AMOLED can be effectively improved at the same time by compensating the DTFT threshold voltage deviation and the OLED threshold voltage degradation. Thus, we believe that the proposed pixel circuit design has very high driving capability and is a promising candidate for the large size, high resolution AMOLED panels.

    論文摘要 I Abstract IV 致謝 VII Chapter 1 Introduction 1 1.1 Liquid Crystal Display 1 1.2 Organic Light Emitting Display 3 1.2.1 OLED History 3 1.2.2 OLED Structure and Operation 4 1.2.3 OLED Comparing with LCD 5 1.3 Motivation 9 1.4 Thesis Organization 10 Chapter 2 Display technology 12 2.1 Comparision of a-Si and LTPS TFT in AMOLED display 12 2.2 Driving Methods 14 2.2.1 Passive Matrix Addressing 14 2.2.2 Active Matrix Addressing 15 2.3 Emission Methods 18 2.3.1 Bottom emission structure 18 2.3.2 Top emission strucutre 19 2.4 The difference of driving TFT 20 2.5 Compensating methods for AMOLED 22 2.6 AIM-SPICE and Device Model 23 2.6.1 AIM-SPICE 23 2.6.2 Poly-Si TFT Model 24 Chapter 3 Proposed 5T1C Voltage Programming Pixel Circuit 25 3.1 Introduction 25 3.2 New Pixel Circuit Design Scheme 26 3.3 Simulation Results 29 3.4 Conclusion 35 Chapter 4 Proposed 5T1C simple structure Voltage Programming Pixel Circuit 37 4.1 Introduction 37 4.2 New Pixel Circuit Design Scheme 38 4.3 Simulation Results 41 4.4 Conclusion 48 Chapter 5 Proposed 6T1C Voltage Feedback Pixel Circuit 49 5.1 Introduction 49 5.2 New Pixel Circuit Design Scheme 50 5.3 Simulation Results 54 5.4 Conclusion 59 Chapter 6 Future Work 60

    Chapter 1
    [1.1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, 1987, pp. 913-915
    [1.2] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10
    [1.3] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318
    [1.4] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95
    [1.5] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp. 690–692
    [1.6] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no. 1, Sep. 2005, pp. 100–104
    [1.7] J. H. Lee, J. H. Kim, and M. K. Han, “A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED,” IEEE Electron Device Lett., vol. 26, no. 12, Dec. 2005, pp. 897–899
    [1.8] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, Feb. 2007, pp. 129–131
    [1.9] Y. He, R. Hattori, and J. Kanicki, “Four-thin film transistor pixel electrode circuits for active-matrix organic light-emitting displays,” Jpn. J. Appl. Phys., vol. 40, 2001, pp. 1199–1208
    [1.10] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915
    [1.11] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED displays,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730

    Chapter 2
    [2.1] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005
    [2.2] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLEDs, in SID Tech. Dig., 2004, pp. 1504-1507
    [2.3] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., vol. 39, pp. S291-S295, 2001
    [2.4] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, 1983, pp.597-599.
    [2.5] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, 1986, pp.1672-1674
    [2.6] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, 1987, pp.185-187
    [2.7] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95
    [2.8] C. Hosokawa, E. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, “Organic multicolor EL display with fine pixels,” in Dig. Soc. Information Display Int. Symp., vol. 28, 1997, pp. 1073-1076
    [2.9] S. Xiong, B. Guo, C. Wu, Y. Chen, Y. Hao, Z. Zhou, and H. Yang, “A novel design of sub-frame and current driving method for PM-OLED,” in SID Tech. Dig. 2002, pp. 1174-1177
    [2.10] S. J. Kim and O. K. Kwon, “Low-power driving method and circuit for passive matrix organic electro-luminescent displays,” in Proceedings of International Display Workshops, 2002, pp. 1195-1198
    [2.11] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig., 1998, pp. 875-878
    [2.12] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, , Dec. 2005, pp. 248–266
    [2.13] S. H. Ju, S. H. Yu, J. H. Kwon, H. D. Kim, B. H. Kim, S. C. Kim, H. K. Chung, M. S. Weaver, M. H. Lu, R. C. Kwong, M. Hack, and J. J. Brown, “High performance 2.2”QCIF full color AMOLED displays based on electro-phosphorescence,” in SID Tech. Dig., 2002, pp. 1096-1099
    [2.14] X. M. Yu, H. J. Peng, X. L. Zhu, J. X. Sun, M. Wong, H. S. Kwok, “Pure Aluminum as the Anode in Top Emission OLED Fabrication Process”, The 12th International Display Workshops in conjunction with Asia Display 2005 (IDW/AD’05), Dec, 2005, pp. 737-740
    [2.15] K. Mameno, S Matsumoto, R. Nishikawa, T. Sasatani, K. Suzuki, T. Yamaguchi, K. Yoneda, Y. Hamada and N. Saito, Proceedings of IDW’03, p.267, Dec. 3-5, 2003, Fukuoka, Japan
    [2.16] A. R. Hepbum, J. M. Marshall, C. Main, M, J. Powell, and C. V. Berkel, “Metastable defects in amorphous-silicon thin film transistors”, Phys. Rev. Lett., Vol.56, No.20, 1986, pp. 2215-2218
    [2.17] Mutsumi Kimura, Ichio Yudasaka, Sadao Kanbe, Hidekazu Kobayashi, Hiroshi Kiguchi, Shun-ichi Seki, Satoru Miyashita, Tatsuya Shimoda, Tokuro Ozawa, Kiyofumi Kitawada, Takashi Nakazawa, Wakao Miyazawa, and Hiroyuki Ohshima, “Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Devices, vol. 46, pp.2282-2288, 1999
    [2.18] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp.690–692
    [2.19] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic,” IEEE J. Solid-State Circuits, vol. 39, no. 9, Sep. 2003, pp. 215–222
    [2.20] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE Electron Device Lett., vol. 21, Nov. 2000, pp. 590–592
    [2.21] J. Goh, J. Jang, K. Cho, and C. Kim, “A new a-Si:H thin-film transistor pixel circuits for active matrix organic light-emitting diodes, ” IEEE Electron Device. Lett., vol. 24, no. 9, Sep. 2003, pp. 583–585
    [2.22] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915
    [2.23] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes fora-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, Dec. 2005, pp.267–277
    [2.24] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [2.25] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730
    [2.26] Palumbo G, Pennisi M. “AMOLED pixel circuits based on poly-Si TFTs: a comparison. Integration-VLSI journal 2008;41(3):439-46

    Chapter 3
    [3.1] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, IEDM Tech. Dig., 1998, pp. 871–874
    [3.2] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process,” SID Tech. Dig., 2002, pp. 899-901
    [3.3] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In SID Tech Dig., 2004, pp. 264–267
    [3.4] R. M. A. Dawson, Z. Shen, D. A. Furst, S, Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm: IEDM Tech. Dig., 1998, p. 875
    [3.5] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, and H. Ohshima: IEEE Trans. Electron Device 46, 1999, pp.2282
    [3.6] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han: SID Int. Symp. Dig. Tech. Pap. 35, 2004, pp.264
    [3.7] S. M. Choi, O. K. Kwon, and H. K. Chung: SID Int. Symp. Dig. Tech. Pap. 35 2004, pp.260
    [3.8] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., 2000, pp. 912–915
    [3.9] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes fora-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, Dec. 2005, pp.267–277
    [3.10] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [3.11] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [3.12] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730
    [3.13] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun and Y. W. Liu, “A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” JJAP., vol. 49, pp. 064201, 2010
    Chapter 4
    [4.1] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, IEDM Tech. Dig., 1998, pp. 871–874
    [4.2] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process,” SID Tech. Dig., 2002, pp. 899-901
    [4.3] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In SID Tech Dig., 2004, pp. 264–267
    [4.4] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
    [4.5] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,” Proc. IEEE Electron Device Lett. Vol. 25, pp. 690-692, 2004
    [4.6] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving schemes fora-Si and LTPS AMOLED displays,” J. Display Technol., vol. 1, Dec. 2005, pp.267–277
    [4.7] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [4.8] A. Yumoto, M. Asano, H. Hasegawa, and M. Sekiya, “Pixel-driving methods for large-sized poly-Si AM-OLED displays,” in Proc. Int. Display Workshop, 2001, pp. 1395–1398
    [4.9] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730
    [4.10] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun and Y. W. Liu, “A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” JJAP., vol. 49, pp. 064201, 2010
    Chapter 5
    [5.1] M. Stewart, R. S. Howell, L. Pires, M. K. Hatalis, W. Howard, and O. Prache, IEDM Tech. Dig., 1998, pp. 871–874
    [5.2] Tatsuaki Funamoto, Yojiro Matsueda, Osamu Yokoyama, Akihito Tsuda, HiroshiTakeshita, Satoru Miyashita, “A 130-ppi, full-color polymer OLED display fabricated using an ink-jet process,” SID Tech. Dig., 2002, pp. 899-901.
    [5.3] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In SID Tech Dig., 2004, pp. 264–267
    [5.4] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
    [5.5] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science ., vol. 283, pp. 1900-1902, 1999
    [5.6] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A New Current Scaling Pixel Circuit for AMOLED,” IEEE Electron Device Lett., vol. 25, pp. 280-282, 2004
    [5.7] T. W. Kim and B. D. Choi, “Pixel-Level Digital-to-Analog Conversion Scheme for Compact Data Drivers of Active Matrix Organic Light-Emitting Diodes with Low-Temperature Polycrystalline Silicon Thin-Film Transistors,” Jpn. J. Appl. Phys, vol. 49, p. 03CD03, 2010
    [5.8] H. J. In and O. K. Kwon, “Simple Pixel Structure Using Video Data Correction Method for Nonuniform Electrical Characteristics of Polycrystalline Silicon Thin-Film Transistors and Differential Aging Phenomenon of Organic Light-Emitting Diodes,”Jpn. J. Appl. Phys,vol. 49, p. 03CD04 , 2010
    [5.9] R. M. A. Dawson, Z. Shen, D. A. Furst, S, Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. L u, and J. C. Sturm, “Impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” Technical Digest - International Electron Devices Meeting, pp. 875-878, 1998
    [5.10] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, and H. Ohshima, “Low-temperature poly-silicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display,” IEEE Trans. Electron Device., vol. 46, pp. 2282-2288, 1999
    [5.11] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han, “A New a-Si:H TFT Pixel Design Compensating Threshold Voltage Degradation of TFT and OLED,” SID Int. Symp. Dig. Tech. Pap., vol. 35, pp. 264-267, 2004
    [5.12] S. M. Choi, O. K. Kwon, and H. K. Chung, “An Improved Voltage Programmed Pixel Structure for Large Size and High Resolution AM-OLED Displays,” SID Int. Symp. Dig. Tech. Pap., vol. 35, pp. 260-263,2004
    [5.13] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., vol. 45, pp. 4402-4406, 2006
    [5.14] Chih-Lung Lin, Kuo-Chao Liao, “A Novel Top Emission Pixel Circuit Compensating for TFT Threshold Voltage Variation and Luminance Degradation of OLED,” Electron Devices and Solid-State Circuits, EDSSC., no. 4450413, pp.385-388, 2007
    [5.15] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun and Y. W. Liu, “A New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” JJAP., vol. 49, pp. 064201, 2010

    無法下載圖示 全文公開日期 2017/06/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE