簡易檢索 / 詳目顯示

研究生: 黃義廷
Yi-Ting Huang
論文名稱: 表面結構化對氮化銦鎵p-i-n光感測器特性之影響
Surface texturing effect on InGaN p-i-n photodetectors
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李志堅
Chih-Chien Lee
郭鴻飛
Hung-Fei Kuo
蘇忠傑
Jung-Chieh Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 123
中文關鍵詞: 氮化銦鎵多重量子井光偵測器。
外文關鍵詞: InGaN, multiple quantum wells(MQWs), photodetectors
相關次數: 點閱:224下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用InGaN/GaN多重量子井主動層結構磊晶在圖案化藍寶石基板的晶圓,以表面結構化處理的技術研製p-i-n光偵測器,我們製作兩種不同材料的表面結構處理,分別為:(1)ITO表面粗糙化;以及(2)二維陣列倒置反射杯的氮化鎵表面結構。目的是為了增加短波長在空乏區的光吸收、並增強光擷取的能力以提升光電流與響應率,並且探討比較其元件的光電特性、外部量子效率與響應率。
    對於只有ITO表面粗糙化的元件在外加逆向偏壓0 V與1.5 V下,峰值外部量子效率分別為67%和73%,對應的峰值響應率分別為0.21 A/W和0.23 A/W,峰值波長均為388 nm,截止波長約為440 nm,根據定義可得到偵測光對非偵測光的拒斥比可高於1000以上。而有ITO和氮化鎵表面結構處理的元件,在波長為335 nm至365 nm範圍,逆向偏壓為0V時,EQE數值與對應的響應率大概提升50%~85%,然而在峰值響應率的部分約下降14%,意味著蝕刻p型氮化鎵產生許多表面能階與缺陷,而部份入射光被表面能階所吸收。
    另一方面,我們也將本論文所設計的元件當作太陽能電池操作,可觀察到有氮化鎵表面結構的元件,隨著氮化鎵蝕刻深度的增加,短路電流密度也隨之提升,但氮化鎵表面經蝕刻後,容易形成表面能階與缺陷,提高暗電流,造成等效並聯電阻(shunt resistance, Rsh)變小,使得Voc數值下降,並減少光電流的收集,進而使得轉換效率不佳。


    In this study, we used surface texturing technique to fabricate GaN-based p-i-n photodetectors (PDs) with a commercial epitaxial wafer grown on patterned sapphire substrate (PSS) which has an InGaN/GaN MQW active layer. Two types of surface texturing were performed and compared: (1) a surface-rough indium-tin-oxide (ITO) layer; (2) a surface-textured p-GaN layer consisting of two-dimensional arrays of inverted reflector cups. The goal of surface texturing was to increase short-wavelength light absorption in the depletion region and to increase light trapping for more photocurrent and responsivity. And we characterized and compared the PDs in terms of optical and electrical characteristics, external quantum efficiency (EQE) and responsivity.
    The peak EQE values of the sample with a surface-rough ITO layer were as high as 67% and 73% at 0 V and -1.5 V bias, respectively, corresponding to peak responsivity of 0.21 A/W and 0.23 A/W, respectively, at 388-nm wavelength. The cut-off wavelength and the absorption band edge was ~440 nm. The detected/unwanted rejection ratio (defined as the responsivity at peak wavelength to that at a wavelength 10-nm longer than the cutoff wavelength) was higher than 1000. In comparison, we found that in a wavelength range between 335 nm and 365 nm, the EQE value and responsivity for the sample with both ITO and GaN surface texturing were significantly increased by 50%~ 85%, at 0 V bias. Though the peak responsivity was somewhat reduced by ~14% implying some light absorption by the surface states and defects produced at the etched p-GaN surface.
    On the other hand, the devices were also operated as solar cells. It was found that the short circuit current density increased with increasing etching depth in GaN. However, the texturing on p-GaN layer caused many surface states and deep-level trapping centers. Thus it increased dark current resulting in a lower shunt resistance, a lower open circuit voltage and less photocurrent collection. Therefore the conversion efficiency was not good.

    中文摘要 I Abstract III 致謝 IV 目錄 V 圖片目錄 IX 表格目錄 XIV 第一章 導論 1 1.1 緒論 1 1.2 氮化鎵材料介紹 2 1.3文獻回顧 5 1.4 研究動機與目的 18 第二章 光偵測器理論介紹 20 2.1 光偵測器工作原理 20 2.2 光偵測器檢測參數 22 2.2.1量子效率(quantum efficiency) 22 2.2.2 響應率(Responsivity, R) 25 2.2.3響應速度(Response Speed) 25 2.2.4 拒斥比(Rejection Ratio) 26 2.2.5 雜訊等效功率(noise equivalent power, NEP) 26 2.2.6 檢測率(normalized detectivity, D*) 27 第三章 光偵測器架構分類介紹 28 3.1 p-n接面光電二極體 28 3.2 p-i-n接面光電二極體 31 3.3 蕭基位障光電二極體 34 3.4 雪崩型光電二極體 36 3.5異質接面光電二極體 38 3.6 光導體光偵測器 40 第四章 元件設計與製程儀器介紹 42 4.1元件設計 42 4.2 元件製程 46 4.2.1 活化製程(activation) 48 4.2.2 P型氮化鎵表面結構 48 4.2.3 絕緣製程(Isolation) 49 4.2.4 高台圖形製程(Mesa) 51 4.2.5 N型電極沉積 53 4.2.6 二氧化矽披覆層沉積 54 4.2.7 表面粗糙化ITO沉積 54 4.2.8 P型電極沉積 55 4.3 製程儀器介紹 55 4.3.1 感應耦合電漿反應式離子蝕刻機(Inductively-coupled plasma reactive ion etching, ICP-RIE) 55 4.3.2 電子束蒸鍍機(Electron-beam evaporator) 57 4.3.3射頻濺鍍機(RF Sputter) 58 4.4 量測儀器介紹 60 4.4.1 L-I與I-V量測系統 60 4.4.2 太陽模擬光源(Solar simulator) I-V量測 62 4.4.3 光激發螢光(Photoluminescence, PL)量測系統 64 4.4.4 外部量子效率量測系統(Incident photon to electron conversion efficiency, IPCE) 65 第五章 結果與討論 66 5.1 p型氮化鎵表面結構化尺寸探討 66 5.1.1 Sample B和Sample C元件之p型氮化鎵表面結構探討 67 5.1.2 Sample D元件之p型氮化鎵表面結構探討 72 5.2 ITO表面粗糙化結構探討 74 5.3 氮化鎵光偵測器元件結果與討論 77 5.3.1 Sample A與Sample D元件電性(I-V)與光學特性(L-I)比較 78 5.3.2 Sample A元件與Sample D元件暗電流特性量測探討 81 5.3.3 Sample A元件與Sample D元件之外部量子效率(EQE)量測探討 82 5.3.4 Sample B元件與Sample C元件之外部量子效率(EQE)量測探討 84 5.3.5 Sample A元件與Sample D元件在不同偏壓下的響應率 86 5.4 氮化鎵表面結構化元件當做太陽能電池操作下之量測結果與討論 89 5.4.1 半導體太陽能電池原理 89 5.4.2 太陽能電池效能參數介紹 92 5.4.3 太陽能電池I-V量測曲線比較 95 5.4.3.1 太陽能電池元件AM 1.5D Solar IV量測 95 5.4.3.2太陽能電池元件AM 1.5G Solar IV量測 97 第六章 結論與未來展望 99 參考文獻 104

    [1] E. Fred Schubert, “Light-emitting diode,” Cambridge University Press, New York, 2006.
    [2] G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, “Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy,” Applied Physics Letters, vol. 84, pp. 452, 2004.
    [3] P. Mottier, “LEDs for Lighting Applications,” ISTE and John Wiley & Sons, London, p. 33, 2009.
    [4] J. I. Pankove, J. E. Berkeyheiser, “Properties of Zn‐doped GaN. II. Photoconductivity,” Journal of Applied Physics, vol. 45, pp. 3892-33895, 1974.
    [5] M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame, L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers,”
    Applied Physics Letters, vol. 60, pp. 2917, 1992.
    [6] S. J. Chang, et al., “GaN-based p-i-n sensors with ITO contacts,” IEEE Sensors Journal, vol. 6, no. 2, pp. 406–409, April 2006.
    [7] Bayram Butun , Turgut Tut , Erkin Ulker ,Tolga Yelboga , Ekmel Ozbay, “High-performance visible-blind GaN-based p-i-n photodetectors,” Applied Physics Letters, vol. 92, no. 033507, 2008.
    [8] J.Pereiro, C. Rivera, A.Navarro, E.Muoz, Robert Czernecki, S.Grzanka, M. Leszczynski, “Optimization of InGaN–GaN MQW Photodetector Structures for High-Responsivity Performance,” IEEE Journal of Quantum Electronics, vol. 45, no. 6, June 2009.
    [9] T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue lightemitting diodes grown on epitaxially laterally overgrown GaN substrates,” Japanese Journal of Applied Physics, vol. 37, pp. L839–
    L841, 1998.
    [10] Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN
    epitaxial growth with low dislocation density by hydride vapor phase
    epitaxy,” Japanese Journal of Applied Physics, vol. 36, pp. L899–
    L902, 1997.
    [11] G. Wang, H. Lu, et al., “High Quantum Efficiency GaN-Based p-i-n Ultraviolet Photodetectors Prepared on Patterned Sapphire Substrates,” IEEE Photonics Technology Letters, vol. 25, no. 7, pp. 652–654, April 2013.
    [12] E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,” Physica Status Solidi (B) Basic Research, vol. 244, no. 8, pp. 2859–2877, August 2007.
    [13] S. O. Kasap, Optoelectronics and Photonics:Principles and Practices半導體光電元件,全威圖書有限公司,台北,2006。
    [14] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy and recombination lifetime of GaN obtained from transmission measurements,” Applied Physics Letters, vol. 71, no. 18, pp. 2572-2574, November 1997.
    [15] Ting Li, D.J.H. Lambert, A.L. Beck, C.J. Collins, B. Yang, M.M. Wong, U. Chowdhury, R.D. Dupuis and J.C. Campbell, “Solar-blind AlxGa1-xN-based metal-semiconductor-metal ultraviolet photodetectors,” Electronics Letters, vol. 36, no. 18, pp. 1581–1583,
    August 2000.
    [16] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277–2279, 1997.
    [17] S. M. Sze and Kwork K. Ng, “Physics of Semiconductor Devices,” John Wiley & Sons, 1981.
    [18] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
    [19] D. A. Neamen, “Semiconductor Physics & Device,” McGraw-Hill, 1997.
    [20] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [21] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [22] 黃致維,「氮化鎵光偵測器之初步研究」,國立台灣科技大學電子工程所碩士學位論文,台北,2014。

    QR CODE