簡易檢索 / 詳目顯示

研究生: 王張瀚
Chang-Han Wang
論文名稱: 積體化氮化鎵光偵測器與七段顯示器
Integrated GaN-based photodetector and seven segment display
指導教授: 葉秉慧
Ping-Hui Yeh
口試委員: 李奎毅
Kuei-Yi Lee
蘇忠傑
JUNG-CHIEH SU
陳致曉
Chih-Hsiao Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 126
中文關鍵詞: 氮化鎵光偵測器七段顯示器
外文關鍵詞: GaN, Photodector, Seven segment display
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文研究積體化氮化鎵光電晶體光偵測器與七段顯示器的元件製作、模組電路設計與特性量測。光電晶體可以放大光電流,氮化鎵光電晶體適合偵測環境的紫外線照度,與七段顯示器積體化可顯示紫外線危險級數或顯示照度值。本研究製作此積體化元件並做特性量測,包括暗電流、外部量子效率、在不同偏壓下的響應率。以及設計電路將光電晶體的電流訊號轉換成電壓訊號,再將其電壓訊號進行二級放大,最後將電壓輸入Arduino板,控制七段顯示器顯示目前電壓對應的級數。
      在七段顯示器光電特性量測上,啟動電壓約為2.7 V,串聯電阻約為13 Ω。在電流為20 mA下的光輸出功率約為4 mW ~5 mW,並有CCD影像。在光電晶體特性量測上,當光電晶體之逆向偏壓為9 V,外部量子效率峰值為516%,峰值波長約為389nm,對應的響應率為1.62 A/W。
      在積體化光偵測器與七段顯示器的模組實驗,我們將光電晶體操作在逆向偏壓9V,照射波長為390 nm,得出的光電流連接至運算放大器,並提供0.36 V大小的補償電壓在非反相端以抵消暗電流,使光電流轉成電壓訊號控制在0V到0.14V區間,接著透過二級放大器使電壓訊號放大,使電壓訊號在0.1 V到2.6 V區間,最後將此電壓訊號輸入Arduino板,即可控制七段顯示器依據目前電壓顯示對應的數值。


      This thesis study covered the component fabrication, module circuit design and characteristic measurement with the title of Integrated Gallium Nitride Photodetector and Seven-Segment Display. The basic principle of phototransistor is to amplify the photocurrent. We use Gallium Nitride phototransistor for detecting the ultraviolet light of the environment and is integrated with the seven-segment display that can monitor the ultraviolet level. In this research, the integrated device was made and its characteristics were measured, including dark current, external quantum efficiency, and responsivity under different bias voltages. The module circuit uses two Operational Amplifiers that convert the current signal of the photodetector into a voltage signal, and then amplify the voltage signal. Finally, the voltage signal is sent to Arduino board and control the seven-segment display to show the level of the voltage.
      In the measurement of the photoelectric characteristics of the seven-segment display, the turn on voltage is about 2.7 V, and the series resistance is about 13 Ω. The light output power at a current of 20 mA is about 4 mW ~ 5 mW, and the CCD image is observed. In the measurement of phototransistor characteristics, when the reverse bias voltage is 9 V, the external quantum efficiency is 516% at the peak wavelength of 389 nm, and the corresponding responsivity is 1.62 A/W.
      In the module experiment of the integrated photodetector and the seven-segment display, we operated the phototransistor at a reverse bias voltage of 9V with a given irradiation wavelength of 390 nm. Then, the  
    resulting photocurrent was connected to the operational amplifier and provided a compensation voltage of 0.36 V at the non-inverting end to offset the dark current. Thus, the photocurrent is converted into a voltage signal controlled in the range of 0V to 0.14V, and then the voltage signal is amplified through a two-stage amplifier to make the voltage signal in the range of 0.1 V to 2.6 V. Finally, this voltage signal is sent to the Arduino board, and the seven-segment display can be controlled to display the corresponding value according to the current voltage.

    摘要 i Abstract iii 致謝 v 圖目錄 x 表目錄 xvi 1.1 前言 1 1.2 文獻回顧與研究動機 3 第二章 光偵測器工作原理與特性 15 2.1 光偵測器工作原理與種類 15 2.1.1 p-n光電二極體 (p-n photodiode) 18 2.1.2 p-i-n光電二極體 (p-i-n photodiode) 20 2.1.3蕭基位障光電二極體 (Schottky barrier photodiode) 22 2.1.4雪崩光電二極體 (Avalanche photodiode) 24 2.1.5異質接面光電二極體 (Heterojunction photodiode) 27 2.1.6光電晶體 (Phototransistor) 29 2.2光偵測器檢測參數 31 2.2.1 量子效率(Quantum Efficiency, QE) 31 2.2.2 響應率(Responsivity, R) 34 2.2.3 響應速度(Response Speed) 34 第三章 Arduino介紹與應用 35 3.1 Arduino模組介紹 35 3.2 Arduino UNO 實際應用 39 第四章 製程與量測儀器介紹 43 4.1 製程儀器介紹 43 4.1.1 旋轉塗佈機(Spin Coater) 43 4.1.2 光罩對準機(Mask aligner) 44 4.1.3 感應耦合電漿式離子蝕刻機 47 4.1.4 電漿增強式化學氣相沉積 49 4.1.5 射頻濺鍍機(RF Sputter) 51 4.1.6 快速升溫退火爐(Rapid Thermal Annealing, RTA) 53 4.1.7 電子束蒸鍍機(E-beam Evaporator) 54 4.2 量測儀器介紹 55 4.2.1 電源供應器(Source Meter) 55 4.2.2 I-V與L-I量測系統 58 4.2.3 外部量子量測系統 59 4.2.4 薄膜厚度輪廓測度儀(Alpha step) 60 第五章 元件設計與製程 61 5.1元件設計與製作 61 5.2 元件製程 64 5.2.1 活化製程(Activation) 66 5.2.2 絕緣製程(Isolation) 66 5.2.3 高台圖型製程(Mesa) 68 5.2.4 矽擴散製程(Silicon diffusion) 70 5.2.5 二氧化矽絕緣層沉積 72 5.2.6 ITO透明導電層沉積 73 5.2.7 N&P型電極沉積 74 第六章 結果與討論 75 6.1積體化氮化鎵七段顯示器LED基本光電特性 76 6.2積體化氮化鎵光電晶體基本光電特性 78 6.2.1 氮化鎵n-p-i-n光電晶體暗電流量測 79 6.2.2 氮化鎵n-p-i-n光電晶體之外部量子效率量測 81 6.2.3 氮化鎵n-p-i-n光電晶體之響應速度量測 82 6.3 運算放大器電路設計 86 6.3.1 以負偏壓設計之參考電壓 90 6.3.2 第二級運算放大器電路設計 91 6.3.3 模組電路量測結果 92 6.4 Arduino程式設計 94 6.5 積體化氮化鎵光偵測器與七段顯示器的模組測試 98 第七章 結論與未來展望 101 7.1結論 101 7.2未來展望 102 參考文獻 103

    [1] E.Fred Schubert, “Light-emitting diode.” Cambridge University
    Press, New York, 2006.

    [2] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H.
    Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with
    a 12-pair Mg Ny-GaN buffer layer,” IEEE J. Quantum Electron., vol.
    44, no. 10, pp. 916-921, Oct. 2008.

    [3] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S.
    Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW
    photodetector structures for high-responsivity performance,” IEEE J.
    Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.

    [4] Zhaojun Liu, Jun Ma, Tongde Huang, Chao Liu, and Kei May Lau. “Selective epitaxial growth of monolithically integrated GaN-based light emitting diodes with AlGaN/GaN driving transistors.” Appl. Phys. Lett. 104, 091103. 2014.

    [5] Shen, S-C, Kao, T-T, Kim, H-J, Lee, Y-C, Kim, J, Ji, M-H, Ryou,
    J-H, Detchprohm, T, Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol.8, 032101, Feb. 2015.

    [6] Meixin Feng , Jin Wang, Rui Zhou, Qian Sun , Hongwei Gao, Yu Zhou , Jianxun Liu, Yingnan Huang,Shuming Zhang, Masao Ikeda, Huaibing Wang, Yuantao Zhang, Yongjin Wang , and Hui Yang .On-Chip Integration of GaN-Based Laser, Modulator,and Photodetector Grown on Si IEEE Journal Of Selected Topics In Quantum Electronics. 24(6) , 820-0305. 2018.

    [7] S. O. Kasap, Optoelectronics and Photonics:Principles Practices半導體光電元件,全威圖書有限公司,台北,2006.

    [8] Richard S. Quimby, Photonics and Lasers Chapter 14.4.2 Schottky Photodiode 2006.
    [9] 劉博文,光電元件導論,全威圖書有限公司,台北,2005.
    [10] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices.Peason Education Interational. 2001.
    [11] Pratik Desai “Python x Arduino物聯網整合開發實戰”2016.
    [12] Arduino UNO Rev3 Datasheets
    [13] 蕭宏,半導體製程技術導論-第三版,全華圖書有限公司,台北,2014.
    [14] SUSS_MA_BA8_Gen3_Original.pdf
    [15] 甯榮椿,「使用感應耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系,2010.
    [16] 施敏,半導體元件物理與製作技術-第三版,國立交通大學出版社,新竹,2013.
    [17] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011.
    [18] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [19] 陳彥偉,「P型氮化鋁鎵之歐姆接觸研究」,國立交通大學電子物理所碩士學位論文,新竹,2006.
    [20] J. P. Shim, S. R. Jeon, Y. K. Jeong, D. S. Lee, ”Improved Efficiency by Using Transparent Contact Layers in InGaN-Based p-i-n Solar Cells,” IEEE ELECTRON DEVICE LETTERS, vol. 31,no. 10, Oct. 2010.
    [21] 邱煜傑,「積體化氮化鎵發光二極體與光偵測器模組電路設計與特性量測」,國立台灣科技大學電子工程所碩士學位論文,台北,2019.
    [22] 王子勛,「積體化紫外光感測器與LED警示燈」,國立台灣科技大學電子工程所碩士學位論文,台北,2019.

    無法下載圖示 全文公開日期 2025/08/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE