簡易檢索 / 詳目顯示

研究生: 邱煜傑
Yu-Chieh Chiu
論文名稱: 積體化氮化鎵發光二極體與光偵測器模組電路設計與特性量測
Characterization and circuit design of integrated GaN-based LED and photodetector module
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 徐世祥
Shih-Hsiang Hsu
李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 134
中文關鍵詞: 積體化氮化鎵模組設計電路光偵測器
外文關鍵詞: integrated GaN-based, circuit design, photodetector
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究積體化氮化鎵發光二極體與光偵測器模組的電路設計與特性量測。量測本實驗室積體化製程製作的兩種光偵測器(p-i-n結構以及n-p-i-n結構光電晶體)的特性包括暗電流、外部量子效率、在不同偏壓下的響應率,並量測p-i-n光偵測器在發光二極體不同距離下的耦光率與監控響應率(Monitoring responsivity),以及設計電路將n-p-i-n光電晶體的電流訊號轉換電壓訊號(Transimpedance amplifier),再將其訊號進行二級放大並達到LED之驅動電壓,成功將光電晶體偵測紫外光的電流訊號驅動同一晶片上的LED發出可見光來警示。
    在p-i-n光偵測器監控發光二極體光功率的實驗,,提供發光二極體電流由0 mA增加至2 mA並記錄光偵測器光電流值,當與發光二極體距離為1000 μm時,p-i-n光偵測器光電流從約0.03 nA增加至74.2 nA;當兩者距離為5600 μm時,光電流約從0.34 nA增加至1.53 nA。我們可以得到p-i-n光偵測器的光電流會隨者發光二極體電流的上升呈線性增加。接著取在2mA的發光二極體光功率及光偵測器之光電流值,即可計算出監控響應率,此監控響應率隨著與發光二極體距離增加而下降。其肇因於耦光率隨著距離增加而下降,在兩者距離326 μm下有1.06 %的耦光率,在距離5600 μm下有0.02 %的耦光率。同時我們探討在同樣距離326 μm下的發光二極體光功率與監控響應率關係,給予發光二極體電流從0 mA增加至2 mA,響應率大約落在0.12 mA/W至0.14 mA/W之間。
    在積體化紫外光感測器與LED警示燈的實驗,我們使用n-p-i-n光電晶體操作在逆向偏壓9V時,照射波長為350 nm,得出的光電流連接至運算放大器,並提供0.7 V大小的負偏壓在非反相端,使電流轉成電壓訊號控制在0V到0.11V區間,接著透過二級放大器使電壓訊號放大,使電壓訊號在0 V到3 V區間,當入射光強度大於0.7 mW/cm2可提供3 V以上之電壓,即可驅動同一晶片上的發光二極體,達到積體化光偵測器與LED警示燈模組。


    In this paper, we study the circuit design and characteristic measurement of the integrated GaN LED and photodetector module. The characteristics of the two photodetectors (p-i-n structure and n-p-i-n structure phototransistor) fabricated by the integrated process of this laboratory include dark current, external quantum efficiency, response rate under different bias voltages, and measurement of opitical coupler rate at different distances from the LED and the p-i-n photodetector. The design circuit will convert the current signal of the n-p-i-n phototransistor to the voltage signal (Transimpedance amplifier), and then the signal is amplified in secondary amplifier to reach the turn on voltage of LED. Finally, the current signal of the phototransistor detecting ultraviolet light is successfully driving the LED on the same wafer and emiting visible light to warn the people.
    In the experiment of monitoring the light power of the LED in the p-i-n photodetector, the current of the LED is increased from 0 mA to 2 mA and the photocurrent value of the photodetector is recorded. When the distance from the LED is 1000 μm, the photocurrent of the p-i-n photodetector increased from 0.03 nA to 74.2 nA; when the distance from the LED is 5600 μm, the photocurrent increased from 0.34 nA to 1.53 nA. We can get that the photocurrent of the p-i-n photodetector increases linearly with the rise of the LED current. Then, recording the light power of the light-emitting diode when the forward current is 2 mA and the photocurrent value of the photodetector, the monitoring response rate can be calculated, and the monitoring response rate decreases as the distance from the light-emitting diode increases. The reason is that the optical coupler rate decreases as the distance increases, with the optical coupler rate of 1.06 % at the distance of 326 μm and the optical coupler rate of 0.02 % at the distance of 5600 μm. At the same time, we discuss the relationship between the optical power of the LED and the monitoring response rate at the same distance of 326 μm, and increase the current of the LED from 0 mA to 2 mA, and the response rate is about 0.12 mA/W to 0.14 mA/W.
    In the experiment of integrated UV detector and LED warning light, we use n-p-i-n phototransistor and the operate voltage is 9V in reverse bias, the illumination wavelength is 350 nm, the resulting photocurrent is connected to the operational amplifier, and provides 0.7 V at the non-inverting terminal, so that the current is converted into a voltage signal in the range of 0 V to 0.11 V, and then the voltage signal is amplified by the secondary amplifier so that the voltage signal is in the range of 0 V to 3 V, when the incident light intensity is greater than 0.7 mW/ cm2 can provide more than 3 V, which can drive the LED on the same chip to reach the integrated photodetector and LED warning light module.

    摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 x 表目錄 xv 第一章 導論 1 1.1 緒論 1 1.2 文獻回顧與研究動機 3 第二章 光偵測器理論介紹 18 2.1光偵測器的工作原理 18 2.2光偵測器架構分類 20 2.2.1 p-n接面光二極體 21 2.2.2 p-i-n接面光二極體(p-i-n photodiode) 23 2.2.3 蕭基位障光二極體(Schottky barrier photodiode) 27 2.2.4 雪崩型光二極體(Avalanche photodiode) 29 2.2.5異質接面雪崩型光二極體 32 2.2.6 光電晶體(Phototransistor) 34 2.3光偵測器架構分類 36 2.3.1 量子效率(Quantum Efficiency, QE) 36 2.3.2 響應率(Responsivity, R) 39 2.3.3響應速度(Response Speed) 40 2.3.4拒斥比(Rejection Ratio) 40 第三章 積體化元件設計與儀器介紹 41 3.1光偵測器元件設計 41 3.2元件製程 44 3.3量測儀器介紹 46 3.3.1 I-V與L-I量測系統 46 3.3.2太陽模擬光源(Solar simulator) I-V量測 47 3.3.3光激發螢光(Photoluminescence, PL)量測系統 49 3.3.4外部量子效率量測系統 (Incident photon to electron conversion efficiency, IPCE) 50 3.3.5響應時間(Response time)量測系統 51 3.4光偵測器之響應速度量測方法 52 3.4.1遮罩片(Chopper)架構探討 53 3.4.2響應速度之判定方法 54 第四章 積體化監控光偵測器 56 4.1監控發光強度的光偵測器設計 56 4.1.1 積體化氮化鎵發光二極體與光偵測器 57 4.2積體化監控光偵測器(Monitor Photodiode, MPD)量測 59 4.2.1氮化鎵p-i-n光偵測器與LED基本光電特性 61 4.2.2氮化鎵p-i-n光偵測器外部量子效率量測 66 4.2.3氮化鎵p-i-n光偵測器響應速度量測 68 4.2.4積體化MPD之監控距離比較 72 4.2.5積體化MPD之監控響應率計算 74 第五章 積體化光偵測器與LED警示燈模組 87 5.1積體化光偵測器與LED警示燈模組電路設計 87 5.1.1 運算放大器電路設計 88 5.1.2 以負偏壓設計之參考電壓 91 5.1.3 第二級運算放大器電路設計 92 5.2積體化光偵測器與LED警示燈模組電路量測結果與討論 93 5.2.1氮化鎵n-p-i-n光電晶體暗電流量測 94 5.2.2氮化鎵n-p-i-n光電晶體之外部量子效率量測 97 5.2.3氮化鎵n-p-i-n光電晶體之響應速度量測 98 5.2.4光電流訊號轉電壓訊號的特性量測 102 5.2.5第二級運算放大器量測 103 5.2.6模組電路量測結果 104 第六章 結論與未來展望 108 6.1結論 108 6.2未來展望 112 參考文獻 113

    [1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny-GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916-921, Oct. 2008.
    [2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN-GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617-622, Jun. 2009.
    [3] E.Fred Schubert, “Light-emitting diode.” Cambridge University Press, New York, 2006.
    [4] Y. Zhang, S. C. Shen, H. J. Kim, S. Choi, J. H. Ryou, R. D. Dupuis, B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,’’ Appl. Phys. Lett., vol. 94, 221109, Jun. 2009.
    [5] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C.Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,’’ Appl. Phys. Lett. vol. 77, 2810, Feb. 2000.
    [6] Yi-Ting Huang, Pinghui S. Yeh, Yen-Hsiang Huang, Yu- Ting Chen, Chih-Wei Huang, Cong Jun Lin, and Wenchang Yeh, “High Performance InGaN p-i-n Photodetectors Using LED Structure and Surface Texturing, ’’ IEEE Photon Technol Lett, vol. 28, no. 6, pp. 605-608, Mar. 2016.
    [7] K. A. McIntosh, R. J. Molnar, L. J. Mahoney, A. Lightfoot, M. W. Geis, K. M. Molvar, I. Melngailis, R. L. Aggarwal, W. D. Goodhue, S. S. Choi, D. L. Spears, and S. Verghese, “GaN avalanche photodiodes grown by hydride vaporphase epitaxy,” Appl. Phys. Lett.75, 3485, Oct. 1999.
    [8] B. Yang, T. Li, K. Heng, C. Collins, S. Wang, J. C. Carrano, R. D. Dupuis, J. C. Campbell, M. J. Schurman, and I. T. Ferguson, “Low dark current GaN avalanche photodiodes,’’ IEEE J. Quantum Electron., vol. 36, no. 12, pp. 1389-1391, Dec. 2000.
    [9] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 89, 011112, Jun. 2006.
    [10] S-C. Shen, Y. Zhang, D. Yoo, J-B. Limb, J-H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of Deep Ultraviolet GaN Avalanche Photodiodes Grown by MOCVD,” IEEE Photon. Technol. Lett. , vol. 19, no. 21, pp. 1744-1746, Nov. 2007.
    [11] Shen, S-C, Kao, T-T, Kim, H-J, Lee, Y-C, Kim, J, Ji, M-H, Ryou, J-H, Detchprohm, T, Dupuis, R.D, “GaN/InGaN avalanche phototransistors,” Appl. Phys. Express, vol.8, 032101, Feb. 2015.
    [12] Wei Yang, Thomas Nohava, Subash Krishnankutty, Robert Torreano, Scott McPherson, and Holly Marsh, “High gain GaN/AlGaN heterojunction phototransistor”, Appl. Phys. Lett. vol. 73, no. 7, pp.978-980, Aug. 1998.
    [13] R. Mouillet, A. Hirano, M. Iwaya, T. Detchprohm, H. Amano, and I. Akasaki, “Photoresponse and Defect Levels of AlGaN/GaN Heterobipolar Phototransistor Grown on Low-Temperature AlN Interlayer,” Jpn. J. Appl. Phys. 40, L498, May. 2001.
    [14] M. L. Lee, J. K. Sheu, Yung-Ru Shu, “Ultraviolet bandpass Al0.17Ga0.83N/GaN heterojunction phototransistors with high optical gain and high rejection ratio”, Appl. Phys. Lett. 92, 053506, Feb. 2008.
    [15] Min Zhu, Jun Chen, Jintong Xu, Xiangyang Li, “Optimization of GaN/InGaN Heterojunction Phototransistor”, IEEE Photon Technol Lett, vol. 29, no. 4, pp. 373-376, Feb. 2017.
    [16] Yongjin Wanga, Yin Xu, Yongchao Yang, Xumin Gao, Bingcheng Zhu, Wei Cai, Jialei Yuan,Rong Zhangb, Hongbo Zhu. “Simultaneous light emission and detection of InGaN/GaN multiplequantum well diodes for in-plane visible light communication”, Optics Communications 387, pp. 440–445, 2017.
    [17] Wei Cai, Chuan Qin, Shuai Zhang, Jialei Yuan, Fenghua Zhangand Yongjin Wang. “Monolithic photonic integrated circuit with a GaN-based bent waveguide”, Journal of Micromechanics and Microengineering, vol.28, 065003, March. 2018
    [18] Meixin Feng , Jin Wang, Rui Zhou, Qian Sun , Hongwei Gao, Yu Zhou , Jianxun Liu, Yingnan Huang,Shuming Zhang, Masao Ikeda, Huaibing Wang, Yuantao Zhang, Yongjin Wang , and Hui Yang. “On-Chip Integration of GaN-Based Laser, Modulator,and Photodetector Grown on Si,” IEEE Journal Of Selected Topics In Quantum Electronics, 24(6) , 820-0305. 2018
    [19] 白世南,光電工程概論.ppt,建國科技大學電子工程系。
    [20] 劉博文,光電元件導論,全威圖書有限公司,台北,2005。
    [21] S. O. Kasap, OPTOELECTRONICS AND PHOTOICS principles and Practices, Peason Education Interational, 2001.
    [22] Muth, J.F, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey, Jr., B.P.Keller, U.K. Mishra, S.P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements,” Appl. Phys. Lett. vol. 71, issue 18, Nov. 1997.
    [23] 蕭敏學,大學電子學實習(三)-運算放大器應用篇,台科大圖書股份有限公司,台北,2013
    [24] 邱彥傑,氮化鎵異質接面光電晶體的響應速度與光電特性量測,國立台灣科技大學電子工程所碩士學位論文,台北,2019
    [25] 吳宗哲,積體化氮化鎵發光二極體與光電晶體之先期實驗結果,國立台灣科技大學電子工程所碩士學位論文,台北,2019

    無法下載圖示 全文公開日期 2024/07/22 (校內網路)
    全文公開日期 2024/07/22 (校外網路)
    全文公開日期 2024/07/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE