簡易檢索 / 詳目顯示

研究生: 張緯浩
Wei-Hao Chang
論文名稱: 採用整合式變壓器實現400 V/48 V LLC串聯諧振轉換器之研製
Development of a 400 V/48 V LLC Series-Resonant Converter Based on Integrated Transformer
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林宜鋒
Yi-Feng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 整合型變壓器磁通抵銷氮化鎵高功率密度
外文關鍵詞: Magnetic Integration, Flux Cancellation, Gallium Nitride, High Power Density
相關次數: 點閱:350下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用於資料中心的隔離型直流-直流轉換器。電路架構採用能夠在全負載範圍達到一次側開關零電壓切換(ZVS),二次側開關零電流切換(ZCS)的全橋LLC串聯諧振式轉換器,並使用寬能隙氮化鎵元件取代傳統矽元件,以降低功率開關的截止切換損耗。針對LLC諧振式轉換器穩壓的功能需求,需要足夠的諧振電感量提供足夠的增益作為調壓使用,因此利用外加諧振電感的方式。本論文採用整合型變壓器的結構,透過磁通抵銷與外側柱磁通分流的概念達到降低鐵芯損耗與提升功率密度的效果,並且利用四組矩陣變壓器與電感的方式,同時分散降低二次側大電流與電感磁動勢疊加造成交流損耗的上升,並利用鐵芯參數化的設計,在有限的電路布局面積下,綜合考量鐵芯損耗、銅線損耗與體積選擇出最佳的鐵芯設計點。利用ANSYS Maxwell磁性模擬軟體驗證平板變壓器的實際電路動作,包含電壓、電流轉換比與磁通密度分布是否符合設計理論。預計實現切換頻率操作於500 kHz、輸入電壓400 V、輸出電壓48 V、輸出功率為3 kW的全橋LLC串聯諧振式轉換器。


    In this thesis, integrated matrix inductor and matrix transformer is proposed and implemented in an isolated DC-DC converter for 48V data-center bus architecture. The full-bridge LLC resonant converter is chosen as it can achieve soft-switching in the entire load range. In addition, the wide-bandgap gallium nitride device is used to further reduce turn-off switching loss. For regulated application, the resonant inductor should be large enough to achieve regulation capability. Therefore, it requires a con-trollable resonant inductor in series with a transformer. To achieve high power density and high efficiency, the magnetic integration of a resonant inductor and a transformer is proposed for this converter. To optimize magnetic components, the transformer with side leg for better flux distri-bution and flux cancellation can reduce core loss and achieve a thinner core profile. Additionally, a matrix inductor is designed to decrease ac winding loss. Within a limited circuit layout area, calculate the transform-er loss and volume for finding an optimal design point to meet the re-quirements of high efficiency and high power density. The magnetic sim-ulation software ANSYS Maxwell is used to verify the turns ratio and magnetic flux distribution conformed to the design theory. Finally, a LLC resonant converter was proposed to a switching frequency of 500 kHz, an input voltage of 400 V, an output voltage of 48 V and an output power of 3 kW.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖索引 vi 表索引 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文內容大綱 4 第二章 整合型變壓器結構分析與介紹 5 2.1 整合諧振電感之變壓器結構分析 7 2.1.1 變壓器與諧振電感鐵芯分析 7 2.1.2 變壓器與諧振電感繞組分析 10 2.2 具磁通分流整合型變壓器結構分析 11 2.2.1 設計原理與磁通分析 12 2.2.2 矩陣電感交流損耗優化 18 第三章 整合型變壓器分析與設計 24 3.1 諧振轉換器零電壓切換條件分析 27 3.2 鐵芯結構設計與分析 32 3.2.1 鐵芯參數化分析 33 3.2.2 鐵芯損耗 37 3.3 繞組結構設計與分析 41 3.3.1 變壓器繞組並聯分析 41 3.3.2 變壓器繞組磁動勢分析 45 3.4 鐵芯最佳設計點選擇 47 3.4.1 變壓器總損耗與體積 50 3.4.2 鐵芯設計點選擇 52 3.5 Maxwell 模擬驗證 56 第四章 實測驗證 60 4.1 實體電路 60 4.2 實測波形 64 4.3 實測數據 68 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 71 參考文獻 72

    [1] M. Law. “Energy efficiency predictions for data centres in 2023.” https://datacentremagazine.com/articles/efficiency-to-loom-large-for-data-centre-industry-in-2023 (accessed December 30, 2022.
    [2] N. JONES, “THE INFORMATION FACTORIES-Data centres are chewing up vast amounts of energy,” 2018.
    [3] X. L. a. S. Jiang. “KeyTalk with Xin Li and Shuai Jiang: Google 48V Power Architecture - APEC 2017.” https://ieeetv.ieee.org/ieeetv-specials/keytalk-xin-li-and-shuai-jiang-google-48v-power-architecture-apec-2017?rf=events|114& (accessed March 31, 2017.
    [4] K. Shi, D. Zhang, Z. Zhou, M. Zhang, D. Zhang, and Y. Gu, “A Novel Phase-Shift Dual Full-Bridge Converter With Full Soft-Switching Range and Wide Conversion Range,” IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7747-7760, 2016, doi: 10.1109/TPEL.2015.2512848.
    [5] Y. K. Lo, C. Y. Lin, M. T. Hsieh, and C. Y. Lin, “Phase-Shifted Full-Bridge Series-Resonant DC-DC Converters for Wide Load Variations,” IEEE Transactions on Industrial Electronics, vol. 58, no. 6, pp. 2572-2575, 2011, doi: 10.1109/TIE.2010.2058076.
    [6] Y. C. Liu et al., “Integrated magnetics design for a full-bridge phase-shifted converter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 4-8 March 2018 2018, pp. 2110-2116, doi: 10.1109/APEC.2018.8341308.
    [7] R. Gadelrab, F. C. Lee, and Q. Li, “Three-Phase Interleaved LLC Resonant Converter with Integrated Planar Magnetics for Telecom and Server Application,” in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), 15-19 March 2020 2020, pp. 512-519, doi: 10.1109/APEC39645.2020.9124392.
    [8] Q. Huang, Q. Ma, A. Q. Huang, and M. d. Rooij, “400V-to-48V GaN Modular LLC Resonant Converter with Planar Transformers,” in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 10-14 Oct. 2021 2021, pp. 2129-2135, doi: 10.1109/ECCE47101.2021.9595320.
    [9] R. Gadelrab, A. Nabih, F. C. Lee, and Q. Li, “LLC Resonant Converter with 99% Efficiency for Data Center Server,” in 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 14-17 June 2021 2021, pp. 310-319, doi: 10.1109/APEC42165.2021.9487423.
    [10] X. Huang, Z. Liu, Q. Li, and F. C. Lee, “Evaluation and Application of 600 V GaN HEMT in Cascode Structure,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2453-2461, 2014, doi: 10.1109/TPEL.2013.2276127.
    [11] X. Huang, T. Liu, B. Li, F. C. Lee, and Q. Li, “Evaluation and applications of 600V/650V enhancement-mode GaN devices,” in 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2-4 Nov. 2015 2015, pp. 113-118, doi: 10.1109/WiPDA.2015.7369318.
    [12] Y.-C. Liu, C. Chen, K.-D. Chen, Y.-L. Syu, and M.-C. Tsai, “High-Frequency LLC Resonant Converter with GaN Devices and Integrated Magnetics,” Energies, vol. 12, no. 9, doi: 10.3390/en12091781.
    [13] M. H. Ahmed, A. Nabih, F. C. Lee, and Q. Li, “Low-Loss Integrated Inductor and Transformer Structure and Application in Regulated LLC Converter for 48-V Bus Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 1, pp. 589-600, 2020, doi: 10.1109/JESTPE.2019.2952878.
    [14] C. Fei, F. C. Lee, and Q. Li, “High-Efficiency High-Power-Density LLC Converter With an Integrated Planar Matrix Transformer for High-Output Current Applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9072-9082, 2017, doi: 10.1109/TIE.2017.2674599.
    [15] S. Wang, H. Wu, F. C. Lee, and Q. Li, “Integrated Matrix Transformer with Optimized PCB Winding for High-Efficiency High-Power-Density LLC Resonant Converter,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 29 Sept.-3 Oct. 2019 2019, pp. 6621-6627, doi: 10.1109/ECCE.2019.8911885.
    [16] P. R. Prakash, A. Nabih, and Q. Li, “Design Optimization of PCB-Winding Matrix Transformer for 400V/12V Unregulated LLC Converter,” in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 10-14 Oct. 2021 2021, pp. 1777-1784, doi: 10.1109/ECCE47101.2021.9595190.
    [17] A. Nabih, R. Gadelrab, Q. Li, and F. C. Lee, “Dimensional Effects of Core Loss and Design Considerations for High Frequency Magnetics,” in 2021 IEEE Energy Conversion Congress and Exposition (ECCE), 10-14 Oct. 2021 2021, pp. 5488-5495, doi: 10.1109/ECCE47101.2021.9595465.
    [18] Z. Ouyang, O. C. Thomsen, and M. A. E. Andersen, “Optimal Design and Tradeoff Analysis of Planar Transformer in High-Power DC–DC Converters,” IEEE Transactions on Industrial Electronics, vol. 59, no. 7, pp. 2800-2810, 2012, doi: 10.1109/TIE.2010.2046005.
    [19] A. Nabih, Q. Li, and F. C. Lee, “Magnetic Integration of Four-Transformer Matrix with High Controllable Leakage Inductance using a Five-Leg Magnetic,” in 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), 20-24 March 2022 2022, pp. 693-700, doi: 10.1109/APEC43599.2022.9773575.
    [20] P. L. Dowell, “Effects of eddy currents in transformer windings,” 1966, vol. 113: IET, 8 ed., pp. 1387-1394.
    [21] D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, “A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis,” IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 1318-1321, 2004, doi: 10.1109/TMAG.2004.825025.
    [22] DMR53 Material Characteristics, 2019. Accessed: 2019-07.

    QR CODE