簡易檢索 / 詳目顯示

研究生: 吳政佑
Cheng-You Wu
論文名稱: 製造與比較氮化鎵p-i-n光偵測器與逆偏的發光二極體
Fabrication and comparison of GaN-based p-i-n photodiode and reverse biased LED
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 李奎毅
Kuei-Yi Lee
李志堅
Chih-Chien Lee
蘇忠傑
Jung-Chieh Su
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: p-i-n光偵測器發光二極體氮化鎵紫外光
外文關鍵詞: p-i-n photodetector, light emitting diode, Gallium nitride, Ultra-violet
相關次數: 點閱:289下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用商用氮化鎵發光二極體晶圓,晶圓編號為ELV(紫光)與FEB(藍光),在這兩片晶圓上製作出p-i-n光偵測器與發光二極體(LED)。兩種元件設計的差異主要是p型歐姆接觸金屬ITO面積的範圍,ITO有擴散或收集電流的功能,但在短波長(紫光與紫外光)有較高的吸收率,所以探討比較兩種元件的基本光電特性、外部量子效率與響應率。
    兩種元件形狀上又分為方型與長型,在光電特性量測上,紫光方型p-i-n光偵測器與LED,在電流10mA下,光輸出功率分別3.7 mW與4.9 mW;長型元件光輸出功率分別3.3 mW與4.4 mW。均為LED較高。在外部量子效率量測上,當元件逆向偏壓為0V,方型p-i-n與LED的峰值外部量子效率分別為22%、21%,對應的峰值響應率分別為0.067 A/W、0.064 A/W,在短波長(330 nm~360 nm)部分,外部量子效率平均為6.5%、5.3%;長型p-i-n與LED的峰值外部量子效率分別為22.9%、23.3%,對應的峰值響應率分別為0.07 A/W、0.071 A/W,峰值波長均為383 nm,在短波長(330 nm~360 nm)部分,外部量子效率平均為6.4%、5.5%。峰值外部量子效率兩種元件相同(在誤差範圍),而在短波長的外部量子效率p-i-n比LED略高。藍光元件量測結果與紫光元件趨勢相同。在短波長部分,由於p-i-n光偵測器收光區沒有ITO,所以外部量子效率會大於LED元件;在光學特性上LED元件ITO範圍較大,使電流能均勻擴散進而增加光功率輸出,因此光功率大於p-i-n元件。


    In this paper, the use of commercial gallium nitride light emitting diode wafers, wafer number ELV (violet light) and FEB (Blue light), in these two wafers to produce a p-i-n photo detector and light emitting diode (LED). The difference between the two devices is mainly the range of the p-type ohmic contact metal ITO area. ITO has the function of spreading or collecting current, but the high absorption rate at short wavelength (violet and ultraviolet light). Therefore, we will discuss the comparison of the basic photoelectric characteristics, external quantum efficiency and responsivity of the two devices.
    The two devices are also divided into square and rectangle. In the measurement of the photoelectric characteristics, the purple square p-i-n photodetector and LED, at 10mA current, the optical output power of 3.7 mW and 4.9 mW; the optical output power of rectangle devices is 3.3 mW and 4.4 mW, respectively. The LED optical output power are both higher than p-i-n photo detector. In the external quantum efficiency measurement, when the device reverse bias is 0V, the peak external quantum efficiency of square p-i-n and LED is 22%, 21%, the corresponding peak responsivity is 0.067 A/W, 0.064 A/W, in the short wavelength (330 nm ~ 360 nm), the external quantum efficiency averaged 6.5% and 5.3%. The peak external quantum efficiencies of rectangle p-i-n and LED are 22.9% and 23.3% respectively. The corresponding peak responsivity is 0.07 A/W and 0.071 A/W respectively, and the peak wavelengths at 383 nm. At short wavelengths (330 nm ~ 360 Nm), the external quantum efficiency averaged 6.4%, 5.5%. The peak external quantum efficiency of the two devices are the same, while the short wavelengths quantum external efficiency p-i-n is slightly higher than the LED. Blue light devices measurement are the same as those of violet light devices. In the short wavelength portion, since the p-i-n photodetector has no ITO in the light receiving area, the external quantum efficiency is larger than the LED devices; In the optical characteristics of LED devices ITO range is larger, so that the current can be evenly spread to increase the optical output power, so the optical power is greater than the p-i-n devices.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 2 1.3 研究動機與目的 5 第二章 光偵測器與發光電晶體理論介紹 6 2.1 光偵測器操作原理 6 2.1.1 p-n接面光二極體 7 2.1.2 p-i-n接面光二極體 9 2.1.3 雪崩型光二極體 11 2.1.4 異質接面光二極體 13 2.1.5 光電晶體 15 2.2 光偵測器檢測參數 17 2.2.1量子效率(Quantum Efficiency, QE) 17 2.2.2 響應率(Responsivity, R) 19 2.2.3 響應速度 19 2.2.4 拒斥比(Rejection, Ratio) 20 2.2.5 雜訊等效功率(noise equivalent power, NEP) 20 2.3 異質接面電晶體操作原理 21 2.4 發光電晶體操作原理 22 第三章 元件設計與製程設備介紹 25 3.1 元件設計 25 3.2元件製程 27 3.2.1活化製程(Activation) 28 3.2.2絕緣製程(Isolation) 28 3.2.3高台圖型製程(Mesa) 31 3.2.4二氧化矽包覆層沉積(SiO2) 32 3.2.5透明導電層ITO(Indium Tin Oxide)沉積 34 3.2.6 N型與P型電極沉積(Metal) 36 3.3 製程儀器介紹 38 3.3.1 光罩對準機(Mask Aligner) 38 3.3.2 感應耦合電漿式離子蝕刻機(ICP-RIE) 40 3.3.3 電子束蒸鍍機(E-beam evaporator) 42 3.3.4 射頻濺鍍機(RF sputter) 43 3.3.5 電漿輔助化學氣相沉積系統(Plasma-Enhanced Chemical Vapor Deposition, PECVD) 45 3.3.6快速升溫退火爐(Rapid thermal annealing, RTA) 46 3.4 量測儀器介紹 46 3.4.1 表面輪廓儀(Alpha step) 46 3.4.2 光激發螢光(Photoluminescence, PL)量測系統 47 3.4.3 L-I與I-V量測系統 48 3.4.4 太陽光模擬光源(Solar simulator)I-V量測 49 3.4.5 外部量子效率量測系統(Incident photon to electron conversion efficiency, IPCE) 50 3.4.6 場發射式掃描電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 51 第四章 結果與討論 53 4.1晶圓編號ELV與FEB磊晶品質量測 53 4.2氮化鎵p-i-n光偵測器與LED基本光電特性 55 4.2.1紫光p-i-n光偵測器與LED基本光電特性比較 55 4.2.2藍光p-i-n光偵測器與LED基本光電特性比較 59 4.3氮化鎵p-i-n光偵測器與LED之外部量子效率(EQE)量測 63 4.3.1晶圓編號ELV外部量子效應(EQE)量測探討 66 4.3.2 晶圓編號FEB外部量子效應(EQE)量測探討 72 4.3.3響應率(Responsivity, R)量測探討 75 第五章 結論與未來展望 78 5.1結論 78 5.2未來展望 82 參考文獻 83

    [1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. L. Yu, C. H. Kuo, and S. L. Wu, “GaN-based Schottky barrier photodetectors with a 12-pair Mg Ny–GaN buffer layer,” IEEE J. Quantum Electron., vol. 44, no. 10, pp. 916–921, Oct. 2008.
    [2] J. Pereiro, C. Rivera, A. Navarro, E. Munoz, R. Czernecki, S. Grzanka, and M. Leszczynski, “Optimization of InGaN–GaN MQW photodetector structures for high-responsivity performance,” IEEE J. Quantum Electron., vol. 45, no. 6, pp. 617–622, Jun. 2009.
    [3] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis, and J. C. Campbell, “Low-noise back-illuminated AlXGa1-X N-based p-i-n solar-blind ultraviolet photodetectors,” IEEE J. Quantum Electron., vol. 37, no. 4, pp. 538–545, Apr. 2001.
    [4] S. J. Chang, et al., “GaN-based p-i-n sensors with ITO contacts,” IEEE Sensors Journal, vol. 6, no. 2, pp. 406-409, April 2006.
    [5] L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang, and Y. K. Su, “Visible-blind p-i-n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure,” Solid-State Electron., vol. 47, pp. 873-878, 2003.
    [6] S. J. Chang, C. H. Kuo, Y. K. Su, L.W.Wu, J. K. Sheu, T. C.Wen,W. C.Lai, J. F. Chen, and J. M. Tsai, “400 nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes,” IEEE J. Sel.
    Topics Quantum Electron., vol. 8, no. 4, pp. 744–748, Jul./Aug. 2002.
    [7] S. O. Kasap, Optoelectronics and Photonics:Principles Practices半導體光電元件,全威圖書有限公司,台北,2006。
    [8] Peng-Hao Chou, “The effect of optical bandwidth of light-emitting transistors under different size layout design,” National Taiwan University Master Thesis, Taipei, July 2013.
    [9] Ting Li, D. J. H. Lambert, A. L. Beck, C. J. Collins, B. Yang, M. M. Wong, U. Chowdhury, R. D. Dupuis and J. C. Campbell, “Solar-blind AlxGa1-xN-based metal ultraviolet photodetectors,” Electronics Letters, vol. 36, no. 18, pp. 1581-1583, August 2000.
    [10] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Applied Physics Letters, vol. 70, no. 17, pp. 2277-2279, 1997.
    [11] W. Shockley, “Circuit element utilizing semiconductive material,” U.S. 2,569,347, September 25, 1951.
    [12] H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proceedings of the IRE, vol. 45, pp. 1535-1537, 1957.
    [13] M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84,pp. 1952-1954, March 2004.
    [14] 甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [15] 王婉瑄, “以奈米壓印微影技術研製氮化鎵分佈回饋式雷射”, 國立台灣科技大學電子工程所碩士論文, 台北, 2015。
    [16] 林士淵,「電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析」,國立成功大學機械工程學系碩士論文,台南,2000。
    [17] 廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [18] 施敏,半導體元件物理與製作技術,國立交通大學出版社,2002。
    [19] 劉榕珊,「研製兩種寬能隙半導體製作的紫外光光偵測器」,國立台灣科技大學電子工程所碩士學位論文,台北,2016。
    [20] 林智仁,場發式掃描式電子顯微鏡簡介,工業材料雜誌,181期。

    QR CODE