簡易檢索 / 詳目顯示

研究生: 薛明軒
Ming-syuan SYUE
論文名稱: 鉑改質光觸媒二氧化鈦之紫外光與可見光應答光催化活性
Pt-modified TiO2 and its photocatalytic activities under ultraviolet and visible-light illuminations
指導教授: 曾堯宣
Yao-hsuan Tseng
口試委員: 吳紀聖
Chi-sheng Wu
胡啟章
Chi-chang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 155
中文關鍵詞: 鉑改質二氧化鈦光沉積pH甲基橙氮氧化物PtCl4
外文關鍵詞: Pt- TiO2, photodeposition, pH, methyl orange, NOx, PtCl4
相關次數: 點閱:340下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為探討鉑改質二氧化鈦在可見光下活性來源,針對兩種不同的二氧化鈦,兩相組成的P25與Anatase相的ST-01 進行鉑改質程序,P25與ST01兩者皆具有較大的能隙值而限制其可應用的激發波長範圍,且光催化反應屬於觸媒表面的化學反應機制,因此藉由Pt表面改質的方式,以提高可見光與紫外光下的反應活性。
    藉由物性的分析,如UV-Vis量測樣品改質後能隙值的變化、PL分析電子電洞對的再結合速率、TEM觀察觸媒表面的形態以及藉由XPS分析Pt的價態,並以液相甲基橙降解與氣相氮氧化物氧化反應來探討其光催化活性。
    實驗製備是採用光沉積(photodeposition)的改質方式,比較調整不同的pH值、甲醇的效應以及Pt含量的影響;pH值不僅改變二氧化鈦的等電點,也影響了的Pt陰離子的水解程度,進而改變Pt在二氧化鈦表面的粒徑以及價態;甲醇在反應中則扮演了電洞捕捉者的角色,影響Pt的還原程度;增加Pt的含量則可以提高光催化的活性,然而當含量過多時則造成了活性點被遮蓋,或形成了電子電洞的再結合中心。
    由於Pt具有三種不同的價態,Pt(0)、Pt(II)以及Pt(IV),實驗結果得到Pt改質二氧化鈦後若以Pt(0)的價態存在,則具有較低的能隙值,以及較長的可見光吸收範圍,然而光催化的活性卻不佳;其中PtOx具有較好的光催化效率。
    在較低的pH值以及未添加甲醇的製備條件下,H2PtCl6在Anatase表面形成了金屬PtOx以及離子鍵結的PtCl4,藉由PtCl4其本身的光敏化特性,與Anatase兩者介面間的電子電洞傳遞機制,可以有效的抑制其再結合速率,提高在可見光死紫外光下的應答特性。比較不含氯的Pt前驅物(H2Pt(OH)6),明顯的Cl為影響光催化活性很重要的因素。


    This work focused on the visible-light-responsively photoactivity of platinized TiO2 and the rational mechanism. Two commercially available TiO2-catalysts, P25 and ST01, were used as raw materials for platinized modification. The modified area was controlled on TiO2 due to the photocatalytic reaction rate was carried out on its surface. Thus, a proper Pt-modification on TiO2 can enhance its photoactivity under both visible and ultraviolet illuminations.
    Physic characterization of Pt-modified TiO2 samples, including band gap shift, charge carriers recombination rate, surface morphology, and Pt valence state were identified using UV-visible absorption spectra, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectrum analysis. The photocatalytic activities of the synthesized photocatalysts were evaluated for the oxidation of NOx and decolorization of dye under illuminations by UV and visible light.
    The Pt-modified TiO2 was prepared by photodeposition method with using H2PtCl6 as precursor. Effects of preparation parameters, pH value, presence of methanol, and amount of Pt, on photoactivity and platinum valence state were invertigat in detail. The isoelectric point of TiO2 and hydrolysis of Pt anion were affected by pH value, resulting in the Pt particle size and valence state on TiO2 surface. The photoreduction rate increased with the presence of methanol due to it was the hole-scavenger. An optimal Pt-loading content (0.5 mol%) was resulted from the competitions among effects of visible-light active site, coverage, and carriers recombination rate.
    Various state of platinum, Pt(0), Pt(II), and Pt(IV) were generated on the TiO2 surface in the photodeposition process. The experiment result indicated that the Pt(0)-modified TiO2 exhibits the smallest band gap, but the PtOx-modifed TiO2 has the better photocatalytic activity than the former. In the photodeposition procedure, PtOx and PtCl4 were produced using lower pH value, absence of methanol, and H2PtCl6 as precursor. Results depicted that PtCl4 plays two roles: it acts as a sensitizer for visible-light absorption on the anatase surface, and as an electron trapper to suppress the charge carrier recombination rate. It thus enhances photocatalysis activity under UV and visible illuminations. The effect of chloride ion on visible-light response was further elucidated using H2Pt(OH)6 as the comparative precursor.

    第一章 前言 1 1-1光觸媒簡介 1 1-2光觸媒二氧化鈦運用 3 1-3研究動機 5 第二章 文獻回顧 6 2-1二氧化鈦光觸媒 6 2-2鉑金屬表面改質-含浸法 10 2-2-1蕭特基能障 12 2-3鉑金屬表面改質-光沉積法 15 2-4光沉積改質(pH值、電洞捕捉者) 16 2-5鉑價數對於光催化反應的效應 20 2-6光觸媒催化反應 23 2-6-1甲基橙催化反應 24 2-6-2氮氧化物催化反應 26 2-6-3其他有機降解物 29 2-7其他改質方式(二氧化鈦晶格,電漿處理) 31 2-8 SMSI現象 33 第三章 實驗步驟 36 3-1實驗設計 36 3-2藥品與儀器設備 38 3-2-1實驗藥品 38 3-2-2實驗儀器設備 39 3-3實驗步驟 40 3-3-1樣品製備 40 3-3-2活性測試 41 3-4分析儀器 44 第四章 結果與討論 46 4-1奈米Pt粒子表面改質P25二氧化鈦 46 4-1-1調整光沉積pH值之效應 46 4-1-2氧化還原熱處理對於Pt價數的效應 61 4-1-3甲醇效應的影響 75 4-2奈米Pt粒子表面改質ST01二氧化鈦 87 4-2-1調整光沉積pH值之效應 87 4-2-2甲醇效應的影響 100 4-2-3鉑金屬含量與氯離子的效應 114 4-2-4-含浸法 130 4-2-5抗菌反應 131 第五章 結論與未來展望 132 5-1結論 132 5-1-1奈米Pt粒子表面改質P25二氧化鈦 132 5-1-2奈米Pt粒子表面改質ST01二氧化鈦 133 5-2未來展望 135 第六章 參考文獻 136

    [1] 張義國,「金擔載二氧化鈦及其在紫外/可見光下光催化活性之研究」,碩士論文,國立台灣科技大學化學工程系,(2010)。
    [2] 高濂et al.,奈米光觸媒,五南圖書出版公司,第32-135頁,(2004)。
    [3] 藤島昭et al.,圖解光觸媒,世茂出版有限公司,五南圖書出版公司,第74-124頁,(2006)。
    [4] 林有銘,奈米光觸媒,工研院南分院奈米粉體與薄膜科技中心,科學發展408期,(2006)。
    [5] Web Page,United StatesNaval Research Laboratory,http://cst-www.nrl.navy.mil/lattice/struk/oldc5.html.
    [6] 簡國明,奈米二氧化鈦專利地圖及分析第10-50頁,(2003)。
    [7] B. Sun, et al., "Visible Light Photocatalysis with Platinized Rutile TiO2 for Aqueous Organic Oxidation," Langmuir, vol. 21, pp. 11397-11403, (2005).
    [8] B. Sun, et al., "Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation," Langmuir, vol. 19, pp. 3151-3156, (2003).
    [9] D. C. Hurum, et al., "Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR," The Journal of Physical Chemistry B, vol. 107, pp. 4545-4549, (2003).
    [10] B. Sun, "Interaction of anatase and rutile TiO2 particles in aqueous photooxidation," Catalysis Today, vol. 88, pp. 49-59, (2003).
    [11] E. Kowalska, et al., "Modification of Titanium Dioxide with Platinum Ions and Clusters: Application in Photocatalysis," The Journal of Physical Chemistry C, vol. 112, pp. 1124-1131, (2008).
    [12] Y. Ishibai, et al., "Photocatalytic oxidation of NOx by Pt-modified TiO2 under visible light irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 188, pp. 106-111, (2007).
    [13] C.-H. Huang, et al., "Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via sol–gel and impregnation method," Journal of Molecular Catalysis A: Chemical, vol. 316, pp. 163-170, (2010).
    [14] L. Zang, et al., "Amorphous Microporous Titania Modified with Platinum(IV) ChlorideA New Type of Hybrid Photocatalyst for Visible Light Detoxification," The Journal of Physical Chemistry B, vol. 102, pp. 10765-10771, (1998).
    [15] B.-S. Huang, et al., "Photocatalytic properties of redox-treated Pt/TiO2 photocatalysts for H2 production from an aqueous methanol solution," International Journal of Hydrogen Energy, vol. 35, pp. 7699-7705, (2010).
    [16] Z. Wu, et al., "Deactivation mechanism of PtOx/TiO2 photocatalyst towards the oxidation of NO in gas phase," Journal of Hazardous Materials, vol. 185, pp. 1053-1058, (2011).
    [17] F. Dong, et al., "Enhanced visible light photocatalytic activity of novel Pt/C-doped TiO2/PtCl4 three-component nanojunction system for degradation of toluene in air," Journal of Hazardous Materials, vol. 187, pp. 509-516, (2011).
    [18] H. Wang, et al., "Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide," Chemosphere, vol. 74, pp. 773-778, (2009).
    [19] D. Hufschmidt, et al., "Enhancement of the photocatalytic activity of various TiO2 materials by platinisation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 148, pp. 223-231, (2002).
    [20] T. A. Egerton and J. A. Mattinson, "The influence of platinum on UV and ‘visible’ photocatalysis by rutile and Degussa P25," Journal of Photochemistry and Photobiology A: Chemistry, vol. 194, pp. 283-289, (2008).
    [21] F. B. Li and X. Z. Li, "The enhancement of photodegradation efficiency using Pt-TiO2 catalyst," Chemosphere, vol. 48, pp. 1103-1111, (2002).
    [22] J. Shi, et al., "Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture," The Journal of Physical Chemistry C, vol. 111, pp. 693-699, (2006).
    [23] J. Liqiang, et al., "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity," Solar Energy Materials and Solar Cells, vol. 90, pp. 1773-1787, (2006).
    [24] F. Zhang, et al., "Synthesis of Titania-Supported Platinum Catalyst:  The Effect of pH on Morphology Control and Valence State during Photodeposition," Langmuir, vol. 20, pp. 9329-9334, (2004).
    [25] J. Lee and W. Choi, "Photocatalytic Reactivity of Surface Platinized TiO2:  Substrate Specificity and the Effect of Pt Oxidation State," The Journal of Physical Chemistry B, vol. 109, pp. 7399-7406, (2005).
    [26] Z. Zhang, et al., "Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts," The Journal of Physical Chemistry B, vol. 102, pp. 10871-10878, (1998).
    [27] G. D. Claycomb, et al., "X-ray Photoelectron Spectroscopic Study of the Surface State during Ethane Oxidative Dehydrogenation at Millisecond Contact Times," The Journal of Physical Chemistry C, vol. 111, pp. 18724-18730, (2007).
    [28] W. Teoh, et al., "Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matters," Journal of Catalysis, vol. 251, pp. 271-280, (2007).
    [29] H. Kisch and W. Macyk, "Visible-light photocatalysis by modified titania," ChemPhysChem, vol. 3, pp. 399-400, (2002).
    [30] N. Guettai and H. Aitamar, "Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study," Desalination, vol. 185, pp. 427-437, (2005).
    [31] J.-J. Zou, et al., "Highly efficient Pt/TiO2 photocatalyst prepared by plasma-enhanced impregnation method," Chemical Physics Letters, vol. 400, pp. 520-523, (2004).
    [32] M. Zhang, et al., "Study of strong interaction between Pt and TiO2 under oxidizing atmosphere," Applied Surface Science, vol. 250, pp. 29-34, (2005).
    [33] M. Zhang, et al., "Effect of calcination and reduction treatment on the photocatalytic activity of CO oxidation on Pt/TiO2" Journal of Molecular Catalysis A: Chemical, vol. 225, pp. 59-63, (2005).
    [34] Y. Ishibai, et al., "Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity," Applied Catalysis B: Environmental, vol. 79, pp. 117-121, (2008).
    [35] M. Hidalgo, et al., "Photocatalytic properties of surface modified platinised TiO2: Effects of particle size and structural composition," Catalysis Today, vol. 129, pp. 43-49, (2007).
    [36] S. Kim, et al., "Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst," The Journal of Physical Chemistry B, vol. 109, pp. 24260-24267, (2005).
    [37] M. John F, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc. (1995)
    [38] L. E. Cox, et al., "Photoaquation of hexachloroplatinate(IV)," Journal of Inorganic and Nuclear Chemistry, vol. 34, pp. 297-305, (1972).
    [39] 郭建宏,「碳改質二氧化鈦以及其可見光應答催化活性之研究」,碩士論文,國立台灣科技大學化學工程系,(2010)。
    [40] Y.-H. Tseng, et al., Bactericidal performance of visible-light responsive platinum-doped titania photocatalyst.

    無法下載圖示 全文公開日期 2016/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2016/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE