簡易檢索 / 詳目顯示

研究生: 林智偉
Jhih-wei Lin
論文名稱: 硒化鋅鎘/硒化鋅鎘鎂量子井結構光學特性研究
Optiacl characterization of ZnxCd1-xSe/Znx’Cdy’Mg1-x’-y’Se quantum wells structures.
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 程光蛟
Kwong-Kau Tiong
孫澄源
Cheng-Yuan Sun
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 多重量子井非對稱耦合量子井子能帶躍遷無接點式電場調制反射光譜
外文關鍵詞: multiple quantum wells, asymmetry coupled quantum wells, intersubband transition, CER
相關次數: 點閱:343下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用無接點式電場調制反射(CER)光譜來研究分子束磊晶所成長多重量子井和非對稱耦合量子井結構。
    從CER光譜中能在很廣泛的範圍顯現出這些結構可能的光學躍遷訊號;然後藉由一階導數的勞倫茲線型函數去擬合來獲得躍遷能隙。和光激發螢光光譜(PL)譜線比較後能確定來自相同的量子井結構中的基態(ground state)躍遷訊號。為了確認其餘的躍遷訊號,我們利用封包方程式(envelope function)去計算;利用線性內插法來獲得電子、重電洞、輕電洞的有效質量參數,然後將導電帶能隙補償差(conduction-band band offset)視為可調變參數ΔEc = (0.75  0.05) ΔEg。所計算出來的值和實驗結果相當吻合。可利用傅里葉變換紅外光譜(Fourier transform infrared)來估算和驗證子能帶間的躍遷訊號。從實驗結果可得知CER是個非接觸、非破壞性的量測技巧,相當適合用於量測製作中紅外線區雷射元件的寬能隙II-VI族材料


    Contactless electroreflectance (CER) was used to characterize the possible optical transitions in a Zn0.46Cd0.54Se/Zn0.24Cd0.25Mg0.51Se multiple quantum well (MQW) and a Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se asymmetric coupled quantum well (ACQW) structures grown on (001) semi-insulating InP by molecular beam epitaxy for midinfrared device applications.
    The CER spectra revealed a wide range of the possible optical transition in the QW structures. The transition energies were obtained using a fitting process based on the first derivative of a Lorentzian lineshape. The ground state transitions were assigned by comparing with the PL emission signals taken from the same structures. In order to assign the remaining transitions, calculations were performed based on the envelope function approximation, considering that the well was doped. The values for the effective masses were obtained from a linear interpolation of the binary compounds. A value for the conduction-band band offset of ΔEc = 0.75  0.05 ΔEg was used. The identified transitions corresponded to the symmetry allowed and symmetry forbidden but parity allowed transitions. The calculation matched with the measured values. From these data, the intersubband transitions could be estimated and were further confirmed by Fourier transform infrared absorption measurements. The results demonstrate the potential of using CER as a technique for the contactless and nondestructive characterization of the wide band gap II-VI QW structures for mid-IR intersubband device applications.

    中文摘要………………………………………………………Ⅰ 英文摘要………………………………………………………III 致謝 .………………………………………………………IV 目錄 .………………………………………………………V 圖索引…………………………………………………………VI 表索引…………………………………………………………IX 第一章 緒論…………………………………………………1 1.1 研究背景…………………………………………………1 1.2 研究主題和方法…………………………………………3 第二章、ZnCdSe/ZnCdMgSe量子井結構………………………8 2.1 ZnCdSe基本性質…………………………………………8 2.2量子井特性…………………………………………………8 2.2.1 多重量子井(MQW)……………………………………9 2.2.2 非對稱耦合量子井(ACQW)…………………………9 2.3多重量子井成長…………………………………………10 2.3.1檢驗樣品成分與結構………………………………10 2.3.2 材料參數推算……………………………………11 第三章、調制光譜理論及量測技術……………………20 3.1調制光譜相關理論……………………………………20 3.1.1 前言………………………………………………20 3.1.2 反射率與介電函數之關係…………………………21 3.2無接點式電場調制反射光譜(CER)……………………23 3.3調制光譜系統…………………………………………24 3.4 光激發螢光光譜量測(PL)…………………………27 3.4.1 光激發螢光(PL)原理………………………………27 3.4.2 PL 實驗方法與實驗系統…………………………28 第四章 結果與討論…………………………………………32 4.1 多重量子井(MQW)的光學特性…………………………33 4.2 非對稱耦合量子井(ACQW)的光學特性………………39 第五章 結論…………………………………………………59 參考文獻……………………………………………………60 作者簡介……………………………………………………67

    1.Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson, A. L., and Cho, A. Y., 1994, “Quantum Cascade Laser: Temperature Dependence of the Performance Characteristics and High T0 Operation,” Appl. Phys. Lett., Vol. 65, No. 23, pp. 2901-2903.

    2.Evans, A., Nguyen, J., Slivken, S., Yu, J. S., Darvish, S. R., and Razeghi, M., 2006, “Quantum-Cascade Lasers Operating in Continuous-Wave Mode above 90 °C at ~ 5.25 µm,” Appl. Phys. Lett., Vol. 88, No. 3, pp. 051105-1~051105-3.

    3.Lyakh, A., Zory, P., Wasserman, D., Shu, G., Gmachl, C., D’Souza, M., Botez, D., and Bour, D., 2007, “Narrow Stripe-Width, Low-Ridge High Power Quantum Cascade Lasers,” Appl. Phys. Lett., Vol. 90, No. 14, pp. 141107-1~141107-3.

    4.Evans, A., Yu, J. S., David, J., Doris, L., Mi, K., Slivken, S., and Razeghi, M., 2004, “High-Temperature, High-Power, Continuous Wave Operation of Buried Heterostructure Quantum Cascade Lasers,” Appl. Phys. Lett., Vol. 84, No. 3, pp. 314-316.

    5.Devenson, J., Barate, D., Cathabard, O., Teissier, R., and Baranov, A. N., 2006, “Very Short Wavelength ( =3.1–3.3 µm) Quantum Cascade Lasers,” Appl. Phys. Lett., Vol. 89, No. 19, pp. 191115-1~191115-3.

    6.Revin, D. G., and Cockburn, J. W., 2007, “InGaAs/AlAsSb/InP Quantum Cascade Lasers Operating at Wavelengths Close to 3 µm,” Appl. Phys. Lett., Vol. 90, No. 2, pp. 021108-1~021108-3.

    7.Devenson, J., Teissier, R., Cathabard, O., and Baranov, A. N., 2007, “InAs/AlSb Quantum Cascade Lasers Emitting below 3 µm,” Appl. Phys. Lett., Vol. 90, No. 11, pp. 111118-1~111118-3.

    8.Yang, Q., Manz, C., Bronner, W., Kohler, K., and Wagner, J., 2006, “Room-Temperature Short Wavelength ( ~ 3.7–3.9 µm) GaInAs/AlAsSb Quantum-Cascade Lasers,” Appl. Phys. Lett., Vol. 88, No. 12, pp. 121127-1~121127-3.

    9.Sohel, M., Zhou, X., Lu, H., Noemi Perez-Paz, M., Tammargo, M. C., and Muoz, M., 2005, “Optical Characterization and Evaluation of the Conduction Band Offset for ZnCdSe/ZnMgSe Quantum Wells Grown on InP(001) by Molecular-Beam Epitaxy,” J. Vac. Sci. Technol. B, Vol. 23, No. 3, pp. 1209-1211.

    10.Berry, A. K., Gaskill, D. K., and Stauf, G. T., 1991, “Photoreflectance of Semi-Insulating InP: Resisitivity Effects on the Exciton Phase,” Appl. Phys. Lett., Vol. 58, No. 24, pp. 2824-2826 .

    11.Acosta, S. E., and Martinez, L., 1987, “Measuremet of Above-Bandgap Optical Anisotropies in the (001) Surface of GaAs,” Solid State Commu., Vol. 64, No. 5, pp. 809-811.

    12.Acosta, S. E., and Martinez, L., 1989, “Electro-Optic Effects in the Optical Anisotropies of (001) GaAs,” Phys. Rev. B, Vol. 40, No. 2, pp. 1426-1429.

    13.Glembocki, O. J., Bottka, N., and Fuxrneaux, J. E., 1985, “Effects if Impurity Transition on Electroreflectance in Thin Epitaxial GaAs and Ga1-xAlxAs/GaAs Layers,” J. Appl. Phys., Vol. 57, No. 2, pp. 432-437.

    14.Tober, R. L., and Bruno, J. D., 1990, “Modulation Effects Near the GaAs Absorption Edge,” J. Appl. Phys., Vol. 68, No. 12, pp. 6388-6392.

    15.Qiang, H., Pollak, F. H., and Hickman, G., 1990, “Piezo-Photoreflectance of Direct Gap of GaAs and Ga0.78Al0.22As,” Solid State Commu., Vol. 76, No. 9, pp. 1087-1091.

    16.Bicelli, L. P., 1987, “Excitonic Interference Phenomena in Electrolyte Electroreflectance : Application to n-CuInSe2,” J. Appl. Phys., Vol. 62, No. 11, pp. 4523-4527.

    17.Yin, X., Guo, X., Pollak, F. H., Petitt, G. D., Woodall, J. M., Chen, T. P., and Tu, C. W., 1992, “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance,” Appl. Phys. Lett., Vol. 60, No. 11, pp. 1336-1338.

    18.Wang, D. P., Huang, K. M., Shen, T. L., Huang, K. F., and Huang, T. C., 1993, “The Effects of the Magnitude of the Modulation Field on Electroreflectance Spectroscopy of Undoped-n+ type Doped GaAs,” J. Appl. Phys., Vol. 83, No. 1, pp. 476-479.

    19.Hughes, P. J., Weiss, B. L., and Hosea, T. J. C., 1995, “Analysis of Franz-Kyldysh Oscillations in Photoreflectance Spectra of a AlGaAs/GaAs Single Quantum Well Structure,” J. Appl. Phys., Vol. 77, No. 12, pp. 6472-6480.

    20.Shen, H., Dutta, M., Fotiadis, L., Newman, P. G., Moerkirk, R. P., Chang, W. H., and Sacks, R. N., 1990, “Photoreflectance Study of Surface Fermi Level in GaAs and GaAlAs,” Appl. Phys. Lett., Vol. 57, No. 20, pp. 2118-2120.

    21.Kanata, T., Matsunaga, M., Takakawa, H., Hamakawa, Y., and Nishino, T., 1991, “Deep-Level Characterization of N-type GaAs by Photoreflectance Spectroscopy,” J. Appl. Phys., Vol. 69, No. 6, pp. 3691-3695.

    22.Pollak, F. H., 1981, “Modulation Spectroscopy as a Technique for Semiconductor Characterization,” Proc. SPIE, Vol. 276, No. 20, pp. 142-156.

    23.Huang, D., Ji, G., Reddy, U. K., Morkoc, H., Xiong, F., and Tombrello, T. A., 1988, “Photoreflectance, Absorption, and Nuclear Resonance Reaction Studies of AlxGa1-xAs Grown by Molecular-Beam Epitaxy,” J. Appl. Phys., Vol. 63, No. 11, pp. 5447-5453.

    24.Lu, H., Shen, A., Tamargo, M. C., Song, C. Y., Liu, H. C., Zhang, S. K., Alfano, R. R., and Muoz, M., 2006, “Midinfrared Intersubband Absorption in ZnxCd1−xSe/Znx’Cdy’Mg1−x’−y’Se Multiple Quantum Well Structure,” Appl. Phys. Lett., Vol. 89, No. 13, pp. 131903-1~131903-3.

    25.Franz, K. J., Charles, W. O., Shen, A, Hoffman, A. J., Tamargo, M. C., and Gmach, C., 2008, “ZnCdSe/ZnCdMgSe Quantum Cascade Electroluminescence,” Appl. Phys. Lett., Vol. 92, No.12, pp. 121105-1~121105-3.

    26.Lu, H., Shen, A., Mounz, M., Tamargo, M. C., Charles, W., Yokomizo, I., Gong, Y., Neumark, G. F., Franz, K. J., and Gmachl, C., 2007, “Study of Intersubband Transitions of ZnxCd1−xSe/Znx’Cdy’Mg1−x’−y’Se Multiple Quantum Wells Grown by Molecular Beam Epitaxy for Midinfrared Device Applications,” J. Vac. Sci. Technol. B, Vol. 25, No. 3, pp. 1103-1107.

    27.Lu, H., Shen, A., Charles, W., Yokomizo, I., and Tamargo, M. C., 2006, “Optical Characterization of Intersubband Transitions in ZnxCd1−xSe/Znx’Cdy’Mg1−x’−y’Se Multiple Quantum Well Structures by Contactless Electroreflectance,” Appl. Phys. Lett., Vol. 89, No. 24, pp. 241921-1~241921-3.

    28.Muoz, M., Hong, L., Xuecong, Z., Tamargo, M. C., and Pollak, F. H., 2003, “Band Offset Determination of Zn0.53Cd0.47Se/Zn0.29Cd0.24Mg0.47Se,” Appl. Phys. Lett., Vol. 83, No. 10., pp. 1995-1997.

    29.Perez-Paza, M. N., Lu, H., Shen, A., and Tamargo, M. C.., 2006, “Formation and Optical Properties of Stacked CdSe Self-Assembled Quantum Dots on ZnxCdyMg1−x−ySe barriers,” J. Vac. Sci. Technol. B, Vol. 24, No. 3, pp. 1649-1655.

    30.Charlesa, W. O., Shen, A., Franz, K., Gmachl, C., Zhang, Q., Gong, Y., Neumark, G. F., and Tamargo, M. C., 2008, “Growth and Characterization of ZnxCd1−xSe/Znx’Cdy’Mg1−x’−y’Se Asymmetric Coupled Quantum Well Structures for Quantum Cascade Laser Applications,” J. Vac. Sci Technol. B, Vol. 26, No. 3, pp. 1171-1173.

    31.Shen, H., Parayanthal, P., Lin, Y. F., and Pollak, F. H., 1987, “New Normalization Procedure for Modulation Spectroscopy,” Rev. Sci. Instum., Vol. 58, No. 8, pp. 1429-1432.

    32.Varshni, Y. P., 1967, “Temperature Dependence of Energy Gap in Semiconductors, “ Physica, Vol. 34, No. 1, pp. 149-154.

    33.Lantenschlager, P., Garriga, M., Logothetidis, S., and Cordona, M., 1987, “Interband Critical Points of GaAs and their Temperature Dependence,” Phys. Rev. B, Vol. 35 No. 17, pp. 9174-9189.

    34.Mathieu, H., Allegre, J., and Gil, B., 1991, “Piezomodulation Spectroscopy: a Powerful Investigation Tool of Hetrostructures,” Phys. Rev. B, Vol. 43, No. 3, pp. 2218-2227.

    35.Malikova, L., Krystek, W., Pollak, F. H., Dai, N., Cavus, A., and Tamargo, M. C., 1996, “Temperature Dependence of the Direct Gaps of ZnSe and Zn0.56Cd0.44Se,” Phys. Rev. B, Vol. 54, No. 3, pp. 1819-1822.

    36.Hsieh, C. H., Huang, Y. S., Ho, C. H., Tiong, K. K., Maksimov, M. M., and Tamargo, M. C., 2004, “Temperature Dependence of the Band-Edge Transitions of ZnCdBeSe,” Jpn. J. Appl. Phys., Vol. 43, No. 2, pp. 459-466.

    37.Liu, Y. T., Sitarek, P., Huang, Y. S., Firszt, F., Paszkowicz, W., and Tiong, K. K., 2005, “Temperature Dependence of the Edge Excitonic Transitions of the Wurtzite Cd1–x–yBexZnySe Crystals,” J. Appl. Phys., Vol. 98, No. 31, pp. 083519-1~083519-7.

    38.Huang, P. J., Huang, Y. S., Firszt, F., and Tiong, K. K., 2007, “Optical Characterization of a Cd0.85Mg0.15Se Mixed Crystal,” J. Phys. : Condens. Matter, Vol. 19, No. 33, pp. 266002-1~266002-8.

    39.Logothetidis, S., Cardona, M., Lautenschlager, P., and Garriga, M., 1986, “Temperature Dependence of the Dielectric Function and the Interband Critical Points of CdSe,” Phys Rev. B, Vol. 34, No. 4, pp. 2458-2469.

    無法下載圖示 全文公開日期 2011/06/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2011/06/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE