簡易檢索 / 詳目顯示

研究生: 劉鎧逸
Kai-Yi Liu
論文名稱: 奈米線純化與奈米顆粒回收程序之研究
Study on Purification of Nanowire and Recovery of Nanoparticle Procedures
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 何郡軒
Jinn-Hsuan Ho
鄭智嘉
Chih-Chia Cheng
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 銀奈米線自然沉降萃取槽銀回收
外文關鍵詞: Silver nanowire, natural sedimentation extraction tank, silver recovery
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 柔性電子憑藉其獨特的靈活性,該技術相關應用已可見於許多產品,包括顯示器、有機發光二極體、 太陽能電池板、電子皮膚貼片 等,近年來 柔性電子之專利申請量以平均 15.7 %的成長速度逐年提升, 專利分析顯示其著重於改善製造方法,可撓式 透明 導電薄膜為柔性電子產品之關鍵材料,奈米銀線為目前可量產應用的導電材料 。 本文針對奈米銀線原料之分離純化進行研究,銀奈米線原料可加工製成可撓式透明導電薄膜,銀線純度會大幅影響導電膜光電特性,因此 值得深入研究。

    本研究分成四個部分, 第一部分 為初步分離階段,目的是將銀奈米線原液中之大顆粒去除,方法為多元 醇 法合成之銀奈米線放入萃盤堆疊的沈降槽,利用重力自然沉降數天,以將銀奈米線懸在液相。第二部分為奈米線與奈米顆粒分離,目的是將銀奈米顆粒去除,將第一階段沉降後流出物導入不同沈降槽中,將溶液中之銀奈米線沈澱於萃盤上。本研究探討分離參數,如沉降天數、反應劑濃度等對於銀奈米線純化之影響。第三部分為廢溶液中銀回收,本研究利用連續式離心機,可將廢溶液中的銀固體分離取出,使處理廢液成本降低,並探討如轉速、時間等參數之影響。第四部份為應用高分子管式膜純化並增濃銀奈米線溶液,利用管式膜特性將銀溶液中銀奈米顆粒去除,同時達到增 濃並純化的製程。

    本研究利用自然沉降萃取槽成功分離銀奈米顆粒及銀奈米線,達到純化之效果且產率高達 60%以上,而應用蝶式離心機可以將廢液中 99%以上的銀回收,且應用管式膜成功增濃銀奈米線溶液,對於後續產品純化以及溶液中銀回收應用上具發展潛力。


    The flexible electronics with wide practicability, so this technology has been applied in various industry fields, including electronic displays, organic light-emitting diodes, thin-film solar panels, and electronic skin patches, etc. The filed patents for flexible electronics are increased with an average growth rate of 15.7% recently. The analysis result of these patents indicates the tendency is focused on the improvement of manufacturing methods. Flexible transparent conductive films are the key material of flexible electronic products, and the silver nanowire can be mass production and used as conductive coating. The purity of silver wire plays an important role in the photoelectric characteristics of conductive films. Thus, the separation and purification of silver nanowire were investigated in this work.

    There were four parts in this study. The first part was the preliminary separation stage, where the large silver particles was removed from the silver nanowire solution. The silver nanowire solution, synthesized via polyol method, was placed in the settling tank equipped plenty of extraction trays. The large particles were gradually deposited on trays due to their large density during several days, resulting in the suspension of silver nanowires in the liquid phase. The second procedure was to separate nanowires and nanoparticles further. The mixture of silver nanowire and nanoparticle from the first stage of sedimentation was conducted into second settling tanks. The silver nanowires were deposited on the extraction trays contrarily, and the nanoparticles can be drained out with liquid flow. The effects of settling days and reagent concentration on separation rate and purity of product were studied in detail. The recovery of silver particle in waste solution was evaluated in the third section. A continuous centrifuge was used to capture the silver solids in the waste solution, which reduced the treatment cost of liquid waste. The major parameters for this separation step were operation time and rotation speed. Finally, the polymer tube membrane was applied to purify and concentrate the silver nanowire solution. The nanoparticles and solvent were penetrated from inside to outside, so the concentration and purity of silver wire could be improved at the same time.

    In conclusion, the qualified silver nanowires solution with 60% of yield rate were successfully achieved in the natural sedimentation procedures. 99% of the silver solid in the liquid waste was able to be recovered with using a continuous centrifuge. The polymer tube membranes showed the feasibility in the subsequent product purification and silver recovery in the future.

    摘要 I ABSTRACT II 誌 謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第 一 章 緒論 1 1.1 前言 1 1.2研究動機與目的 3 第 二 章 文獻回顧 4 2.1透明導電薄膜介紹與應用 4 2.1.1透明導電薄膜介紹 4 2.1.2透明導電薄膜應用 10 2.2銀奈米線製備方法 14 2.2.1 電化學製備法 14 2.2.2 光化學製備法 15 2.2.3 模板製備法 15 2.2.4 化學氣相製備法 16 2.2.5 化學液相製備法 17 2.3 銀奈米線純化及分離方法 21 2.3.1 離心純化 21 2.3.2 薄膜純化 22 2.3.3 管式膜 純化 24 2.3.4 自然沉降法 25 第 三 章 實驗方法與步驟 28 3.1 實驗規劃 28 3.2 儀器設備與分析儀器 30 3.2.1 儀器設備 30 3.2.2 分析儀器 31 3.3 實驗步驟 32 3.3.1 STAGE 1 銀奈米線自然沉降萃取純化 32 3.3.2 STAGE 2 銀奈米線自然沉降萃取純化 32 3.3.3 銀奈米線廢液之銀回收 32 第 四 章 結果與討論 33 4.1 STAGE 1 銀奈米線自然沉降萃取純化之探討 33 4.1.1 添加之水比例的影響 33 4.1.2 沉降天數之影響 39 4.1.3 出料傾角之探討 43 4.2 STAGE 2 銀奈米線自然沉 降萃取純化之探討 46 4.2.1沉降天數之影響 46 4.2.2懸浮劑添加量之影響 51 4.2.3 懸浮性之探討 55 4.3 銀奈米線廢液之銀回收 58 4.3.1 連續式蝶式離心機 58 4.3.2 連續式管式離心機 64 4.4 管式膜增加濃度 70 第 五 章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 73 參考文獻 75

    [1] R. Singh, "Transparent Conductive Films Market by Technology and Application - Global Opportunity Analysis and Industry Forecast," 2013 - 2020, July 2014.
    [2] B. Li, S. Ye, I. E. Stewart, S. Alvarez, and B. J. Wiley, "Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%," Nano Lett, vol. 15, no. 10, pp. 6722-6, Oct 14 2015.
    [3] Baoyang Lu, Hyunwoo Yuk, Shaoting Lin, Nannan Jian, Kai Qu, Jingkun Xu & Xuanhe Zhao., "Pure PEDOT:PSS hydrogels," Nat Commun, vol. 10, no. 1, p. 1043, Mar 5 2019.
    [4] Z. Li, P. Dharap, S. Nagarajaiah, E. V. Barrera, and J. D. Kim, "Carbon Nanotube Film Sensors," Advanced Materials, vol. 16, no. 7, pp. 640-643, 2004. [5] Doo Seok Jeong 1, Reji Thomas, R S Katiyar, J F Scott, H Kohlstedt, A Petraru, Cheol Seong Hwang., "Graphene oxide thin films for flexible nonvolatile memory applications," Nano Lett, vol. 10, no. 11, pp. 4381-6, Nov 10 2010.
    [6] J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, and D. Poulikakos, "Electrohydrodynamic NanoDrip Printing of High Aspect Ratio Metal Grid Transparent Electrodes," Advanced Functional Materials, vol. 26, no. 6, pp. 833-840, 2016.
    [7] T. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, and K. S. Suh, "Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters," Advanced Functional Materials, vol. 23, no. 10, pp. 1250-1255, 2013.
    [8] 楊明輝 , "透明導電模材料與成模技術的正新發展 ," 工業材料 , no. 第 189期 , 2002.
    [9] F. Streintz, "Ueber die elektrische leitfähigkeit von gepressten pulvern," Ann. Phys, vol. 314, pp. 854-885, 1902.
    [10] C. Y. W. He, "Flexible transparent conductive films on the basis of Ag nanowires: design and applications: a review," J. Mater. Sci. Technol, vol. 31, pp. 581-588, 2015.
    [11] A. K. G. K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,I. V. Grigorieva, A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, 2004.
    [12] L. Qiu, J. Z. Liu, S. L. Chang, Y. Wu, and D. Li, "Biomimetic superelastic graphene-based cellular monoliths," Nat Commun, vol. 3, p. 1241, 2012.
    [13] 陳姿吟、李連忠 , "以化學氣相沉積法長大面積之石墨烯 ," 中央研究院 , vol. 1342, 2011.
    [14] S. lijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
    [15] E. J. L. H. Shirakawa, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x," J. Chem. Soc. Chem. Comm., vol. 0, pp. 578-580, 1977.
    [16] Yue Wang1, Chenxin Zhu2, View ORCID ProfileRaphael Pfattner1, Hongping Yan3, Lihua Jin1,4, Shucheng Chen1, View ORCID ProfileFrancisco Molina-Lopez1, View ORCID ProfileFranziska Lissel1, Jia Liu1, View ORCID ProfileNoelle I. Rabiah1, Zheng Chen1, Jong Won Chung1,5, Christian Linder4, Michael F. Toney3, Boris Murmann2 and Zhenan Bao1,*& Xuanhe Zhao, "A highly stretchable, transparent, and conductive polymer," vol. 3, no. 3, p. e1602076, 2017.
    [17] M.-H. Chang, H.-A. Cho, Y.-S. Kim, E.-J. Lee, and J.-Y. J. N. r. l. Kim, "Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties," vol. 9, no. 1, pp. 1-7, 2014.
    [18] 林雅婷 , "以還原氧化石墨烯 /奈米銅線複合材料製備電性穩定之可撓透明
    導電薄膜 ," 國立清華大學材料科學工程學系碩士論文 , 2016.
    [19] 林明獻 , "太陽電池技術入門 ," 全華圖書出版 , 2016.
    [20] 張國龍 , "認識 LCD液晶顯示器 ," 台肥刊物 , 2003.
    [21] 顧鴻壽 , "光電材料與顯示技術 ," 五南圖書出版 , 2004.
    [22] Y. Zhou, S. Yu, X. Cui, C. Wang, and Z. J. C. o. m. Chen, "Formation of silver nanowires by a novel solid− liquid phase Arc discharge method," vol. 11, no. 3, pp. 545-546, 1999.
    [23] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu, and Z. Y. J. A. M. Chen, "A novel ultraviolet irradiation photoreduction technique for the preparation of single‐crystal Ag nanorods and Ag dendrites," vol. 11, no. 10, pp. 850-852,1999.
    [24] 裘性天、黃亭凱 , "特殊形貌銅與銀奈米材料製備之簡介 ," 化學 , vol. 第
    65卷第 1期 , 2007. [25] Paritosh Mohanty, Ilsun Yoon, Taejoon Kang, Kwanyong Seo, Kumar S K Varadwaj, Wonjun Choi, Q Han Park, Pyung Ahn Jae, Doug Suh Yung, Hyotcherl Ihee, Bongsoo Kim., "Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced Raman scattering," vol. 129, no. 31, pp. 9576-9577, 2007.
    [26] N. R. Jana, L. Gearheart, and C. J. J. C. C. Murphy, "Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods.," no. 7, pp. 617-618, 2001.
    [27] C. J. Murphy and N. R. J. A. M. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires," vol. 14, no. 1, pp. 80-82, 2002.
    [28] Z. Wang, J. Liu, X. Chen, J. Wan, and Y. J. C. A. E. J. Qian, "A Simple Hydrothermal Route to Large‐Scale Synthesis of Uniform Silver Nanowires," vol. 11, no. 1, pp. 160-163, 2005.
    [29] Y. Sun and Y. J. A. M. Xia, "Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process," vol. 14, no. 11, pp. 833-837, 2002.
    [30] Y. Zhang, J. Guo, D. Xu, Y. Sun, F. J. A. a. m. Yan, and interfaces, "One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes," vol. 9, no. 30, pp. 25465-25473, 2017.
    [31] M. B. Gebeyehu, T. F. Chala, S.-Y. Chang, C.-M. Wu, and J.-Y. J. R. a. Lee, "Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method," vol. 7, no. 26, pp. 16139-16148, 2017.
    [32] K. Zhang, Y. Du, and S. J. O. E. Chen, "Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications," vol. 26, pp. 380-385, 2015.
    [33] R. Jarrett and R. J. M. R. I. Crook, "Silver nanowire purification and separation by size and shape using multi-pass filtration," vol. 20, no. 2, pp. 86-91, 2016.
    [34] B. Li, S. Ye, I. E. Stewart, S. Alvarez, and B. J. J. N. l. Wiley, "Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%," vol. 15, no. 10, pp. 6722-6726, 2015.
    [35] K. C. Pradel, K. Sohn, and J. Huang, "Cross-Flow Purification of Nanowires," Angewandte Chemie International Edition, vol. 50, no. 15, pp. 3412-3416, 2011.
    [36] C. Prabukumar and K. U. J. M. T. P. Bhat, "Purification of Silver Nanowires Synthesised by Polyol Method," vol. 5, no. 10, pp. 22487-22493, 2018.

    無法下載圖示 全文公開日期 2025/07/10 (校內網路)
    全文公開日期 2025/07/10 (校外網路)
    全文公開日期 2025/07/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE