簡易檢索 / 詳目顯示

研究生: 陳姵妏
Pei-Wen Chen
論文名稱: 鎳鐵層狀氫氧化物修飾銀奈米線製備雙功能觸媒於鹼性氧氣析出與還原反應之研究
Study on bifunctional catalyst derived from NiFe layered double hydroxides decorated with Ag nanowires for oxygen evolution and reduction reactions in alkaline media
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
王丞浩
Wang, Chen-Hao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 可逆式鋅空氣電池鹼性電解質雙功能觸媒層狀氫氧化物銀奈米線
外文關鍵詞: Rechargeable zinc-air battery, alkaline electrolyte, bifunctional catalyst, layered double hydroxide, Ag nanowires
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,可逆式鋅-空氣電池因為具有高能量密度和經濟性而備受關注。在空氣電極端,需要雙功能觸媒於同一電極上進行充電(氧氣析出反應)和放電(氧氣還原反應)。常用的氧還原之觸媒 Pt/C和氧析出之觸媒 IrO2皆不具有雙功能特性且有成本及豐度問題,造成實際應用上的瓶頸。

    本研究以鎳鐵層狀氫氧化物修飾銀奈米線作為用於鹼性電解質下氧氣還原反應和氧氣析出反應的雙功能觸媒。首先,以多元醇還原法合成奈米銀線,透過改變轉速和前驅物滴入速率來優化銀奈米線的線寬與形狀。接著利用水熱法將鎳鐵層狀氫氧化物成長在奈米銀線表面,並進行特性鑑定及電化學效能檢測。從表面形貌分析上得知銀奈米線線徑隨攪拌速度加快和前驅物的滴入速度增加而減少。紅外光譜分析結果可以發現銀線上仍有PVP的殘留以及Ni3Fe LDH層間的陰離子為CO32-和NO3-。XPS及XAS的結果說明銀奈米線對Ni3Fe LDH上Fe離子的影響較顯著,包含電子結構變化(正能量偏移)與Fe位置局域結構的變化(Fe-O和Fe-M鍵長縮短)。在氧氣析出反應的表現上,S-Ni3Fe LDH/Ag NWs-F(2:1)-10mL在1.53 VRHE的質量活性達432 mA mg-1LDH,明顯優於Ni3Fe LDH (121 mA mg-1LDH)和IrO2 (149 mA mg-1catalyst),原因推測為攪拌後的Ni3Fe LDH活性位置數目大量增加,進而提升單位觸媒重量上的氧氣析出反應效能。但在氧氣還原反應的表現上,S-Ni3Fe LDH/Ag NWs-F(2:1)-10mL相較於純銀奈米線和商業化觸媒Pt/C,其催化能力不佳的原因推測與奈米銀線表面殘留PVP和鎳鐵層狀氫氧化物疊層太厚有關,阻礙氧氣擴散到觸媒表面。經過 24 小時氧氣析出反應的穩定性測試,結果顯示S-Ni3Fe LDH/Ag NWs-F(2:1)-10mL的電流保持率為92.6%,相較於純Ni3Fe LDH (76.3%)和商業化觸媒IrO2¬ (91.6%),更適合作為氧氣析出反應觸媒。


    Recently years, the rechargeable zinc-air batteries have its attracted much attention owing to high energy density and economic viability. In air electrode, a bifunctional electrocatalyst is desirable since the dual functionality of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are required on the same electrode under charging and discharging processes, respectively. Unfortunately, both commonly used catalysts: Pt/C in ORR and IrO2 in OER have no bifunctional property while the scarcity and cost of the metals limit its large-scale application for the electrolysis.

    In this work, the NiFe layered double hydroxides (Ni3Fe LDH) decorated with Ag nanowires (Ag NWs), as a bifunctional catalyst, was applied in oxygen reduction reaction and oxygen evolution reaction under alkaline media. First, the Ag nanowires were prepared via a polyol reduction method, and to optimize their linewidth and shape by changing the stirring rate and the precursor dropping rate. The Ni3Fe LDH was then deposited on the Ag nanowires by a hydrothermal process. As the results in surface morphology, the linewidth of Ag NWs was shortened with increasing stirring rate and precursor dropping rate. In FTIR analysis, a few residual PVP was still observed on Ag NWs while the intercalation anions of CO32- and NO3- were identified. As characterized in XPS and XAS, it was found that Fe sites in decorated Ni3Fe LDH were strongly influenced by Ag NWs, including the electronic effect (binding energy positively shifts) and the local structure environment (shorter Fe-O and Fe-M bond length). In OER performance, a mass activity of 432 mA mg-1LDH was reached by S-Ni3Fe LDH/Ag NWs-F(2:1)-10mL, much better than Ni3Fe LDH (121 mA mg-1LDH) and IrO2 (149 mA mg-1catalyst), attributed to a large number of accessible active sites on the catalytic surface. However, the ORR activities of the Ni3Fe LDH/Ag NWs catalysts showed no advantage compared to as-synthesized Ag NWs and commercial Pt/C catalyst, which may be attributed to a few residual of PVP and too thick of LDH layer on Ag surface thereby inhibit O2 diffusion. In OER stability test, a chronoamperometric method was used for 24 hours, S-Ni3Fe LDH/Ag NWs-F(2:1)-10mL showed current retention by 92.6%, better than Ni3Fe LDH (76.3%) and IrO2 (91.6%), more suitable as an OER catalyst.

    摘要 Abstract 致謝 目錄 表目錄 第一章 緒論 1.1 前言 1.2 金屬空氣電池 (Metal-air battery) 1.3研究動機與目的 第二章 文獻回顧 2.1 氧氣電催化 2.2雙功能觸媒(Bi-functional catalysts)應用於氧氣催化反應 2.2.1 碳材料觸媒(Carbonaceous materials catalysts) 2.2.2 鉑系觸媒(Pt-group metals catalysts) 2.2.3 非鉑系觸媒(Non-Pt-group metals catalysts) 2.3多元醇法(Polyol method)合成銀奈米結構 2.4層狀複金屬氫氧化物 (Layer double hydroxide, LDH) 第三章 實驗設備與方法 3.1 實驗藥品 3.2 實驗設備 3.3 實驗步驟 3.3.1 以水熱法合成鎳鐵層狀氫氧化物 3.3.2 以油浴合成銀奈米線 3.3.3以修飾水熱法合成鎳鐵層狀氫氧化物負載於銀奈米線 3.3.4以優化水熱法合成鎳鐵層狀氫氧化物負載於銀奈米線 3.3.4 樣品清單與命名 3.3.5 電化學漿料調配 3.4 儀器原理與材料鑑定 3.4.1 掃描式電子顯微鏡 (SEM) 3.4.2 能量分散光譜儀 (EDX) 3.4.3 X 射線繞射儀(XRD) 3.4.4 感應偶合電漿光譜儀(ICP-AES) 3.4.5 傅立葉紅外線光譜儀(FTIR) 3.4.6 X光光電子能譜儀 (XPS) 3.4.7 X光吸收光譜 (XAS) 3.4.8 電化學原理 第四章 結果討論 4.1 奈米銀線之合成優化 4.1.1 不同轉速的探討 4.1.2 PVP和AgNO3滴定速度之探討 4.2鎳鐵層狀氫氧化物負載於奈米銀線 4.2.1不同溶液體積之結構分析 4.2.2不同溶液體積之電化學分析 4.2.3不同Ni3Fe LDH對Ag NWs比例之結構分析 4.2.4不同Ni3Fe LDH對Ag NWs比例之電化學效能分析 4.2.5水熱合成條件優化於結構影響 4.2.6水熱合成條件優化之電化學效能分析 4.2.7鎳鐵層狀氫氧化物與奈米銀線之間合作關係 第五章 結論 第六章 未來展望 第七章 參考文獻

    1. Cheng, F., et al., Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. 2012. 41(6): p. 2172-2192.
    2. Fu, J., et al., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. 2017. 29(7): p. 1604685.
    3. Yang, H.B., et al., Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. 2016. 2(4): p. e1501122.
    4. Kinoshita, K., Electrochemical oxygen technology. Vol. 30. 1992: John Wiley & Sons.
    5. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. 2017. 46(2): p. 337-365.
    6. Zhang, P., et al., Structural selectivity of CO oxidation on Fe/N/C catalysts. 2012. 116(33): p. 17572-17579.
    7. Liu, W., et al., Oxidation of CO catalyzed by a Cu cluster: Influence of an electric field. 2009. 10(18): p. 3295-3302.
    8. Li, Y., et al. Recent advances in zinc–air batteries. 2014. 43(15): p. 5257-5275.
    9. Chen, G., et al. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. 2002. 149(8): p. A1092-A1099.
    10. Stamenkovic, V.R., et al., Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. 2007. 6(3): p. 241.
    11. Liang, Y., et al., Co 3 O 4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. 2011. 10(10): p. 780.
    12. Kan, C.-X., et al. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. 2008. 41(15): p. 155304.
    13. Sun, Y., et al., Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. 2003. 3(7): p. 955-960.
    14. Wiley, B., et al., Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. 2004. 4(9): p. 1733-1739.
    15. Korte, K.E., et al. Rapid synthesis of silver nanowires through a CuCl-or CuCl 2-mediated polyol process. 2008. 18(4): p. 437-441.
    16. Yin, H., et al. Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. 2016. 45(18): p. 4873-4891.
    17. Xu, Z.P., et al., Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. 2006. 110(34): p. 16923-16929.
    18. Chala, S.A., et al., Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions. 2018. 9(1): p. 117-129.
    19. Gong, M., et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. 2013. 135(23): p. 8452-8455.
    20. Li, H., et al., Detection of carbon dioxide with a novel HPTS/NiFe-LDH nanocomposite. 2016. 225: p. 109-114.
    21. Bryaskova, R., et al., Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). 2011. 4(4): p. 185.
    22. Louie, M.W., et al. An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. 2013. 135(33): p. 12329-12337.
    23. Yu, L., et al., Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core–shell electrocatalyst for efficient oxygen evolution. 2018. 6(28): p. 13619-13623.
    24. Kim, S.H., et al., Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes. 2016. 6: p. 33074.
    25. Kumar-Krishnan, S., et al., Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. 2016. 4(15): p. 2553-2560.
    26. Friebel, D., et al., Identification of highly active Fe sites in (Ni, Fe) OOH for electrocatalytic water splitting. 2015. 137(3): p. 1305-1313.
    27. Qian, L., et al., Trinary layered double hydroxides as high‐performance bifunctional materials for oxygen electrocatalysis. 2015. 5(13): p. 1500245.
    28. Gao, X., et al., Ni nanoparticles decorated NiFe layered double hydroxide as bifunctional electrochemical catalyst. 2017. 164(6): p. H307-H310.
    29. Wang, Q., et al., NiFe Layered Double Hydroxide Nanoparticles on Co, N‐Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. 2017. 7(21): p. 1700467.
    30. Fathi, F., et al., Tailoring zinc porphyrin to the Ag nanostructure substrate: an effective approach for photoelectrochemical studies in the presence of mononucleotides. 2013. 138(12): p. 3380-3387.
    31. Qiao, J., et al., Effect of KOH concentration on the oxygen reduction kinetics catalyzed by heat-treated Co-pyridine/C electrocatalysts. 2013. 8(1): p. 1189-1208.
    32. Yu, X., et al., A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. 2015. 3(13): p. 6921-6928.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 2024/08/26 (校外網路)
    全文公開日期 2024/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE