簡易檢索 / 詳目顯示

研究生: 顏振義
Chen-Yi Yen
論文名稱: 靜電紡絲製備二氧化錳與導電高分子複合纖維於鋅空氣電池陰極之研究
Fabrication of MnO2/Conductive Polymer Fiber by Electrospinning as Air Cathode for Rechargeable Zinc-Air Battery
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 李奕成
Yi-Cheng Li
周宏隆
Hung-Lung Chou
張文昇
Wen-Sheng Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 97
中文關鍵詞: 鋅空氣電池聚苯胺靜電紡絲
外文關鍵詞: electrospinning, polyaniline, Zinc-Air battery
相關次數: 點閱:365下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究分兩部分,第一部分是將製備好的α相二氧化錳加入適當比例之導電高分子混合溶液中進行加熱攪拌,第二部分將混合溶液利用靜電紡絲技術收集纖維於不鏽鋼網上作為空氣電極並進行電化學活性分析。


    The research was divided into two parts, in the first part of this study, adding the appropriate proportion of the conductive polymer relative to the prepared α manganese dioxide by heating and stirring, the second part, electrospun the mixed solution fibers on a stainless steel net as using of the air electrode and the electrochemically active analysis.

    誌謝 II 中文摘要 II 目錄 IV 圖目錄 VII 表目錄 X 第一章 序論 1 1.1 前言 1 1.2 空氣電池 1 1.3 靜電紡絲 2 1.4 研究動機 3 第二章 文獻回顧 4 2.1 電池簡介 4 2.1.1 電化學電池原理 7 2.2 金屬空氣電池 8 2.3 鋅空氣電池 9 2.3.1 鋅陽極氧化反應 10 2.4 空氣電極 11 2.4.1 氣體擴散層 13 2.4.2 集電網 13 2.4.3 催化層 13 2.4.4 碳材 14 2.4.5 空氣陰極之觸煤 14 2.4.5.1 二氧化錳 18 2.5 鋅空氣電池之種類 21 2.5.1 一次鋅空氣電池 21 2.5.2 二次鋅空氣電池 23 2.6 靜電紡絲 25 2.6.1 靜電紡絲簡介 27 2.6.2 靜電紡絲原理 27 2.6.3 靜電紡絲參數之影響 28 2.7 導電高分子 31 2.7.1 聚苯胺 32 2.7.1.1 聚苯胺的酸參雜效應 33 2.8 溶劑 34 2.8.1 二甲基亞碸 35 第三章 實驗程序 36 3.1 實驗流程 36 3.2 實驗藥品 37 3.3 實驗設備 38 3.4 實驗方法 39 3.4.1 以固態法製備α相二氧化錳觸煤粉末 39 3.4.2 以靜電紡絲法製備空氣陰極 41 3.4.3 檢測儀器 43 3.4.4 空氣陰極之氧氣生成/還原活性測試 44 3.4.5 鋅空氣電池之全電池充放電測試 45 第四章 結果與討論 46 4.1 二氧化錳 46 4.1.1 以固態法製備α相二氧化錳 46 4.1.2 組裝全電池充放電循環壽命分析 50 4.2 電紡的製程參數對纖維形貌之影響 50 4.2.1 電場強度對纖維之影響 51 4.2.2 導電高分子與鹽類溶液濃度對纖維之影響 53 4.2.3 溶劑對纖維之影響 56 4.2.4 收集距離對纖維之影響 58 4.3 空氣陰極之電化學活性分析 58 4.3.1 聚丙烯睛混溶二氧化錳之循環伏安法(CV)測試 61 4.3.2 聚苯胺混溶二氧化錳之循環伏安法(CV)測試 64 4.4 電性測試與充放電循環壽命測試 68 第五章 結論與未來展望 69 5.1 實驗結論 72 5.2 未來展望 73 參考文獻 74

    1. 楊致行,「新興綠能產業之發展趨勢」,工研院產業與經濟中心,2012。
    2. 方金祥、游苑平「氫氧燃料電池之微型化設計及在電化學教學應用研究」,2004。
    3. 陳振源,「燃料電池」,科學發展,2005/7月 391 期。
    4. 簡煥聲,「過濾的世界中,奈,又如何」,科學發展,2014/ 8月 500 期。
    5. 陳鐘誠,「電池的歷史與原理」,程式人雜誌,2013/ 10月。
    6. 漢聲精選目擊者叢書,「化學」,漢聲雜誌社,1996。
    7. 李世興,「電池活用手冊」,全華,1999。
    8. M. Winter, R.J. Brodd, “What Are Batteries, Fuel Cells, and Supercapacitors”, Chem. Rev., 2004, 104, 4245.
    9. D. Linden,“Handbook of Batteries”, McGraw-Hill Publishing company, New York , 1994.
    10. C. Chang, “Zinc-Air Batteries”, Technol. Rev., 2001, 104, 7, 86-87.
    11. D. P. Gregory, “Metal-Air Batteries”, Mills & Boon, London, 1972.
    12. S. Müller, F. Holzer, O. Haas, “Optimized Zinc Electrode for rechargeable Zinc-air Battery”, J. Appl. Electrochem., 1998, 28, 895-898.
    13. F. R. Mclarnon, E. J. Cairns, “The Secondary Alkaline Zinc Electrode”, J. Electrochem. Soc., 1991, 138, 645-664.

    14. T. P. Dirkse,“The Behavior of the Zinc Electrode in Alkaline Solutions”, J. Electrochem. Soc. 1981 , 128 , 1412.
    15. W. G. Sunu, D. N. Bennion,“Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical”, J. Electrochem. Soc., 1980, 127, 2007.
    16. W. G. Sunu, D. N. Bennion, “Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical”, J. Electrochem. Soc., 1980, 127, 2007-2016.
    17. “http://me.dyu.edu.tw/lab/H457/HOMEWORK/fuelcell/Alkaline”.
    18. 辛毓真,「鑭鈣銅氧相關系列催化劑在鋅-空氣電池中還原反應之研究」,國立交通大學碩士論文,2006。
    19. C. A. Vincent, B.Scrosati, M.Lazzari, F.Bonino,“Modern Battery”, Thomso Litho Ltd, East Kilbrid, Scotland, 1984.
    20. G. Q. Zhang, X. G. Zhang,“MnO2/MCMB Electrocatalyst for All Solid-State Alkaline Zinc-Air Cells”, Electrochim. Acta, 2004,49, 873.
    21. F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan,“Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors”, Environ. Sci. Technol., 2010,44, 1490.
    22. D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, “Air–Metal Hydride Secondary Battery with Long Cycle Life”, J. Alloys Compd, 2002, 330, 766.
    23. C. C. Yang,“Preparation and Characterization of Electrochemical Properties of Air Cathode Electrode”, Int. J. Hydrogen Energ., 2004, 29, 135.

    24. W. H. Zhu, B. A. Poole, D. R. Cahela, B. J. Tatarchuk,“New Structure of Thin Air Cathode for Zinc-Air Batteries”, J. Appl. Electrochem., 2003, 33, 29.
    25. Y. Y. Shao, J. Liu, Y. Wang, Y. H. Lin,“Novel Catalyst Support Material for PEM Fuel Cell:Current Status and Future Prospects”, J. Mater. Chem., 2009, 19, 46.
    26. M. Pirjamali, Y. Kiros,“Effects of Carbon Pretreatment for Oxygen Reduction in Alkaline Electrolyte”, J. Power Sources, 2002, 109, 446.
    27. M. E. Lai, A. Bergel,“Electrochemical Reduction of Oxygen on Glassy Carbon: Catalysis by Catalase”,J. Electroanal. Chem., 2000, 494, 30.
    28. J. J. Martin, V. Neburchilov, H. Wang, W. Qu,“Air Cathodes for Metal-Air Batteries and Fuel Cells”, IEEE Electrical Power& Energy Conference, 2009.
    29. T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan,“Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas-Diffusion Electrodes for Zinc–Air Batteries”, J. Power Sources,2010,195, 4350.
    30. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, “Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts”, Nat. Commun., 2013.
    31. M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, “Effect of Structure of the Electrical Performance of Gas Diffusion Electrodes for Metal Air Batteries”, Electrochim. Acta,2000, 46, 423.
    32. G. Du, X. Liu, Y. Zong, T. S. A. Hor, A. Yucand, Z. Liu, “Co3O4 Nanoparticle - Modified MnO2 Nanotube Bifunctional Oxygen Cathode Catalysts for Rechargeable Bifunctional Oxygen Cathode Catalysts for Rechargeable Zinc–Air Batteries”,Nanoscale, 2013, 5, 4657.
    33. J. Yang,J. J. Xu, “Nanostructured Amorphous Manganese Oxide Cryogel as a High-Rate Lithium Intercalation Host”, Electrochem. Commun., 2003, 5,306.
    34. Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu,“A CoOx/Carbon Double-Layer Thin Film Air Eectrode for Nonaqueous Li-Air Batteries”,J. Power Sources, 2013, 223, 312.
    35. Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen,“Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”,Electrochim. Acta, 2012, 69, 295.
    36. Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow,“Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method”, Chem. Mater., 2005, 17, 5382.
    37. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen,“MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media”,Chem. Mater., 2010, 22, 898.
    38. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai,“Co3O4Nanocrystal on Graphene as a Synergistic Catalyst for Reduction Reaction”, Nat. Mater., 2011, 10, 780.
    39. M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe,“Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries ”, J. Electrochem. Soc., 2011, 158, A605.
    40. N. A. Merino, B. P. Barbero, P. Grange, L. E. Cadús, “La1−xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane”, J. Catal., 2005, 231, 232.
    41. S. Pathaka, J. Kuebler, A. Payzantc, N. Orlovskaya,“Mechanical Behavior and Electrical Conductivity of La1−xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) Perovskites”, J. Power Sources, 2010, 195, 3612.
    42. J. E. Post, “Maganese Oxide Minerals: Crystal Structure and Economic and Environmental Significance”, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 3447.
    43. J. P. Bernet,“Electrochemical Behaviour of Metallic Oxides”,J. Power Sources, 1979, 4, 183.
    44. L. Mao, T. Sotomura, K. Nakatsu, K. Nobuharu, D. Zhang, T. Ohsaka, “Electrochemical Characterization of Catalytic Activities ofManganese to Oxygen Reduction in Alkaline Aqueous Solution”, J. Electrochem. Soc., 2002, 149, A504.
    45. M.Toupin, T.Brousse, D.Be´langer,“Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor”, Chem. Mater., 2004, 16, 3184.
    46. S. Devaraj, N. Munichandraiah,“Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties”, J. Phys. Chem. C, 2008, 112, 4406.
    47. 李柏潔,「奈米結構之Au/MnO2複合陰極觸媒材料對於高效能金屬空氣電池之研究」,國立中央大學碩士論文,2013。
    48. N. Wang, X. Cao, G. Lin, Y. Shihe,“MnO2 Nanodisks and Their Magnetic Properties”, Nanotechnology, 2007, 18, 475605.

    49. F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen,“MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media”, Chem. Mater., 2010, 22, 898.
    50. S. Liang, F. Teng, G. Bulgan, R. Zong, Y. Zhu,“Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation”, J. Phys. Chem. C, 2008, 112, 5307.

    51. X. Wang, Y. Li, “Selected-Control Hydrothermal Synthesis of MnO2 Single Crystal Nanowires”, J. Am. Chem. Soc., 2002, 124, 2880.
    52. Y. Yang, L. Xiao, Y. Zhao, F. Wang, “Hydrothermal Synthesis and Electrochemical Characterizationo-MnO2 Nanorods as Cathode Material for Lithium Batteries”,Int. J. Electrochem. Sc., 2008, 3, 67.
    53. M. Lua, S. Kharkwala, H. Y. Ng, S. Y. Li, “Carbon Nanotube Supported MnO2 Catalysts for Oxygen Reduction Reaction and Their Applications in Microbial Fuel Cells”,Biosens. Bioelectron, 2011, 26, 4728.
    54. S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, Y. Ahn, K. B. Kim, “Electrochemical Properties of Manganese Oxide Coated onto Carbon Nanotubes for Energy Storage Applications”, J. Power Sources, 2008, 178, 483.
    55. A. Zolfagharia,, F. Ataherian, M. Ghaemi, A. Gholami, “Capacitive Behavior of Nanostructured MnO2 prepared by Sonochemistry Method”,Electrochim. Acta, 2007, 52, 2806.
    56. H. Adelkhania, M. Ghaemi,“Characterization of Manganese Dioxide Electrodeposited by Pulse and Direct Current for Electrochemical Capacitor”,J. Alloys Compd, 2010, 493, 175.
    57. S. Chen, J. Zhu, Q. Han, Z. Zheng, Y. Yang, X. Wang, “Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties” ,Cryst. Growth Des., 2009, 9, 4356.
    58. M. Xu, L. Kong, W. Zhou, H. Li, “Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Hollow Spheres and Hollow Urchins”,J. Phys. Chem. C, 2007, 111, 19141.
    59. J. Luo, H. T. Zhu, H. M. Fan, J. K. Liang, H. L. Shi, G. H. Rao, J. B. Li, Z. M. Du, Z. X. Shen, “Synthesis of Single-Crystal Tetragonal MnO2 Nanotubes”, J. Phys. Chem. C, 2008, 112, 12594.
    60. W. Li, Q. Liu, Y. Sun, J. Sun, R. Zou, G. Li, X. Hu, G. Song, G. Ma, J. Yang, Z. Chen J. Hu, “MnO2 Ultralong Nanowires with Better Electrical Conductivity and Enhanced Supercapacitor Performances” ,J. Mater. Chem., 2012, 22, 14864.
    61. I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, “Carbon-Supported Manganese Oxide Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Alkaline Medium: Physical Characterizations and ORR Mechanism” ,J. Phys. Chem. C, 2007, 111, 1434.
    62. P. Zoltowski, D. M. Drazic, L. Vorkapic,“The Mechanism of Oxygen Reduction on MnO2-Catalyzed Air Cathode in Alkaline Solution”, J. Appl. Electrochem., 1973,3, 271.
    63. J. P. Brebet, “Electrochemical Behaviour of Metallic Oxides”, J. Power Sources, 1979, 4, 183.
    64. 唐宏怡,「空氣電極與鋅電極研發」,鋅空氣電池技術及其在電動車的應用研討會,1999。
    65. 吉澤四郎,「最新電池工學」,復漢出版社,1981。
    66. 呂秉錚,「可機械充電式鋅-空氣電池之電鍍鋅電極製程與其電化學行為之研究」, 國立清華大學碩士論文,2001。
    67. S.W. Lee, J.Y. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS Nano 4 (2010) 3889–3896.
    68. P. Bulpitt, D. Aeschlimann, “New strategy for chemical modification of hylauronic acid:preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels”, J Biomed Mater Res 1999;47:152.
    69. M. Hohman, M. Shin, G. Rutledge, M. Brenner, “Electrospinning and electrically forced jets”, II. Applications. Phys Fluids 2001;13:2221–36.
    70. C. Burger, B. Hsiao, B. Chu, “Nanofibrous marterials and their applications”. Annu RevMater Res 2006;36:333–68.
    71. S. Cai, Y. Liu, X, Shu, G. Prestwich, “Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor”, Biomaterials 2005;26:6054–67.
    72. D. Liang, B. Hsiao, B. Chu, “Functional electrospun nanofibrous scaffolds for biomedical applications”, Adv Drug Deliv Rev 2007;59:1392–412.
    73. D. Campoccia, P. Doherty, M. Radice, P. Brun, G. Abatagelo, D. Williams, “Semi-synthetic resorbable materials from hyaluronan esterification”, Biomaterials 1998;19:2101–27.
    74. M. Naraghi, I. Chasiotis, H. Kahn, Y. Wen, Y. Dzenis, “Novel method for mechanical
    characterization of polymeric nanofibers”, Rev Sci Instrum 2007;78:1–7.
    75. S. Ojha, D. Stevens, K. Stano, T. Hoffman, L. Clarke, R. Gorga, “Characterization of electrical and mechanical properties for coaxial nanofibers with poly (ethylene oxide) (PEO) core and multiwalled carbon nanotube/PEO sheath”, Macromolecules 2008;41:2509–13.
    76. K. Park, S. Jung, S. Lee, B. Min, W. Park, “Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers”, Int J Biol Macromol 2006;38:165–73.
    77. A. Welle, M. Kroger, M. Doring, K. Niederer, E. Pindel, S. Chronakis, “Electrospun aliphatic polycarbonates as tailored tissue scaffold materials”, Biomaterials 2007;28:2211–9.
    78. Y. Zhang, J. Zhu, R. Gu, “Improved biosensor for glucose based on glucose oxidaseimmobilized silk fibroin membrane”. Appl Biochem Biotechnol 1998;75:215–33.
    79. M. Khil, D. Cha, H. Kim, I. Kim, N. Bhattarai. “Electrospun nanofibrous polyurethane membrane as wound dressing”, J Biomed Mater Res B 2003;67:675–9.
    80. M. Li, M. Mondrinos, M. Gandhi, F. Ko, A. Weiss, P. Lelkes, “Electrospun protein fibers as matrices for tissue engineering”, Biomaterials 2005a;26:5999–6008.
    81. 白川英樹“從導電性高分子中看到什麼? ”, 三田出版社, (1990)。
    82. I. György, “ A New Era in Electrochemistry. Monographs in Electrochemistry”. Springer. 2008: 1–6. ISBN 978-3-540-75929-4.
    83. 陳智永,「添加氧化鋅對聚苯胺電性之影響」,大同大學材料工程研究所碩士論文,2009
    84. G. Alan, “Synthetic metals: A novel role for organic polymers,Nobel lecture,(2001).
    85. G. Gordon, “Conductive Electroactive Polymers:Intelligent Materials Systems”,CRC Press,(2003).
    86. J. C. Chiang, “'Polyaniline Protonic Acid Doping of the Emeraldine Form to the Metallic Regime”, Synthetic Metals 1 (13):193.

    87. W. Bernhard, “New Insight into Organic Metal Polyaniline Morphology and Structure”, Polymers 2 (4): 786. doi:10.3390/polym2040786.
    88. S. M. Hammo, “Effect of Acidic Dopants properties on the Electrical Conductivity of Poly aniline”. Tikrit Journal of Pure Science 17 (2).
    89. 維基百科,「二甲基亞碸」 http://zh.wikipedia.org/wiki/%E4%BA%8C%E7%94%B2%E5%9F%BA%E4%BA%9E%E7%A2%B8
    90. W. W. Epstein, F. W. Sweat, “Dimethyl Sulfoxide Oxidations”, Chemical Reviews. 1967, 67: 247–260.doi:10.1021/cr60247a001.
    91. 呂明修,「α相二氧化錳觸媒於高充放電效率鋅空氣電池陰極之研究」國立台灣科技大學機械所碩士論文,2014。
    92. 丁嘉展,「電紡成形條件對紡絲之形貌與直徑之影響」交通大學機械所碩士論文,2010。
    93. 崔利,李娟,張校剛.新型質子酸摻雜聚苯胺的合成及其電化學電容行為.功能高分子學報,2008,21(3):301—305.

    QR CODE