簡易檢索 / 詳目顯示

研究生: 楊梅琳
Mei-Lin Yang
論文名稱: 電紡絲備製蠶絲蛋白質/聚乙烯醇奈米纖維基質之生物功能研究
Studies on Bio-functionality of Electrospinning Silk Protein/ Polyvinyl Alcohol Nanofiber Matrices
指導教授: 洪伯達
Po-Da Hong
房同經
Tung-Ching Fang
口試委員: 白孟宜
Meng-Yi Bai
程君弘
Juin-Hong Cherng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 絲膠靜電紡絲生物相容性纖維母細胞細胞因子聚乙烯醇
外文關鍵詞: Sericin, Electrospinning, Biocompatibility, Fibroblast, Cytokines, PVA
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加速傷口癒合且減小疤痕大小一直是醫學研究努力的目標。近年來,已有多種物理性刺激因子與敷傷材料被研究其對傷口癒合的影響。電紡為一種紡織技術,可用來製造出直徑為數十到數百奈米大小的纖維。許多具有生物可降解性之高分子聚合物,包括天然聚合物及人工合成聚合物,皆可使用電紡之方式製作出奈米纖維細胞基質。本研究利用靜電紡絲的技術製備聚乙烯醇(Poly vinyl alcohol, PVA)與絲膠(Sericin)奈米纖維作為生物基質並分析其生物相容性。聚乙烯醇為一種水溶性、無毒、且具生物相容性之高分子聚合物;絲膠為一天然高分子聚合物,具有生物可降解性、生物相容性及抗菌性,此兩種材料在過去皆廣泛應用於細胞基質之研究。然而,大部分的研究都只採用單一高分子聚合物來製作奈米纖維生物基質。因此,本研究以電紡技術製作出適合組織工程應用之聚乙烯醇及絲膠結合聚乙烯醇結合物,並利用靜電紡絲所製備出的生物基質,觀察基材對細胞貼附與生物相容性與大鼠傷口模型評估傷口癒合。而利用電紡技術製作出適當聚乙烯醇及絲膠結合聚乙烯醇結合物之生物基質後,將人類纖維母細胞培養於生物基質材料中。經由細胞毒性分析(MTT tetrazolium salt)分解,絲膠的生物相容性;以光學顯微鏡觀察細胞之形態,使用苦味酸-天狼星紅染色(Sirius Red Stain)染色技術來標定膠原蛋白,利用Hoechst 33342染細胞核;結果與討論中,利用電紡製作出直徑大小為112±79nm之聚乙烯醇奈米纖維及直徑大小為157±59.07nm、163±65.6nm絲膠結合聚乙烯醇(2:8、1:9)奈米纖維之生物基質,使用人類皮膚纖維母細胞培養,觀察出細胞生長於聚乙烯醇奈米纖維之形態主要為圓形,生長於絲膠與聚乙烯醇生物基質之細胞形態主要為紡錘形。培養之細胞對於基材之貼附性、細胞活性、胞外基質分泌與細胞因子分析中的表現,絲膠與聚乙烯醇結合所製備出的生物基質都比純聚乙烯醇基質來得好。在活體實驗中,對於癒合傷口,絲膠與聚乙烯醇結合物表現出較佳的生物基質特性,可以維持濕潤的癒合環境,防止細菌感染傷口,吸收多餘的分泌物,促進細胞增殖並重建受損的組織。綜合以上結論發現,添加絲膠材料對於細胞貼附、細胞活性、胞外基質分泌與細胞因子分析中有顯著效果;癒合初期有佳傷口密合,有明顯基底層表現之現象。


    Electrospinning is one of the process techniques to produce fiber in nanoscale diameter. Various biodegradable polymers were used to develop nanoscaffolds including natural and synthetic type. (Poly vinyl alcohol, PVA) is a non-toxic, hydrophilic, and biocompatible material. Sericin is a natural polymer, which is biodegradable, biocompatible, and antibacterial. In the previous studies, PVA and Sericin have been used for many tissue engineering applications. However, most of the studies use only single polymer to fabricate nanofibers. Therefore, the purpose of this study is to fabricate PVA and Sericin:PVA nanofiber matrix for further tissue engineering applications.However, most of the studies use only single polymer to fabricate nanofibers. Therefore, the purpose of this study is to fabricate PVA and Sericin:PVA nanofiber matrix for further tissue engineering applications.
    This study , PVA and Sericin:PVA nanofiber matrix were used as the material to fabricate matrix. The 3D nanofiber matrix was produced via electrospinning. WS1 human skin fibroblast cell line was used as the cell source in this study. Fibroblast cells were seeded onto 3D matrix for different time points. Cellular morphology characterization was observed using inverted light microscopy and scanning electron microscopy. The cell adhesion and spreading rate were determined by Sirius Red staining is presented as a method for collagen determination .
    Scaffolds countaining sericin was prepared accuring to the method of electrospinning. PVA nanofiber of 112±79 nm in diameter and Sericin:PVA nanofiber of 157±59.07 nm、163±65.6nm in diameter were obtained.
    The fibroblast cell was attached with round shape on the PVA nanofiber matrix and with spindle shape on the Sericin:PVA nanofiber matrix. The result shows that the fibroblast exhibit excellent cell adhesion rate, spreading rate, cell viability and secretion of growth factor on the Sericin:PVA nanofiber matrix.
    In vivo study Sericin:PVA nanofiber matrix could maintain a moist healing environment, protect the wound from bacterial infection, absorb excess exudates, and promote cell proliferation to reconstruct damaged tissue. In present study, Sericin:PVA nanofiber matrix shows better biocompatibility than PVA nanofiber matrix. Further coating collagen on nanofiber matrix does not display further improvement in cell compatibility except cell adhesion rate. Future study will focus on systematic parameter setting, platform modification, increase strength of matrix, bioreactor, and in-vivo experiment.

    中文摘要I ABSTRACT III 誌謝V 目錄VI 圖目錄VIII 表目錄XII 第一章 緒論1 1.1前言1 1.2組織工程介紹2 1.3皮膚結構、組成與功能2 1.4皮膚傷口癒合過程5 1.5生醫材料之生物相容性8 1.6靜電紡絲原理9 1.7靜電紡絲裝置11 1.8靜電紡絲主要變因13 1.9靜電紡絲於組織工程之應用13 1.10靜電紡絲纖維種類16 1.11蠶絲蛋白結構特性及生醫材料的應用17 1.12聚乙烯醇特性19 第二章 實驗材料與方法20 2.1實驗架構20 2.2實驗材料與儀器設備21 2.3靜電紡絲製作與電紡參數設置23 2.3.1黏度測定23 2.3.2掃描式電子顯微鏡觀察23 2.3.3纖維直徑分析23 2.3.4接觸角測定24 2.3.5孔徑大小分析24 2.4傅立葉轉換紅外光譜儀 (Fourier Transform- Infrared Spectrometer FT-IR)24 2.5紡絲溶液製備及電紡膜材料固定24 2.6材料生物相容性觀察25 細胞毒性分析25 2.6.1細胞存活性測試25 2.6.2 成人纖維母細胞在絲膠基質中的培養25 2.7細胞形態觀察26 2.7.1光學顯微鏡26 2.7.1.1螢光染色26 2.7.1.2化學染色26 2.8 細胞因子分泌蛋白濃度分析(Luminex)28 2.9活體傷口癒合大鼠燒傷實驗28 3.0組織切片染色28 第三章 結果與討論29 3.1 奈米電紡絲之形態學觀察29 3.1.1 紡絲材料製備29 3.1.2 不同針頭孔徑對於聚乙烯醇靜電紡絲影響36 3.1.3 不同針頭孔徑對於聚乙烯醇靜電紡絲纖維直徑分析41 3.1.4 不同比例之絲膠結合聚乙烯醇靜電紡絲影響44 3.1.5接觸角及孔徑大小分析50 3.2傅立葉轉換紅外光譜儀分析51 3.3奈米纖維固定形態觀察53 3.4細胞生物存活性測試(Cell Viability-MTT assay)55 3.5細胞形態學觀察58 3.5.1光學顯微鏡觀察58 3.5.1.1免疫螢光染色58 3.5.1.2 化學染色63 3.6纖維母細胞分泌細胞因子之分析67 3.7大鼠燒傷實驗74 3.7.1手術流程77 3.7.2絲膠對於大鼠皮膚燒傷傷口癒合之外觀78 3.7.3不同生物基質與不同時間對於皮膚傷口癒合之影響79 3.8 組織切片觀察82 第四章 結論84 參考文獻85

    1. Chen, H., et al., Cell-scaffold interaction within engineered
    tissue. Exp Cell Res, 2014. 323(2): p. 346-51.
    2. Barnes, C.P., et al., Nanofiber technology: designing the next
    generation of tissue engineering scaffolds. Adv Drug Deliv Rev,
    2007. 59(14): p. 1413-33.
    3. Agarwal, S., J.H. Wendorff, and A. Greiner, Use of electrospinning
    technique for biomedical applications. Polymer, 2008. 49(26): p.
    5603-5621.
    4. Xinhua Zonga, K.K., Dufei Fangb, Shaofeng Rana, and Benjamin S.
    Hsiaoa, Benjamin Chua, sructure and process relationship of
    electrospun bioabsorbable nanofiber membranes. Polymer 43 (2002) p.
    4403–4412.
    5. Fridrikh, S.V., et al., Controlling the Fiber Diameter during
    Electrospinning. Physical Review Letters, 2003. 90(14).
    6. Chen, Q., S. Liang, and G.A. Thouas, Elastomeric biomaterials for
    tissue engineering. Progress in Polymer Science, 2013. 38(3-4): p.
    584-671.
    7. Kamel, R.A., et al., Tissue engineering of skin. J Am Coll Surg,
    2013. 217(3): p. 533-55.
    8. Groeber, F., et al., Skin tissue engineering--in vivo and in vitro
    applications. Adv Drug Deliv Rev, 2011. 63(4-5): p. 352-66.
    9. Nanba, D., et al., Recent advances in the epidermal growth factor
    receptor/ligand system biology on skin homeostasis and keratinocyte
    stem cell regulation. J Dermatol Sci, 2013. 72(2): p. 81-6.
    10. Shevchenko, R.V., S.L. James, and S.E. James, A review of tissue-
    engineered skin bioconstructs available for skin reconstruction. J R
    Soc Interface, 2010. 7(43): p. 229-58.

    11. Suganya, S., et al., Naturally derived biofunctional nanofibrous
    scaffold for skin tissue regeneration. Int J Biol Macromol, 2014.
    68: p. 135-43.
    12. Su, Z., et al., Enhancement of skin wound healing with
    decellularized scaffolds loaded with hyaluronic acid and epidermal
    growth factor. Mater Sci Eng C Mater Biol Appl, 2014. 44: p. 440-8.
    13. Rubert, M., et al., Electrospun PCL/PEO coaxial fibers for basic
    fibroblast growth factor delivery. J. Mater. Chem. B, 2014. 2(48):
    p. 8538-8546.
    14. Guo, S. and L.A. Dipietro, Factors affecting wound healing. J Dent
    Res, 2010. 89(3): p. 219-29.
    15. Akturk, O., et al., Evaluation of sericin/collagen membranes as
    prospective wound dressing biomaterial. J Biosci Bioeng, 2011.
    112(3): p. 279-88.
    16. Schmidt, B.A. and V. Horsley, Intradermal adipocytes mediate
    fibroblast recruitment during skin wound healing. Development, 2013.
    140(7): p. 1517-27.
    17. Chu, P.K., Surface engineering and modification of biomaterials.
    Thin Solid Films, 2013. 528: p. 93-105.
    18. Zulkifli, F.H., et al., Cross-Linking Effect on Electrospun
    Hydroxyethyl Cellulose/Poly(Vinyl Alcohol) Nanofibrous Scaffolds.
    Procedia Engineering, 2013. 53: p. 689-695.
    19. Bashur, C.A., L.A. Dahlgren, and A.S. Goldstein, Effect of fiber
    diameter and orientation on fibroblast morphology and proliferation
    on electrospun poly(D,L-lactic-co-glycolic acid) meshes.
    Biomaterials, 2006. 27(33): p. 5681-8.
    20. Frenot, A. and I.S. Chronakis, Polymer nanofibers assembled by
    electrospinning. Current Opinion in Colloid & Interface Science,
    2003. 8(1): p. 64-75.
    21. Garg, K. and G.L. Bowlin, Electrospinning jets and nanofibrous
    structures. Biomicrofluidics, 2011. 5(1): p. 13403.
    22. Lowery, J.L., N. Datta, and G.C. Rutledge, Effect of fiber diameter,
    pore size and seeding method on growth of human dermal fibroblasts
    in electrospun poly(epsilon-caprolactone) fibrous mats.
    Biomaterials, 2010. 31(3): p. 491-504.
    23. Wade, R.J. and J.A. Burdick, Advances in nanofibrous scaffolds for
    biomedical applications: From electrospinning to self-assembly. Nano
    Today, 2014. 9(6): p. 722-742.
    24. Szentivanyi, A., et al., Electrospun cellular microenvironments:
    Understanding controlled release and scaffold structure. Adv Drug
    Deliv Rev, 2011. 63(4-5): p. 209-20.
    25. Li, Z. and C. Wang, Effects of Working Parameters on
    Electrospinning. 2013: p. 15-28.
    26. Noh, H.K., et al., Electrospinning of chitin nanofibers: degradation
    behavior and cellular response to normal human keratinocytes and
    fibroblasts. Biomaterials, 2006. 27(21): p. 3934-44.
    27. Zhang, X., M.R. Reagan, and D.L. Kaplan, Electrospun silk
    biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev,
    2009. 61(12): p. 988-1006.
    28. Lopes, M.S., A.L. Jardini, and R.M. Filho, Poly (Lactic Acid)
    Production for Tissue Engineering Applications. Procedia
    Engineering, 2012. 42: p. 1402-1413.
    29. Simpson, M., et al., Irradiation of bioresorbable biomaterials for
    controlled surface degradation. Radiation Physics and Chemistry,
    2014. 94: p. 211-216.
    30. Danhier, F., et al., PLGA-based nanoparticles: an overview of
    biomedical applications. J Control Release, 2012. 161(2): p. 505-22.
    31. Sun, T., et al., Culture of skin cells in 3D rather than 2D improves
    their ability to survive exposure to cytotoxic agents. J Biotechnol,
    2006. 122(3): p. 372-81.
    32. Canton, I., et al., Development of a 3D human in vitro skin co-
    culture model for detecting irritants in real-time. Biotechnol
    Bioeng, 2010. 106(5): p. 794-803.
    33. Plant, A.L., et al., Cell response to matrix mechanics: focus on
    collagen. Biochim Biophys Acta, 2009. 1793(5): p. 893-902.
    34. Huang, Z.-M., et al., A review on polymer nanofibers by
    electrospinning and their applications in nanocomposites. Composites
    Science and Technology, 2003. 63(15): p. 2223-2253.
    35. Li, L., et al., Producing Polymer Fibers by Electrospinning in
    Supercritical Fluids. Journal of Chemistry, 2013. 2013: p. 1-6.
    36. Boison D., et al.,Silk fibroin encapsulated powder reservoirs for
    sustained release of adenosine, 2010. 144(2): p. 159-67.
    37. Cui, X., et al., A pilot study of macrophage responses to silk
    fibroin particles. J Biomed Mater Res A, 2013. 101(5): p. 1511-7.
    38. Cao, Y. and B. Wang, Biodegradation of silk biomaterials. Int J Mol
    Sci, 2009. 10(4): p. 1514-24.
    39. Li, C., et al., Electrospun silk-BMP-2 scaffolds for bone tissue
    engineering. Biomaterials, 2006. 27(16): p. 3115-24.
    40. Joseph, B. and S.J. Raj, Therapeutic applications and properties of
    silk proteins fromBombyx mori. Frontiers in Life Science, 2012. 6(3
    -4): p. 55-60.
    41. Lu, G., et al., Silk porous scaffolds with nanofibrous
    microstructures and tunable properties. Colloids Surf B
    Biointerfaces, 2014. 120: p. 28-37.
    42. Dash, B.C., B.B. Mandal, and S.C. Kundu, Silk gland sericin protein
    membranes: fabrication and characterization for potential
    biotechnological applications. J Biotechnol, 2009. 144(4): p. 321-9.
    43. Vasconcelos, A., A.C. Gomes, and A. Cavaco-Paulo, Novel silk
    fibroin/elastin wound dressings. Acta Biomater, 2012. 8(8): p. 3049-
    60.
    44. Teramoto, H., T. Kameda, and Y. Tamada, Preparation of gel film from
    Bombyx mori silk sericin and its characterization as a wound
    dressing. Biosci Biotechnol Biochem, 2008. 72(12): p. 3189-96.
    45. Aramwit, P., et al., Monitoring of inflammatory mediators induced by
    silk sericin. J Biosci Bioeng, 2009. 107(5): p. 556-61.
    46. Kundu, S.C., et al., Natural protective glue protein, sericin
    bioengineered by silkworms: Potential for biomedical and
    biotechnological applications. Progress in Polymer Science, 2008.
    33(10): p. 998-1012.
    47. Martinez-Mora, C., et al., Fibroin and sericin from Bombyx mori silk
    stimulate cell migration through upregulation and phosphorylation of
    c-Jun. PLoS One, 2012. 7(7): p. e42271.
    48. Mandal, B.B., B. Ghosh, and S.C. Kundu, Non-mulberry silk
    sericin/poly (vinyl alcohol) hydrogel matrices for potential
    biotechnological applications. Int J Biol Macromol, 2011. 49(2): p.
    125-33.
    49. Lim, K.S., et al., The Influence of Silkworm Species on Cellular
    Interactions with Novel PVA/Silk Sericin Hydrogels. Macromolecular
    Bioscience, 2012. 12(3): p. 322-332.
    50. Aramwit, P. and A. Sangcakul, The Effects of Sericin Cream on Wound
    Healing in Rats. Bioscience, Biotechnology and Biochemistry, 2014.
    71(10): p. 2473-2477.
    51. Dash, R., et al., Purification and biochemical characterization of a
    70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp
    Biochem Physiol B Biochem Mol Biol, 2007. 147(1): p. 129-34.
    52. Kaewkon, W., et al., Sericin consumption suppresses development and
    progression of colon tumorigenesis in 1,2-dimethylhydrazine-treated
    rats. Biologia, 2012. 67(5).
    53. Lee, J.S., et al., Role of molecular weight of atactic poly(vinyl
    alcohol) (PVA) in the structure and properties of PVA nanofabric
    prepared by electrospinning. Journal of Applied Polymer Science,
    2004. 93(4): p. 1638-1646.
    54. Pawar, S.V. and G.D. Yadav, PVA/chitosan–glutaraldehyde cross-linked
    nitrile hydratase as reusable biocatalyst for conversion of nitriles
    to amides. Journal of Molecular Catalysis B: Enzymatic, 2014. 101:
    p. 115-121.
    55. Baker, M.I., et al., A review of polyvinyl alcohol and its uses in
    cartilage and orthopedic applications. J Biomed Mater Res B Appl
    Biomater, 2012. 100(5): p. 1451-7.

    QR CODE