簡易檢索 / 詳目顯示

研究生: PRAWESTI AMBAR RUKMI
PRAWESTI AMBAR RUKMI
論文名稱: 透過摻入BaTiO3奈米棒與優化相轉化和淬火技術以提升聚偏氟乙烯膜複合材料性能
Enhancement the Properties of PVDF/BaTiO3 Nanorod Composite Membrane Using Phase Inversion Method and Heat Treatment
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 吳昌謀
Chang-Mou Wu
陳正劭
Zheng-Shao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 83
中文關鍵詞: 相轉換奈米棒靜電紡絲奈米顆粒鈦酸鋇
外文關鍵詞: Phase Inversion, Nanorod, Electrospinning, Nanoparticle, BaTiO3
相關次數: 點閱:36下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們探討了透過摻入BaTiO3奈米棒以增強聚偏氟乙烯(PVDF)膜複合材料的特性,採用相轉化技術進行最佳化,並以退火作為後期處理。將直徑介於80至150微米的BaTiO3(BT)奈米棒按不同體積分數(10%、20%、30%、40%)添加至聚合物基材中。透過掃描式電子顯微鏡(SEM)觀察到淬火相轉化導致了形態上產生變化,如孔隙的形成或聚合物基材結構的改變。相轉化與退火技術的結合使純PVDF中的β相增加,並且過程中在膜內形成更多孔隙,而此種現象則與退火過程相關。然而當陶瓷顆粒佔據可用空間時,造成β相的含量從82.67%逐漸降低至63.65%,此一現象透過傅立葉變換紅外光譜(FTIR)分析和X射線繞射(XRD)得到驗證。
    PVDF/BT複合膜的相態行為經過差示掃描量熱法(DSC)的熱分析後,可觀察到隨著BT含量的增加而產生了顯著變化。當BT奈米棒含量增加時,結晶發生的溫度從165.95°C下降至164.33°C。此外,PVDF的玻璃轉變溫度從初始的36°C大幅上升至109°C,隨著BT奈米棒含量的增加,對複合材料的溫度特性方面產生重大影響。因此了解熱行為及其對充電動力學的影響,對於在能源收集應用中提高複合材料效率至關重要。
    透過自製的螺線管設備和數位示波器進行的輸出電壓反應評估了該材料在機械力作用下的壓電潛能。令人注目的是,儘管含有30wt% BT棒的複合材料的β相有所降低,但其展現出最大的輸出電壓,達到7.11伏。這是由於BT奈米棒在材料系統中的產生了主導作用。根據拉伸測試的結果顯示,當添加BT奈米棒時,PVDF複合材料的拉伸強度最高達到42.29 Mpa並且伸長率降低,該聚合物的機械性質得到顯著增強。
    總結而言,本研究著重於PVDF/BT複合物的結合,深入探究了調整不同參數之間的相互作用,尤其是不同濃度的BT奈米棒添加物對複合材料的影響。研究結果顯示對於優化PVDF/BT複合膜以提升性能具有重要意義,這些發現對於從薄膜技術到先進材料科學的多元應用領域均具有廣泛的影響。


    This work examines the enhanced polyvinylidene fluoride membrane composite properties through BaTiO3 nanorod and nanopowder incorporation. The investigation utilizes a phase inversion technique to optimize, with heat treatment as a post-treatment. BaTiO3 (BT) nanorod, with an average diameter ranging from 80 to 150 µm and nm respectively, were added to the polymer matrix at different weight total (10%, 20%, 30%, and 40%). Phase inversion that follows the quenching results in morphological changes, such as the formation of pores or changes in the polymer matrix structure; this formation is observed using a Scanning Electron Microscopy (SEM). The phase inversion and queenching technique combined increased the β phase in the pure PVDF. The phenomenon is related to the annealing process, which creates more pores inside the membrane. The β phase gradually decreases from 82.67% to 63.65% for nanorod. This phenomenon is validated with Fourier Fourier-transformed infrared Spectroscopy (FTIR) analysis and X-ray Diffraction (XRD).
    The phase behaviour of the PVDF/BT composite membrane shows notable alterations, with increased BT as shown by Thermal investigation using Differential Scanning Calorimetry (DSC). An observable decrease in the temperature at which crystallization occurs, from 165.95 to 164.33 °C, was noticed as BT nanorods increased. Furthermore, the glass transition temperature of PVDF, which was initially 36°C, significantly increased to 109°C as the amount of BT nanorods increased, indicating significant changes in the thermal characteristics of the composite. Understanding the thermal behaviour and its implications on the charging kinetics is essential for maximizing the efficiency of the composite in energy harvesting applications.
    Output voltage response tests conducted using a custom-made solenoid setup and a digital oscilloscope revealed the material's piezoelectric potential under mechanical force application. Surprisingly, the composite with 30wt% BT rods displayed the most significant output voltage, reaching 7.11 V even though the β phase decreased. However, it happened because of a BT nanorod takeover in the material system. However, based on the tensile test, it is evident that the characteristics of the PVDF composite change improvements when BT nanorods are added. The polymer demonstrated enhanced stiffness, as evidenced by its improved tensile strength, reaching a maximum of 42.29 Mpa, and reduced strain.
    In conclusion, this work examines the incorporation of PVDF/BT composite, elucidating to comprehensively understand the interplay of variables, particularly the impact of varying concentrations of BT nanorod filler. The findings are expected to contribute valuable insights into optimizing PVDF/BT composite membranes for enhanced performance, with implications for diverse applications ranging from membrane technologies to advanced materials science.

    Keyword: Phase Inversion, Electrospinning, BaTiO3, Nanorod, Nanoparticle

    Abstract vi Acknowledgment viii Table of Content ix List of Figure xi List of Table xiv Chapter I Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 3 1.3 Outline of the Thesis 4 Chapter II Literature Review 5 2.1 Piezoelectric Material 5 2.2 Polyvinylidene Difluoride (PVDF) 6 2.3 Barium Titanete (BT) 9 2.4 Electrospinning for Synthesis BaTiO3 Nanorod 10 2.5 Composite Material 12 2.5 Phase Inversion 13 2.6 Heat Treatment for PVDF 14 2.7 Fourier Transform Infrared Spectrometer (FTIR) 16 2.8 Differential Scanning Calorimetry (DSC) 16 Chapter III Experiment and Characterization Procedure 19 3.1 Experiment Procedure 19 3.2 Characteristic Procedure 21 4.1 BaTiO3 (BT) Nanorod 25 4.2 Optimized Temperature Before Immersion for PVDF Membrane 29 4.2.1 SEM Evolution 38 4.2.2 Composite PVDF/BT Membrane 40 Chapter V Conclusions 56 Reference 58

    1. Wu C, Xu F, Wang H, Liu H, Yan F, Ma C. Manufacturing Technologies of Polymer Composites—A Review. Polymers (Basel). 2023;15(3).
    2. Li L, Han L, Hu H, Zhang R. A review on polymers and their composites for flexible electronics. Mater Adv. 2022;4(3):726-746.
    3. Habib M, Lantgios I, Hornbostel K. A review of ceramic, polymer and composite piezoelectric materials. J Phys D Appl Phys. 2022;55(42).
    4. Cui Z, Hassankiadeh NT, Zhuang Y, Drioli E, Lee YM. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog Polym Sci. 2015;51:94-126.
    5. Arlt K, Wegener M. Piezoelectric PZT / PVDF-copolymer 0-3 composites: Aspects on film preparation and electrical poling. IEEE Trans Dielectr Electr Insul. 2010;17(4):1178-1184.
    6. Dallaev R, Pisarenko T, Sobola D, Orudzhev F, Ramazanov S, Trčka T. Brief Review of PVDF Properties and Applications Potential. Polymers (Basel). 2022;14(22):1-29.
    7. Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl Phys Rev. 2017;4(4).
    8. Nugraha AS, Chou CC, Aji BB. Local analysis of crystalline phases and properties of poly(vinylidene fluoride) electrospun composites with BaTiO3 nanorods. Polym Int. 2023;(September).
    9. Wang F, Dou H, You C, Yang J, Fan W. Enhancement of Piezoelectric Properties of Flexible Nanofibrous Membranes by Hierarchical Structures and Nanoparticles. Polymers (Basel). 2022;14(20).
    10. Shepelin NA, Glushenkov AM, Lussini VC, et al. New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting. Energy Environ Sci. 2019;12(4):1143-1176.
    11. Jordan and Z. Ounaies, "Piezoelectric Ceramics Characterization," NASA/CR2001-211225, ICASE Report No. 2001-28, 2001
    12. Dahiya RS, Valle M. Robotic Tactile Sensing: Technologies and System. Vol 9789400705791. Springer Netherlands; 2014.
    13. Mishra S, Unnikrishnan L, Nayak SK, Mohanty S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol Mater Eng. 2019;304(1).
    14. Gao S. Functional-Material-Based Touch Interfaces for Multidimensional Sensing for Interactive Displays: A Review. Semicond Sci Inf Devices. 2019;1(1):14-27.
    15. Rotan M, Zhuk M, Glaum J. Activation of ferroelectric implant ceramics by corona discharge poling. J Eur Ceram Soc. 2020;40(15):5402-5409.
    16. Sargsyan DG. Newman projections. Chemistry Steps LLC. https://www.chemistrysteps.com/newman-projections/
    17. Gigli L, Veit M, Kotiuga M, Pizzi G, Marzari N, Ceriotti M. Thermodynamics and dielectric response of BaTiO3 by data-driven modeling. npj Comput Mater. 2022;8(1).
    18. Vijatović MM, Bobić JD, Stojanović BD. History and challenges of barium titanate: Part I. Sci Sinter. 2008;40(2):155-165.
    19. Ohara S, Kondo A, Shimoda H, Sato K, Abe H, Naito M. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater Lett. 2008;62(17-18):2957-2959.
    20. Wei Lu S, Lee BI, Lin Wang Z, Samuels WD. Hydrothermal synthesis and structural characterization of BaTiO3 nanocrystals. J Cryst Growth. 2000;219(3):269-276.
    21. Berbenni V, Marini A, Bruni G. Effect of mechanical milling on solid state formation of BaTiO3 from BaCO3-TiO2 (rutile) mixtures. Thermochim Acta. 2001;374(2):151-158.
    22. Yuh J, Nino JC, Sigmund WM. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater Lett. 2005;59(28):3645-3647.
    23. Islam MS, Ang BC, Andriyana A, Afifi AM. A review on fabrication of nanofibers via electrospinning and their applications. SN Appl Sci. 2019;1(10):1-16.
    24. Jon Stanger, Nick Tucker MS. Electrospinning. 8th ed. Smithers Rapra, Shropshire, UK; 2009.
    25. Liu S, Meng Q, Gao Y, et al. Monolithically integrated flexible sensing systems with multi-dimensional printable MXene electrodes. J Mater Chem A. 2023;11(25):13238-13248.
    26. Jiang S, Shen Y, Wang S, Zhi Y, Han B. Properties of novel 0–3 PZT/silicone resin flexible piezoelectric composites for ultrasonic guided wave sensor applications. Front Mater. 2022;9(September):1-14.
    27. Fortunato M, Cavallini D, De Bellis G, et al. Phase inversion in PVDF films with enhanced piezoresponse through spin-coating and quenching. Polymers (Basel). 2019;11(7):1-14.
    28. Perazzo A, Preziosi V, Guido S. Phase inversion emulsification: Current understanding and applications. Adv Colloid Interface Sci. 2015;222:581-599.
    29. Persano L, Ghosh SK, Pisignano D. Enhancement and Function of the Piezoelectric Effect in Polymer Nanofibers. Accounts Mater Res. 2022;3(9):900-912.
    30. Zhang H, Jeong CK, Shen Z, et al. Ultrahigh augmentation of flexible composite-based piezoelectric energy harvesting efficiency via polymer-impregnated nanoparticles network within 3D cellulose scaffold. Compos Part B Eng. 2022;236(December 2021):109813.
    31. Kelley CR, Lopp GK, Kauffman JL. Optimizing Piezoelectric Material Location and Size for Multiple-Mode Vibration Reduction of Turbomachinery Blades. J Vib Acoust. 2021;143(2):1-10.
    32. Kowalchik T, Khan F, Le K, Leland P, Roundy S, Warren R. Effect of pore structure on the piezoelectric properties of barium titanate-polyvinylidene fluoride composite films. Nano Energy. 2023;109(October 2022):108276.
    33. Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X. Properties and applications of the β phase poly(vinylidene fluoride). Polymers (Basel). 2018;10(3):1-27.
    34. Kloster JT, Danley MJ, Lai VK, Zhao P. Effects of Porosity on Piezoelectric Characteristics of Polyvinylidene Fluoride Films for Biomedical Applications. BME Front. 2023;4:1-8.
    35. Gomes J, Nunes JS, Sencadas V, Lanceros-Mendez S. Influence of the β-phase content and degree of crystallinity on the piezo-and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct. 2010;19(6).
    36. Ramasundaram S, Yoon S, Kim KJ, Lee JS. Direct preparation of nanoscale thin films of poly(vinylidene fluoride) containing β-crystalline phase by heat-controlled spin coating. Macromol Chem Phys. 2008;209(24):2516-2526.
    37. Park J, You I, Shin S, Jeong U. Material approaches to stretchable strain sensors. ChemPhysChem. 2015;16(6):1155-1163.
    38. Soin N, Boyer D, Prashanthi K, et al. Exclusive self-aligned β-phase PVDF films with abnormal piezoelectric coefficient prepared via phase inversion. Chem Commun. 2015;51(39):8257-8260.
    39. H. S. Nalwa, Ferroelectric Polymers-Chemistry: Physics, and Applications. CRC Press, 1995
    40. Bae JH, Chang SH. A new approach to fabricate poly(vinylidene fluoride-trifluoroethylene) fibers using a torsion-stretching method and characterization of their piezoelectric properties. Compos Part B Eng. 2016;99:112-120.
    41. Crecorio R, Cestari M. Effect of Temperature on the Crystalline Phase Content and Morphology of Poly (vinylidene Fluoride). J Polym Sci Part B Polym Phys. 2006;32:859-870.
    42. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382-15389.
    43. Li J, Meng Q, Li W, Zhang Z. Influence of crystalline properties on the dielectric and energy storage properties of poly(vinylidene fluoride). J Appl Polym Sci. 2011;122(3):1659-1668.
    44. Sichina WJ. Measurement of Tg by DSC. Perkin Elmer Instruments, Appl note. Published online 2000:1-5. https://thermalsupport.com/wp-content/uploads/2018/05/PETech-09.pdf
    45. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci. 2017;90:75-127.
    46. Berg T van den, Ulbricht M. Polymer nanocomposite ultrafiltration membranes: The influence of polymeric additive, dispersion quality and particle modification on the integration of zinc oxide nanoparticles into polyvinylidene difluoride membranes. Membranes (Basel). 2020;10(9):1-19. doi:10.3390/membranes10090197
    47. Tarani E, Arvanitidis I, Christofilos D, Bikiaris DN, Chrissafis K, Vourlias G. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci. 2023;58(4):1621-1639.
    48. Mukesh K. Perovskite-type dielectric ceramic-based polymer composites for energy storage applications. Perovskite Met Oxide. Published online 2023:285-312.
    49. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem Rev. 2019;119(8):5298-5415.
    50. Thomson S. Observing Phase Transitions in a Halide Perovskite Using Temperature Dependent Photoluminescence Spectroscopy Applications of Fluorescence Spectroscopy View project A P P L I C A T I O N N O T E Observing Phase Transitions in a Halide Perovskite Using Tem. 2018;(May):3-6. https://www.researchgate.net/publication/325314706
    51. Costa CM, Firmino Mendes S, Sencadas V, et al. Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly(vinilidene fluoride)/Pb(Zr0.53Ti 0.47)O3 composites. J Non Cryst Solids. 2010;356(41-42):2127-2133. doi:10.1016/j.jnoncrysol.2010.07.037
    52. Polat K. Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend. Appl Phys A Mater Sci Process. 2020;126(7):1-8.
    53. Li Z, Wang J, Wang X, Yang Q, Zhang Z. Ferro- and piezo-electric properties of a poly(vinyl fluoride) film with high ferro- to para-electric phase transition temperature. RSC Adv. 2015;5(99):80950-80955.
    54. Bhadwal N, Ben Mrad R, Behdinan K. Review of Zinc Oxide Piezoelectric Nanogenerators: Piezoelectric Properties, Composite Structures and Power Output. Sensors. 2023;23(8).

    QR CODE