簡易檢索 / 詳目顯示

研究生: 陳書平
Shu-Ping Chen
論文名稱: 奈米粒子與聚電解質混合系統之材料模擬研究
Material Simulations on Mixing Systems of Nanoparticles and Polyelectrolytes
指導教授: 洪伯達
Po-Da Hong
口試委員: 洪伯達
Po-Da Hong
蔡協致
Hsieh-Chih Tsai
周哲民
Che-Min Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 50
中文關鍵詞: 材料模擬自組裝短程有序奈米粒子聚電解質耗散粒子動力學
外文關鍵詞: Material Simulation, Self-assembly, Short Range Order, Nanoparticles, Polyelectrolytes, Dissipative Particle Dynamics
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 Abstract 致謝 圖索引 表索引 Principal Notation and Abbreviation 一、緒論 1.1. 研究背景 1.2. 研究系統與材料簡介 1.4. 耗散粒子動力學 1.5. 聚電解質理論與分子鏈模型 1.6. 研究目的 二、研究方法 2.1. 耗散粒子動力學模擬架構 2.2. 全原子分子動力學模擬架構 2.3. 分子動力學與演算法 2.3.1. 速度-韋爾萊積分法 2.3.2. 修正-韋爾萊積分法 2.3.3. 最小鏡像法 2.3.4. 近鄰列表法 2.4. 材料的模型設計 2.4.1. 奈米膠體 2.4.2. 聚電解質溶液 2.4.3. 膠體與聚電解質的複合系統 2.5. 數據分析 三、結果與討論 3.1. 模擬架構驗證 3.1.1. DPD模擬驗證 3.1.2. DPD加上slater電荷的系統驗證 3.1.3. 球殼模型驗證 3.2. 全原子模擬取得材料基本參數 3.3. 一條分子鏈的模擬 3.4. 聚電解質微胞的模擬 3.5. 奈米膠體與微胞的複合系統 四、總結 參考資料

    [1.] Meseguer, F. (2005). Colloidal crystals as photonic crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 270, 1-7.
    [2.] Yablonovitch, E. (1993). Photonic band-gap structures. JOSA B, 10(2), 283-295.
    [3.] Takeoka, Y. (2013). Stimuli-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials. Journal of Materials Chemistry C, 1(38), 6059-6074.
    [4.] Xu, J., & Guo, Z. (2013). Biomimetic photonic materials with tunable structural colors. Journal of colloid and interface science, 406, 1-17.
    [5.] Lu, X., Chen, C., Wen, X., Han, P., Jiang, W., & Liang, G. (2019). Highly charged, magnetically sensitive magnetite/polystyrene colloids: synthesis and tunable optical properties. Journal of Materials Science, 54(10), 7628-7636.
    [6.] Manivannan, K., Huang, Y. S., Huang, B. R., Huang, C. F., & Chen, J. K. (2016). Real-time packing behavior of core-shell silica@ poly (N-isopropylacrylamide) microspheres as photonic crystals for visualizing in thermal sensing. Polymers, 8(12), 428.
    [7.] Wang, J., Zhang, Y., Wang, S., Song, Y., & Jiang, L. (2011). Bioinspired colloidal photonic crystals with controllable wettability. Accounts of Chemical Research, 44(6), 405-415.
    [8.] Kawamura, A., Kohri, M., Morimoto, G., Nannichi, Y., Taniguchi, T., & Kishikawa, K. (2016). Full-color biomimetic photonic materials with iridescent and non-iridescent structural colors. Scientific reports, 6(1), 1-10.
    [9.] Gambinossi, F., Mylon, S. E., & Ferri, J. K. (2015). Aggregation kinetics and colloidal stability of functionalized nanoparticles. Advances in colloid and interface science, 222, 332-349.
    [10.] Lebedev-Stepanov, P. V., Kadushnikov, R. M., Molchanov, S. P., Ivanov, A. A., Mitrokhin, V. P., Vlasov, K. O., ... & Alfimov, M. V. (2013). Self-assembly of nanoparticles in the microvolume of colloidal solution: physics, modeling, and experiment. nanotechnologies in russia, 8(3-4), 137-162.
    [11.] Dai, X., Hou, C., Xu, Z., Yang, Y., Zhu, G., Chen, P., ... & Yan, L. T. (2019). Entropic Effects in Polymer Nanocomposites. Entropy, 21(2), 186.
    [12.] 蔡宇博(2020)。仿生非虹彩光子晶體導電墨水。國立中央大學化學工程與材料工程學系碩士論文,桃園市。取自https://hdl.handle.net/11296/cnzucw
    [13.] Kim, D., & Zozoulenko, I. (2019). Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism. The Journal of Physical Chemistry B, 123(24), 5160-5167.
    [14.] Modarresi, M., Franco-Gonzalez, J. F., & Zozoulenko, I. (2019). Computational microscopy study of the granular structure and pH dependence of PEDOT: PSS. Physical Chemistry Chemical Physics, 21(12), 6699-6711.
    [15.] Takano, T., Masunaga, H., Fujiwara, A., Okuzaki, H., & Sasaki, T. (2012). PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules, 45(9), 3859-3865.
    [16.] Zhang, F., Cao, L., & Yang, W. (2010). Preparation of Monodisperse and Anion‐Charged Polystyrene Microspheres Stabilized with Polymerizable Sodium Styrene Sulfonate by Dispersion Polymerization. Macromolecular Chemistry and Physics, 211(7), 744-751.
    [17.] Ding, H. M., & Ma, Y. Q. (2013). Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Scientific reports, 3, 2804.
    [18.] Afrouzi, H. H., Farhadi, M., Sedighi, K., & Moshfegh, A. (2018). Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics. Physica B: Condensed Matter, 531, 185-195.
    [19.] Henrich, O., Fosado, Y. A. G., Curk, T., & Ouldridge, T. E. (2018). Coarse-grained simulation of DNA using LAMMPS. The European Physical Journal E, 41(5), 57.
    [20.] Vishnyakov, A., Talaga, D. S., & Neimark, A. V. (2012). DPD simulation of protein conformations: From α-helices to β-structures. The journal of physical chemistry letters, 3(21), 3081-3087.
    [21.] Modarresi, M., Franco-Gonzalez, J. F., & Zozoulenko, I. (2019). Computational microscopy study of the granular structure and pH dependence of PEDOT: PSS. Physical Chemistry Chemical Physics, 21(12), 6699-6711.
    [22.] Huang, M. (2018, September). Multiscale study of the effects of the solvent treatment of conductive PSS: PEDOT polymer. In Organic Light Emitting Materials and Devices XXII (Vol. 10736, p. 1073610). International Society for Optics and Photonics.
    [23.] Huang, M. (2016, September). Multiscale study of the self-organized gradient effect of novel hole injection material PEDOT: PSS: PFI. In Organic Light Emitting Materials and Devices XX (Vol. 9941, p. 994116). International Society for Optics and Photonics.
    [24.] Hoogerbrugge, P. J., & Koelman, J. M. V. A. (1992). Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. EPL (Europhysics Letters), 19(3), 155.
    [25.] Schlijper, A. G., Hoogerbrugge, P. J., & Manke, C. W. (1995). Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. Journal of Rheology, 39(3), 567-579.
    [26.] Groot, R. D., & Warren, P. B. (1997). Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics, 107(11), 4423-4435.
    [27.] Groot, R. D. (2000). Mesoscopic simulation of polymer− surfactant aggregation. Langmuir, 16(19), 7493-7502.
    [28.] Groot, R. D. (2003). Electrostatic interactions in dissipative particle dynamics—simulation of polyelectrolytes and anionic surfactants. The Journal of chemical physics, 118(24), 11265-11277.
    [29.] Maiti, A., & McGrother, S. (2004). Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of chemical physics, 120(3), 1594-1601.
    [30.] Füchslin, R. M., Fellermann, H., Eriksson, A., & Ziock, H. J. (2009). Coarse graining and scaling in dissipative particle dynamics. The Journal of chemical physics, 130(21), 214102.
    [31.] Dobrynin, A. V., Colby, R. H., & Rubinstein, M. (1995). Scaling theory of polyelectrolyte solutions. Macromolecules, 28(6), 1859-1871.
    [32.] Large-scale Atomic/Molecular Massively Parallel Simulator. https://lammps.sandia.gov/
    [33.] Levitt, M., & Warshel, A. (1975). Computer simulation of protein folding. Nature, 253(5494), 694-698.
    [34.] Kurt Smith. (U Pittsburgh) https://intranet.bloomu.edu/scholars-smith
    [35.] Hafskjold, B., Liew, C. C., & Shinoda, W. (2004). Can such long time steps really be used in dissipative particle dynamics simulations?. Molecular simulation, 30(13-15), 879-885.
    [36.] Prabhu, V. M., Muthukumar, M., Wignall, G. D., & Melnichenko, Y. B. (2001). Dimensions of polyelectrolyte chains and concentration fluctuations in semidilute solutions of sodium–poly (styrene sulfonate) as measured by small-angle neutron scattering. Polymer, 42(21), 8935-8946.
    [37.] Murphy, R. J., Weigandt, K. M., Uhrig, D., Alsayed, A., Badre, C., Hough, L., & Muthukumar, M. (2015). Scattering studies on poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonate in the presence of ionic liquids. Macromolecules, 48(24), 8989-8997.
    [38.] Maiti, A., & McGrother, S. (2004). Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of chemical physics, 120(3), 1594-1601.
    [39.] Travis, K. P., Bankhead, M., Good, K., & Owens, S. L. (2007). New parametrization method for dissipative particle dynamics. The Journal of chemical physics, 127(1), 014109.
    [40.] Al‐Matar, A. K., & Rockstraw, D. A. (2004). A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters. Journal of computational chemistry, 25(5), 660-668.
    [41.] González-Melchor, M., Mayoral, E., Velázquez, M. E., & Alejandre, J. (2006). Electrostatic interactions in dissipative particle dynamics using the Ewald sums. The Journal of chemical physics, 125(22), 224107.
    [42.] Boudouris, D., Constantinou, L., & Panayiotou, C. (1997). A group contribution estimation of the thermodynamic properties of polymers. Industrial & engineering chemistry research, 36(9), 3968-3973.
    [43.] Maiti, A., & McGrother, S. (2004). Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. The Journal of chemical physics, 120(3), 1594-1601.
    [44.] Chen, X., Yuan, C., Wong, C. K., & Zhang, G. (2012). Molecular modeling of temperature dependence of solubility parameters for amorphous polymers. Journal of molecular modeling, 18(6), 2333-2341.
    [45.] Dubbeldam, D., Walton, K. S., Vlugt, T. J., & Calero, S. (2019). Design, parameterization, and implementation of atomic force fields for adsorption in nanoporous materials. Advanced Theory and Simulations, 2(11), 1900135.
    [46.] Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1), 511-519.
    [47.] Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 31(3), 1695.
    [48.] Cabane, B., & Vuilleumier, R. (2005). The physics of liquid water. Comptes Rendus Geoscience, 337(1-2), 159-171.
    [49.] Kalam, M. A., Alshamsan, A., Alkholief, M., Alsarra, I. A., Ali, R., Haq, N., ... & Shakeel, F. (2020). Solubility measurement and various solubility parameters of glipizide in different neat solvents. ACS omega, 5(3), 1708-1716.
    [50.] Sedlmeier, F., Horinek, D., & Netz, R. R. (2011). Spatial correlations of density and structural fluctuations in liquid water: A comparative simulation study. Journal of the American Chemical Society, 133(5), 1391-1398.
    [51.] Kim, D., & Zozoulenko, I. (2019). Why Is Pristine PEDOT Oxidized to 33%? A Density Functional Theory Study of Oxidative Polymerization Mechanism. The Journal of Physical Chemistry B, 123(24), 5160-5167.
    [52.] Motakabbir, K. A., & Berkowitz, M. (1990). Isothermal compressibility of SPC/E water. Journal of Physical Chemistry, 94(21), 8359-8362.
    [53.] Rodnikova, M. N. (2007). A new approach to the mechanism of solvophobic interactions. Journal of Molecular Liquids, 136(3), 211-213.
    [54.] Ouyang, L., Musumeci, C., Jafari, M. J., Ederth, T., & Inganäs, O. (2015). Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films. ACS applied materials & interfaces, 7(35), 19764-19773.

    無法下載圖示 全文公開日期 2026/02/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2026/02/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE