簡易檢索 / 詳目顯示

研究生: 林怡華
Yi-Hua Lin
論文名稱: 利用靜電紡絲製備聚氨酯/聚乙烯乙二醇複合奈米纖維於檢測大腸癌細胞之研究
Detection Colon Cancer Cells Using Electrospun Polyurethane/ Poly(ethylene oxide) Composite Nanofibers
指導教授: 陳建光
Jem-Kun Chen
口試委員: 李愛薇
Ai-Wei Lee
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 靜電紡絲抗生物沾黏循環腫瘤細胞細胞抓取上皮黏著分子大腸癌臨床檢測流式細胞儀
外文關鍵詞: Electrospinning, Antibiofouling, Circulating tumor cell, Cell capture, anti-EpCAM, Clinical trials of colon cancer, flow cytometry
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為設計一種複合式、高檢測效率的奈米級纖維,經由表面改質使其具有專一性,用來檢測大腸癌病患血液中的循環腫瘤細胞(CTCs) 。然而在循環腫瘤細胞檢測時常會受大量的白血球影響檢測效率,故本研究使用聚氨酯(Polyurethane;PU)、聚乙烯乙二醇(Poly(ethylene oxide);PEO) 60/40之最佳混合比例所構成奈米纖維薄膜,以PU做為基底材料用來減緩檢測時奈米纖維水解狀況,而PEO作為生物抗沾黏材料,經過表面改質後仍有生物抗沾黏功能可避免白血球沾附。PEO及PU由(3-aminopropyl)triethoxysilane (APTES)修飾後帶有NH2官能基可固定Streptavidin和anti EpCAM -biotin來偵測CTCs,將此兩種材料以不同的比例進行混合並利用靜電紡絲技術製造出奈米纖維薄膜來達到不易水解、生物抗沾黏且富含高劑量的anti EpCAM抗體的目的。
    在測試奈米纖維抗白血球沾黏的能力中發現,PU/PEO(60/40)平均具有90%的抗白血球沾黏能力。而在三種大腸癌細胞株(HCT-116、DLD-1、HT-29)測試抓取能力中結果發現本材料可在低濃度的CTCs中達到七成的抓取率。
    進行抓取試驗後,將試片與流式細胞儀以相同實驗條件進行對比試驗,發現流式細胞儀偵測10顆癌細胞的誤判率超過五成,遠大於本材料試片,而最後在臨床兩位病人檢體實驗中發現,成功捕捉到其每毫升血液中CTCs數目分別為6、3顆。在捕捉循環腫瘤細胞CTCs上所面臨的阻礙,包含步驟繁雜、高成本、捕捉效率等,故本實驗以設計低成本、快速檢測優勢的奈米纖維薄膜為目的,對於臨床上稀少的循環腫瘤細胞偵測是具備高度發展潛力的。


    In this study, we fabricated a composite and high detective efficiency nanofiber via surface modification to have specificity for detecting circulating tumor cells(CTCs) in peripheral blood of colon cancer patients. However, CTC detection is always influenced by extensive white blood cells (WBC) in human blood. The composite electrospun nanofiber was made from polyurethane(PU) and Poly(ethylene oxide)(PEO) and its best ratio was 60/40. PU was a substrate which could avoid the nanofiber dissolving in aqueous solution. PEO was a kind of anti-fouling polymer that can prevent from WBC adhesion. The composite nanofiber was modified by (3-aminopropyl)triethoxysilane (APTES) to graft amine group. Amine groups were the media to immobilize antibody biotin labeling (anti-EpCAM biotin) for CTC capture. Mixing PU and PEO to fabricate nanofiber via electrospinning according to the antibiofouling and analyte properties.
    First, the nanofiber possessed 90% antifouling property for WBC. Colon cancer cell line (DLD-1, HCT-116 and HT-29), low concentration colon cancer cells were exploited mixed in medium to perform the capture of CTCs. The results exhibit that detection the capture of CTCs. The results exhibited that detection efficiencies increased linearly upon ca. 70%.
    Then the composite nanofiber and flow cytometry in the same experimental conditions were compared for CTC capturing test. The results showed that the false rate of detecting 10 cancer cells(HCT-116) was over 50% and much higher than our composite nanofiber,
    Finally, peripheral blood of two colon cancer patients was exploited to examine the property of CTC capture using the naofiber in clinical test.The nanofibers could capture 6 and 3 CTCs per ml from the two patients repectively in the clinical test. The current obstacles for CTC capture in peripheral blood included multiple procedural steps with high cost. Therefore, the nanofiber could possessed high potential to capture CTCs clinically with lower cost and fast detection.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XIII 圖目錄 XIV 第1章緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 第2章 理論與文獻回顧 4 2.1 靜電紡絲工程 4 2.1.1 靜電紡絲原理 5 2.1.2 靜電紡絲裝置 6 2.1.3 靜電紡絲參數 9 2.2 奈米粗糙表面應用於生物技術 13 2.3 聚氨酯(Polyurethane) 15 2.4 聚乙烯乙二醇(PEO) 16 2.5 抗生物沾黏材料之簡介 17 2.6 生物晶片表面分子固定法 20 2.6.1 共價鍵固定法(EDC-NHS reaction) 22 2.6.2 生物親和法(Streptavidin-biotin system) 24 2.7 循環腫瘤細胞(CTC) 26 2.7.1 循環腫瘤細胞介紹 26 2.7.2 循環腫瘤細胞收集之相關文獻 29 2.7.2.1 物理特性 31 2.7.2.2 生物特性 33 2.7.2.2.1 上皮細胞黏附分子 33 2.7.2.2.2 細胞角蛋白 35 第3章 儀器原理 36 3.1 X光光電能譜儀(XPS) 36 3.2 高解析度場發掃描式電子顯微鏡(FE-SEM) 37 3.3 雷射掃描式共軛焦顯微鏡(CLSM) 38 3.4 接觸角測量儀(CA) 40 3.5 流式細胞儀 41 第4章 實驗方法與流程 43 4.1 實驗流程圖 43 4.2 實驗藥品 44 4.3 實驗儀器 46 4.4 實驗步驟 48 4.4.1 Polyurethane電紡絲製備 48 4.4.2 PU/PEO混和高分子溶液比例 49 4.4.3 靜電紡絲材料製備 50 4.4.4 掃描式電子顯微鏡試片製作 50 4.4.5 奈米纖維抗水性質 50 4.4.6 奈米纖維表面粗糙度 51 4.4.7 奈米纖維表面改質 52 4.4.7.1 表面改質APTES 52 4.4.7.2 表面改質Streptavidin 53 4.4.7.3 表面接枝anti-EpCAM(Biotin) 54 4.4.8 白血球(White Blood Cell,WBC) 55 4.4.8.1 血液樣品處理 55 4.4.8.2 抗白血球沾黏試驗 55 4.4.8.3 白血球固定與染色 55 4.4.9 細胞培養、染色、抓取試驗 56 4.4.9.1 癌細胞(HCT-116、DLD-1、HT-29、Hela) 56 4.4.9.2 蘇木精染色[100] 56 4.4.9.3 大腸癌細胞螢光染色 56 4.4.9.4 癌細胞抓取試驗 57 4.4.10 掃描式電子顯微鏡生物試片製作 57 4.4.11 血液樣品 57 4.4.12 流式細胞儀 58 第5章 結果討論 59 5.1 奈米纖維特性分析 59 5.1.1 PU奈米纖維製備 59 5.1.2 PU/PEO複合奈米纖維製備 61 5.1.3 PU/PEO複合奈米纖維溶於PBS後型態 64 5.1.4 粗糙度 66 5.1.5 接觸角 68 5.2 奈米纖維表面改質分析 69 5.2.1 化學能譜XPS分析 69 5.2.1.2 C1s能譜圖 71 5.2.1.2 N1s能譜圖 73 5.2.2 FITC-Streptavidin螢光分析 75 5.2.3 生物親合法之螢光分析 76 5.3 奈米纖維抗白血球沾黏試驗 77 5.4 奈米纖維抓取循環腫瘤細胞 78 5.4.1 奈米纖維專一性抓取CTC 78 5.4.2 抓取不同種類大腸癌細胞 80 5.4.2.1 抓取Hela cell試驗 82 5.4.3 大腸癌細胞之SEM照片 83 5.4.4 仿臨床測試 84 5.4.4.1 奈米纖維臨床模擬應用 84 5.4.5 流式細胞儀 85 5.4.6 大腸癌臨床試驗 88 第6章 結論 90 參考文獻 91

    [1]Fu, G. D.; Xu, L. Q.; Yao, F.; Zhang, K.; Wang, X. F.; Zhu, M. F.; Nie, S. Z., Smart nanofibers from combined living radical polymerization, "click chemistry", and electrospinning. ACS Appl Mater Interfaces 2009, 1, (2), 239-43.
    [2]Huang, Z.-M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003, 63, (15), 2223-2253.
    [3]US patent 1975504 A ,Process and apparatus for preparing artificial threads.
    [4]Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996;7:216.
    [5]Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology 2003;63:2223-53.
    [6]Guangming G, Juntao W, Lei J. Novel Polyimide Materials Produced by Electrospinning. Progress in Chemistry 2011;23:750-9.
    [7]Xie J, Xia Y. Electrospinning: an enabling technique for nanostructured materials. Material Matters: 3-D Nano and Micro Structures 2008;3:19-22
    [8]Ziabari M, Mottaghitalab V, Haghi A. Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering 2009;26:53-62.
    [9]Li F, Zhao Y, Song Y. Core-Shell nanofibers: Nano channel and capsule by coaxial electrospinning. 2010.
    [10]Li J, Connell S, Shi R. Biomimetic architectures for tissue engineering. 2010.
    [11]Bhardwaj, N.; Kundu, S. C., Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 2010, 28, (3), 325-47.
    [12]Tan S, Inai R, Kotaki M, Ramakrishna S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005;46:6128-34
    [13]Tan, S. H.; Inai, R.; Kotaki, M.; Ramakrishna, S., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, (16), 6128-6134.
    [14]Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC (2001)The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272.
    [15]Eda G, Shivkumar S. Bead-to-fiber transition in electrospun polystyrene. J Appl Polym Sci 2007;106:475–487.
    [16]Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999;40:4585–4592.
    [17]Lee KH, Kim HY, Bang HJ, Jung YH, Lee SG The change of bead morphology formed on electrospun polystyrene fibers. Polymer 2003;44:4029–4034.
    [18]Yang Q, Li Z, Hong Y, Zhao Y, Qiu S, Wang C, Wei Y. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J Polym Sci, Part B: Polym Phys 2004;42:3721–3726.
    [19]Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 2004;58:493–497.
    [20]Zhao YY, Yang QB, Lu XF, Wang C, Wei Y. Study on correlation of morphology of electrospun products of polyacrylamide with ultrahigh molecular weight. J Polym Sci, Part B: Polym Phys 2005;43:2190–2195.
    [21]Larrondo L, St. John Manley R. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci: Polym Phys Ed 1981;19:909–920.
    [22]Biggs MJ, Richards RG, Gadegaard N, McMurray RJ, Affrossman S, Wilkinson CD, et al. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. Journal of Biomedical Materials Research Part A 2009;91:195-208.
    [23]Palin E, Liu H, Webster TJ. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 2005;16:1828.
    [24]Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths.
    Biomaterials 2006;27:1306-15.
    [25]Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 2011;32:3395-403.
    [26]Tuttle iV PV, Rundell AE, Webster TJ. Influence of biologically inspired nanometer surface roughness on antigen–antibody interactions for immunoassay–biosensor applications. International journal of nanomedicine 2006;1:497.
    [27]Han W, Allio BA, Foster DG, King MR. Nanoparticle coatings for enhanced capture of flowing cells in microtubes. ACS nano 2009;4:174-80.
    [28]Washburn NR, Yamada KM, Simon Jr CG, Kennedy SB, Amis EJ. High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 2004;25:1215-24.
    [29]Zhang H, Jia Z, Lv X, Zhou J, Chen L, Liu R, et al. Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosensors and Bioelectronics 2013;44:89-94.
    [30]Munz M. Microstructure and roughness of photopolymerized poly (ethylene glycol) diacrylate hydrogel as measured by atomic force microscopy in amplitude and frequency modulation mode. Applied Surface Science 2013;279:300-9
    [31] Figueroa J, Magaña S, Lim DV, Schlaf R. Characterization of fully functional spray-on antibody thin films. Applied Surface Science 2013.
    [32]Klug J, Pérez LA, Coronado EA, Lacconi GI. Chemical and electrochemical oxidation of silicon surfaces functionalized with APTES: the role of surface roughness in the AuNPs anchoring kinetics. The Journal of Physical Chemistry C 2013;117:11317-27.
    [33]Stafiniak A, Boratyński B, Baranowska-Korczyc A, Szyszka A, Ramiączek-Krasowska M, Prażmowska J, et al. A novel electrospun ZnO nanofibers biosensor fabrication. Sensors and Actuators B: Chemical 2011;160:1413-8
    [34]Wang S, Wang H, Jiao J, Chen KJ, Owens GE, Kamei Ki, et al. Three‐Dimensional Nanostructured Substrates toward Efficient Capture
    of Circulating Tumor Cells. Angewandte Chemie 2009;121:9132-5.
    [35]S.F. Zhang, Y.K. Feng, L. Zhang, J.T. Guo, Y.S. Xu, J. Appl. Polym. Sci. 116 (2010) 861.
    [36]Y.K. Feng, S.F. Zhang, L. Zhang, J.T. Guo, Y.S. Xu, Adv. Mater. Res. 79 (2009) 1431.
    [37]JO, Seongbong; PARK, Kinam. Surface modification using silanated poly (ethylene glycol) s. Biomaterials, 2000, 21.6: 605-616.
    [38]VENAULT, Antoine, et al. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings. ACS applied materials & interfaces, 2014, 6.5: 3201-3210.
    [39]FRANCIS, G. E., et al. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. International journal of hematology, 1998, 68.1: 1-18.
    [40]Rusmini F, Zhong Z, Feijen J. Protein immobilization strategies for protein biochips. Biomacromolecules 2007;8:1775-89.
    [41]Hermanson GT. Bioconjugate techniques: Academic press; 2013.
    [42]Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Analytical biochemistry 1994;218:87-91.
    [43]Weber PC, Ohlendorf D, Wendoloski J, Salemme F. Structural origins of high-affinity biotin binding to streptavidin. Science 1989;243:85-8.
    [44] Smith CL, Milea JS, Nguyen GH. Immobilization of nucleic acids using biotin-strept (avidin) systems. Immobilisation of DNA on Chips II: Springer; 2005. p. 63-90.
    [45]Bontempo D, Maynard HD. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. Journal of the American Chemical Society 2005;127:6508-9.
    [46]Huang B-H, Lin Y, Zhang Z-L, Zhuan F, Liu A-A, Xie M, et al. Surface labeling of enveloped viruses assisted by host cells. ACS chemical biology 2012;7:683-8.
    [47]Lehnert M, Gorbahn M, Rosin C, Klein M, Köper I, Al-Nawas B, et al. Adsorption and conformation behavior of biotinylated fibronectin on streptavidin-modified TiOXsurfaces studied by SPR and AFM. Langmuir 2011;27:7743-51.
    [48]Braun S, Naume B. Circulating and disseminated tumor cells. Journal of clinical oncology 2005;23:1623-6.
    [49]Pantel K, Müller V, Auer M, Nusser N, Harbeck N, Braun S. Detection and clinical implications of early systemic tumor cell dissemination in breast cancer. Clinical cancer research 2003;9:6326-34.
    [50]Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 1869;14:146-9.
    [51]Evans R. The" seed and soil" hypothesis andthe decline of radical surgery: a surgeon's opinion. Texas medicine 1990;86:85-9.
    [52]Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New England Journal of Medicine 2004;351:781-91.
    [53]Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology 2008;26:3213-21.
    [54]de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research 2008;14:6302-9.
    [55]Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012;148:349-61.
    [56]Chaffer CL, Weinberg RA. A perspective on cancercell metastasis. Science 2011;331:1559-64.
    [57]Schilling D, Todenhöfer T, Hennenlotter J, Schwentner C, Fehm T, Stenzl A. Isolated, disseminated and circulating tumour cells in prostate cancer. Nature Reviews Urology 2012;9:448-63.
    [58]Pavelic SK, SedicM, Bosnjak H, Spaventi S, Pavelic K. Metastasis: new perspectives on an old problem. Mol Cancer 2011;10:10.1186.
    [59]Bernards R, Weinberg RA. Metastasis genes: a progression puzzle. Nature 2002;418:823-.
    [60]Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nature Reviews Cancer 2004;4:448-56.
    [61]Sawyers CL. The cancer biomarker problem. Nature 2008;452:548-52.
    [62]Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer research 2006;66:8319-26.
    [63]Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007;450:1235-9.
    [64]Mostert B, SleijferS, Foekens JA, Gratama JW. Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer treatment reviews 2009;35:463-74
    [65]Yu M, Stott S, Toner M, Maheswaran S, Haber DA. Circulating tumor cells: approaches to isolation and characterization. The Journal of cell biology 2011;192:373-82.
    [66]Torino F, Bonmassar E, Bonmassar L, De Vecchis L, Barnabei A, Zuppi C, et al. Circulating tumor cells in colorectal cancer patients. Cancer treatment reviews 2013;39:759-72.
    [67]Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Deisseroth A, et al. Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med 2012;10:138.
    [68]Galanzha EI, Zharov VP. Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 2013;5:1691-738.
    [69]Alix-Panabieres C, Pantel K. Challenges in circulating tumour cell research.Nat Rev Cancer 2014;14:623–31.
    [70]Sun W, Jia C, Huang T, Sheng W, Li G, Zhang H, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. PloS one 2013;8:e75865.
    [71]Lianidou ES, Markou A. Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clinical chemistry 2011;57:1242-55.
    [72]Rood KD, Bhattacharyya K, DeSouza T, Sengupta S, Gupta SK, Mosley JD, et al. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow. Journal of biomedical optics 2012;17:0612211-
    [73]Alix-Panabières C, Schwarzenbach H, Pantel K. Circulating tumor cells and circulating tumor DNA. Annual review of medicine 2012;63:199-215.
    [74]Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, et al. Frequent EpCam protein expression in human carcinomas. Human pathology 2004;35:122-8.
    [75]Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer research 2009;69:5627-9.
    [76]Münz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O. The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 2004;23:5748-58.
    [77]O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2006;445:106-10.
    [78]Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 2003;100:3983-8.
    [79]Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast cancer research and treatment 2001;67:93-109.
    [80]Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao H-l, et al. Human hepatic stem cells from fetal and postnatal donors. The Journal of experimental medicine 2007;204:1973-87.
    [81]Trzpis M, McLaughlin P, van Goor H,Brinker M, van Dam G, de Leij L, et al. Expression of EpCAM is up‐regulated during regeneration of renal epithelia. The Journal of pathology 2008;216:201-8.
    [82]Fong D, Seeber A, Terracciano L, Kasal A, Mazzoleni G, Lehne F, et al. Expression of EpCAMMF and EpCAMMT variants in human carcinomas. Journal of clinical pathology 2014;67:408-14.
    [83]Kirfel J, Magin T, Reichelt J. Keratins: a structural scaffold with emerging functions. Cellular and Molecular Life Sciences CMLS 2003;60:56-71.
    [84]Osborn M, Weber K. Intermediate filaments: cell-type-specific markers in differentiation and pathology. Cell 1982;31:303-6.
    [85]Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function and disease. Annual review of biochemistry 1994;63:345-82.
    [86]Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clinical biochemistry 2004;37:529-40.
    [87]Gion M, Boracchi P, Dittadi R, Biganzoli E, Peloso L, Gatti C, et al. Quantitative measurement of soluble cytokeratin fragments in tissue cytosol of 599 node negative breast cancer patients: a prognostic marker possibly associated with apoptosis. Breast cancer research and treatment 2000;59:211-21.
    [88]Sjöström HA, H. Joensuu, U.-H. Stenman, J. Lundin, C. Blomqvist, J. Serum tumour markers CA 15-3, TPA, TPS, hCG β and TATI in the monitoring of chemotherapy response in metastatic breast cancer. Scandinavian journal of clinical & laboratory investigation 2001;61:431-41.
    [89] Plebani M, Basso D, Navaglia F, De Paoli M, Tommasini A, Cipriani A. Clinical evaluation of seven tumour markers in lung cancer diagnosis: can any combination improve the results? British journal of cancer 1995;72:170-3.
    [90]Bennink R, Van Poppel H, Billen J, Decoster M, Baert L, Mortelmans L, et al. Serum tissue polypeptide antigen (TPA): monoclonal or polyclonal radio-immunometric assay for the follow-up of bladder cancer. Anticancer research 1999;19:2609-14.
    [91]Nicolini A, Caciagli M, Zampieri F, Ciampalini G, Carpi A, Spisni R, et al. Usefulness of CEA, TPA, GICA, CA 72.4, and CA 195 in the Diagnosis of primary colorectal cancer and at its relapse. Cancer detection and prevention 1994;19:183-95.
    [92]Rosati G, Riccardi F, Tucci A. Use of tumor markers in the management of head and neck cancer. The International journal of biological markers 1999;15:179-83.
    [93]Bustin S, Gyselman V, Williams N, Dorudi S. Detection of cytokeratins 19/20 and guanylyl cyclase C in peripheral blood of colorectal cancer patients. British Journal of Cancer 1999;79:1813.
    [94]Alix-Panabières C, Vendrell J-P, Slijper M, Pellé O, Barbotte E, Mercier G, et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast cancer research : BCR 2009;11:R39.
    [95]Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2006;445:111-5.
    [96]Wang, H., et al. "Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering." Materials Science and Engineering: C 32(8): 2306-2315.
    [97]Wu L, Ding J. In vitro degradation of three-dimensional porous poly (D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2004;25:5821-30.
    [98]WANG, Huiyu, et al. Carboxybetaine methacrylate-modified nylon
    surface for circulating tumor cell capture. ACS applied materials &
    interfaces, 2014, 6.6: 4550-4559.
    [99]BRAUN, Stephan; NAUME, Bjrn. Circulating and disseminated
    tumor cells. Journal of clinical oncology, 2005, 23.8: 1623-1626.
    [100]Liaw L, Lindner V, Schwartz SM, Chambers AF, Giachelli CM. Osteopontin and β3 integrin are coordinately expressed in regenerating endothelium in vivo and stimulate Arg-Gly-Asp–dependent endothelial migration in vitro. Circulation research 1995;77:665-72.
    [101]Bhardwaj, N.; Kundu, S. C., Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances 2010, 28, (3), 325-47.
    [102]Xu C, Yang F, Wang S, Ramakrishna S. In vitro study of human vascular endothelial cell function on materials with various surface roughness. Journal of Biomedical Materials Research Part A 2004;71:154-61.
    [103]Sekine J, Luo SC, Wang S, Zhu B, Tseng HR, Yu Hh. Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures. Advanced Materials 2011;23:4788-92.
    [104]Lampin M, Warocquier‐Clérout R, Legris C, Degrange M, Sigot‐Luizard M. Correlation between substratum roughness and wettability, cell adhesion, and cell migration. Journal of biomedical materials research 1997;36:99-108.
    [105]Sa Da Costa, V., et al. (1981). "Esca studies of polyurethanes: blood platelet activation in relation to surface composition." Journal of Colloid and Interface Science 80(2): 445-452.
    [106]Dauphas S, Ababou-Girard S, Girard A, Le Bihan F, Mohammed-Brahim T, Vié V, et al. Stepwise functionalization of SiNXsurfaces for covalent immobilization of antibodies. Thin Solid Films 2009;517:6016-22.
    [107]Paredes, V., et al. (2015). "Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti–Nb–Hf alloy." Journal of Biomedical Materials Research Part B: Applied Biomaterials 103(3): 495-502.
    [108]Galtayries A, Warocquier‐Clérout R, Nagel MD, Marcus P. Fibronectin adsorption on Fe–Cr alloy studied by XPS. Surface and interface analysis 2006;38:186-90.
    [109]Kanwar SS, Yu Y, Nautiyal J, Patel BB, Majumdar AP. The Wnt/β-catenin pathway regulates growth and maintenance of colonospheres. Molecular cancer 2010;9:212.
    [110]Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells[mdash]biology and biomarkers. Nat Rev Clin Oncol 2014;11:129-44.
    [111]Lu C, Tsai H, Uen Y, Hu H, Chen C, Cheng T, et al. Circulating tumor cells as a surrogate marker for determining clinical outcome to mFOLFOX chemotherapy in patients with stage III colon cancer. British journal of cancer 2013;108:791-7.
    [112]Peach G, Kim C, Zacharakis E, Purkayastha S, Ziprin P. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review. British journal of cancer 2010;102:1327-34.
    [113] Robinson, K. J., et al. (2015). "Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue." Biointerphases 10(4): 04A305.
    [114]Jeon S, Hong W, Lee ES, Cho Y. High-Purity Isolation and Recovery of Circulating Tumor Cells using Conducting Polymer- deposited Microfluidic Device. Theranostics. 2014;4(11):1123-1132.
    [115]Zheng S, Liu J-Q, Tai Y-C. Streamline-based microfluidic devices for erythrocytes and leukocytes separation. Microelectromechanical Systems, Journal of 2008;17:1029-38.
    [116] Cheng B, He Z, Zhao L, et al. Transparent, biocompatible nanostructured surfaces for cancer cell capture and culture. International Journal of Nanomedicine. 2014;9:2569-2580.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE