簡易檢索 / 詳目顯示

研究生: 陳若慈
Jo-Tzu Chen
論文名稱: 醛基表面修飾磁性顆粒及電紡絲之酵素固定化應用
Aldehyde surface-functionalized magnetic nanoparticles and electrospun polyvinyl alcohol nanofibrous mat for enzyme immobilization
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王孟菊
Meng-Jiy Wang
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: HbA1cElectrospinning磁性顆粒多巴胺FPO
外文關鍵詞: HbA1c, Electrospinning, magnetic particle, dopamine, FPO
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長期以來,評估慢性糖尿病的控制狀態一直是一個難題,目前一般多以HbA1c(糖化血紅素)作為糖尿病人血糖監控指標,主因是紅血球的半衰期約為60天,測定紅血球之糖化血紅素可代表過去二至三個月的體內平均血糖值,且不受血糖量測誤差之限制。一般糖化血紅素偵測可利用Fructosyl Peptide Oxidase (FPO)氧化酵素,對結合於血紅素β鏈的N端胺基酸的血糖進行反應所產生的過氧化氫來做測量。因此本論文探討以兩種方式進行FPO酵素固定化,以為後續HbA1c檢測可達方便省時,操作簡易的目的。
    第一種方式是固定化於電紡絲技術(Electrospinning)所製備的膜上,以濃度10% 聚乙烯醇溶液、施加電位14.5 kV-17.5 kV、針頭與屏幕距離125 mm 及流速6 μl/min 製備出無纖維球(bead)之聚乙烯醇電紡絲薄膜,並於酸性環境下將戊二醛與聚乙烯醇之羥基交聯,並利用膜上約7299.36 molecules/nm2之自由醛基與FPO上之胺基產生Schiff Base 反應而固定之 ; 第二種方式是固定化於四氧化三鐵磁性顆粒表面,先修飾上聚多巴胺,可測得表面胺基量為0.267 mmol/g-DW ,再同樣以戊二醛上醛基與聚多巴胺上胺基反應,亦可測得表面與FPO胺基反應之醛基含量為0.14 mmol/g-DW。
    FPO固定於電紡絲薄膜後比活性為2.38 U/mg.mm2 ,在環境溫度 4-40 ℃ 、pH 值5-10 間皆有相當好之活性,此膜重複使用7次後能可有95 % 穩定活性,使用7天後約有60 %活性。FPO另固定於磁性顆粒上比活性可達0.465 U/mg.g-DW,在環境溫度 4-40 ℃ 、pH 值5-8有相當之活性,重複使用7次後可有70 %穩定活性,使用7天後約剩有50 %活性。由酵素動力學測試,比較未固定前FPO、固定於電紡絲薄膜之FPO及固定於磁性顆粒之FPO其三者之反應動力學參數Vmax/Km 值分別為1.18、0.002、0.06 min-1。


    The measurement of glycated hemoglobin A1c (HbA1c) concentration in blood is generally regarded as a better method for assessing the effectiveness of diabetes treatment. The main reason is due to the fact that half-life of red blood cells is approximately 60 days, therefore measuring glycated hemoglobin of red blood cell may represent an average blood glucose levels for past two to three months. Generally, Fructosyl peptide oxidase (FPO) can react the sugar coupled on the N-terminal amino acid of β-chain to generate hydrogen peroxide and it can subsequently react with a dye via an enzymatic reaction to develop color so that HbA1c concentration can be determined. In this thesis, we develop two methods to immobilize FPO enzyme in a convenience, simple, and economic ways.
    The first one is to electrospin to form a film without beads by 10 % (W/V) polyvinyl alcohol to form nanofibrous mat cross-linked with glutaraldehyde . The excess amount of free aldehyde group on the nanofiber was employed for FPO immobilization via surface Schiff Base reaction. The second one is to modify magnetic iron oxide particle surface with poly-dopamine followed by glutaraldehyde activation. The surface of magnetic particles activated by GA was employed for FPO immobilization.
    The specific activity of FPO immobilized electrospun nanofibrous mat is 2.38 U / mg• mm2. The mat retained 95% of its initial activity after seven cycles of reuse, and 60% activity after 7 days incubation at 4 ℃. The specific activity of magnetic nanoparticles is 0.465 U / mg. g-DW, and also showed good activity in 4-40 ℃and pH 5-8. The magnetic patticles retained 70% its initial activity after seven cycles of reuse, and 50% activity after 7 days storage.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究內容簡介 3 第二章 文獻回顧 4 2.1糖化血紅素簡介 4 2.1.1糖化血紅素 (glycated hemoglobin) 之來源與組成 4 2.1.2 HbA1C(糖化血紅素) 5 2.2 FPO (FRUCTOSYL PEPTIDE OXIDASE)氧化酵素簡介 7 2.3靜電紡絲(ELECTROSPINNING) 11 2.3.1歷史起源 11 2.3.2靜電紡絲原理 12 2.3.3靜電紡絲設備種類 13 2.3.4製程參數對靜電紡絲纖維之影響 13 2.4聚乙烯醇靜電紡絲介紹及應用 19 2.5戊二醛之交聯作用 21 2.6磁性微粒載體 23 2.6.1磁性微粒載體簡介 23 2.6.2磁性微粒於HbA1c偵測應用 24 2.6.3磁性微粒載體應用 25 2.7多巴胺 26 第三章 實驗材料與方法 31 3.1實驗流程 31 3.2實驗材料 33 3.2.1 Fructosyl valine (FV) 33 3.2.2山葵過氧化酶 (HRP) 33 3.2.3 Fructosyl peptide oxidase (FPO) 33 3.3實驗藥品 33 3.4各式緩衝液及反應液 35 3.4.1胺基含量反應液 35 3.4.2醛基含量反應液 35 3.4.3 FPO活性測試反應液 36 3.5實驗設備 37 3.6實驗方法 38 3.6.1磁性微粒四氧化三鐵之製備 38 3.6.2市售磁性微粒表面修飾 39 3.6.2.1磁性微粒表面胺化 39 3.6.2.2磁性微粒表面修飾醛基 39 3.6.3表面修飾醛基電紡絲薄膜之製備 40 3.6.3.1電紡絲聚乙烯醇薄膜之製備 40 3.6.3.2電紡絲聚乙烯醇薄膜與戊二醇交聯 41 3.6.4胺基含量測定方法 41 3.6.5醛基含量測定方法 42 3.6.5.1 Tyramine/BCA Assay 42 3.6.5.2 Sulfuric Acid-Phenol Method 43 3.6.6磁性微粒固定化FPO 43 3.6.7電紡絲薄膜固定化FPO 43 3.6.8蛋白質之濃度分析-BCA ASSAY 44 3.6.9消光係數檢測 44 3.6.10 FPO活性分析 45 3.6.11固定化FPO之重複使用性及存放穩定性 46 3.6.12溫度對FPO活性影響 47 3.6.13 pH值對FPO活性影響 47 3.6.14酵素動力學測試 48 3.7分析儀器與方法 48 3.7.1傅立葉轉換紅外線光譜儀(FTIR) 48 3.7.2熱重分析儀(TGA) 48 3.7.3掃描式電子顯微鏡(SEM) 49 3.7.4粒徑分析儀(DLS) 50 3.7.5界達電位分析儀(Zeta-potential) 50 第四章 結果與討論 51 4.1電紡絲奈米薄膜成分及表面型態分析 51 4.1.1電紡絲奈米薄膜製備與修飾 51 4.1.1.1電紡絲奈米薄膜之製備 51 4.1.1.2電紡絲奈米薄膜之修飾 52 4.1.2電紡絲奈米薄膜表面型態 53 4.1.3表面醛基含量 55 4.2磁性微粒成分及結構分析 57 4.2.1磁性微粒之製備與修飾 57 4.2.2磁性微粒表面型態分析 59 4.2.3 Ninhydrin assay 測量胺基含量 62 4.2.4熱重分析儀(TGA)分析 63 4.2.5表面醛基含量 64 4.2.6界達電位分析儀(Zeta-potential)分析 66 4.3傅立葉轉換紅外線光譜儀(FTIR)分析 67 4.4 FPO(FRUCTOSYL PEPTIDE OXIDASE)活性分析 70 4.5固定FPO後之重複使用性 73 4.6溫度與PH值對FPO活性之影響 74 4.7酵素動力學 77 4.9穩定性測試 82 第五章 結論與建議 84 5.1結論 84 5.2建議 85 參考文獻 86

    Adriano, W., Filho, E., Silva, J., Giordano, R., & & Gonc﹐ alves, L. (2005). Stabilization of penicillin G acylase by immobilization on glutaraldehyde-activated chitosan. Brazilian Journal of Chemical Engineering, 22, 529–538.
    Amstad , Esther ., Gehring, Andreas . , Fischer , Hakon.,, Nagaiyanallur , Venkatamaran ., Hahner, Georg ., Textor , Marcus ., & and Reimhult , Erik . (2011). Influence of Electronegative Substituents on the Binding Affinity of Catechol-Derived Anchors to Fe3O4 Nanoparticles. J. Phys. Chem. C, 115(3), 683–691.
    Anders, Heeboll-Nielsen, Mikkel, Dalkiar, Jurgen, J. Hubbuch†, & Owen, R.T. Thomas. (2004). Superparamagnetic adsorbents for high-gradient magnetic fishing of lectins out of legume extracts. Biotechnology and Bioengineering, 87(3), 311–323.
    Anton, Formhals . (1939). Method and apparatus for spinning. United States Patent 2(160), 962.
    Baumgarten, peter K. . (1971). Electrostatic Spinning of Acrylic Microfibers. Journal of Colloid and Interface Science, 36(1), 71-79.
    Bhardwaj, Nandana ., & Kundu, Subhas C. . (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.
    Bognitzki, M., Czado, W., Frese, T., Schsper, A., Hellwig, M., & & Steinhart. (2001). Nanostructured Wbers via electrospinning. . Advance Materials, 13(1), 70-72.
    Bunn, HF., Haney, DN., Kamin, S., Gabbay, KH., & Gallop, PM. (1976). The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo. J Clin Invest. , 57(6), 1652-1659.
    Chen, Chao ., Fu, Yingchun ., Xiang, Canhui., Xie, Qingji ., Zhang, Qingfang., Su, Yuhua ., Wang, Lihua ., & Yao, Shouzhuo. . (2009). Electropolymerization of preoxidized catecholamines on Prussian blue matrix to immobilize glucose oxidase for sensitive amperometric biosensing Biosensors and Bioelectronics, 24(8), 2726–2729.
    Chen, S.P., Yu, X.D., Xu, J.J., & Chen, H.Y. (2011). Gold nanoparticles-coated magnetic microspheres as affinity matrix for detection of hemoglobin A1c in blood by microfluidic immunoassay. 26, 12(4779-4784).
    Chidchanok, Mit-uppatham., Nithitanakul, Manit ., & Supaphol, Pitt . (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338.
    Cooley, John F. (1902). Apparatus for electrically dispersing fluids. United States Patent, 692(631).
    Deitzel, J.M ., Kleinmeyer, J., Harris, D ., & Beck Tan., N.C (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272.
    Dincer, A ., & Telefoncu, A . (2007). Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. Journal of Molecular Catalysis B: Enzymatic, 45(5), 1-2.
    Fei, Bin .,, Qian, Baitai ., Yang, Zongyue., Wang, Ronghua .,, Liub, W.C., Mak, C.L., & Xin, John H. (2008). Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon, 46(13), 1795–1797.
    Fong, H., Chun, I., & & Reneker, D. H. (1999). Beaded nanoWbers formed during electrospinning. Polymer International, 40(16), 4585–4592.
    Gao, C., Li, G., Xue, H., Yang, W., Zhang, F., & Jiang , S. (2010). Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Biomaterials, 31(7), 1486–1492.
    Ghasemi, M., Minier, M., Tatoulian, M., & F., Arefi-Khonsari. (2007). Determination of Amine and Aldehyde Surface Densities: Application
    to the Study of Aged Plasma Treated Polyethylene Films. Langmuir, 23(23), 11554–11561.
    Gupta, P. , Elkins, C. , Long, T.E., & Wilkes, G.L. . (2005). Electrospinning of linear homopolymers of poly (methylmethacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46, 4799-4810.
    Herrmann, Willy O., & Haehnel, Wolfram . (1927). Uber den oly-vinylalkohol. Berichte der deutschen chemischen Gesellschaft (A and B Series), 60(7), 1658–1663.
    Hirokawa, Kozo ., Nakamura, Kazuo ., & Kajiyama, Naoki. (2006). Enzymes used for the determination of HbA1C. FEMS Microbiology Letters, 235(1), 157-162.
    Hohman, M.M. , Shin, M. , Rutledge, G. , & Brenner, M.P. . (2001). Electrospinning and electrically forced jets. II. Applications. Phys Fluids, 13, 2221–2236.
    Hong, Seonki ., Na, Yun Suk., Choi, Sunghwan ., Song, In Taek ., Kim, Woo Youn., & Lee, Haeshin (2012). Non-Covalent Self-Assembly and Covalent Polymerization Co-Contribute to Polydopamine Formation. Advanced Functional Materials, 22(22), 4711–4717.
    Horak, D., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., & Benes, MJ. ( 2001). Properties of RNase A immobilized on magnetic Poly(2-hydroxyethyl methacrylate) microspheres. Biotechnol Progress 17(3), 447.
    Horiuchi, T., Kurokawa, T., & and Saito, N. (1989). Purification and properties of fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1. Agric. Biol. Chem. , 53, 103-110.
    Hsieh, Wen-Pin;, Chieh, J. J.;, Yang, C. C.;, Yang, S. Y.;, Chen, Po-Yu; , Huang, Yu-Hao; , Hong, Y. W.;, & Horng, H. E. (2013). Stability study for magnetic reagent assaying Hb and HbA1c.
    Jia, Hongfei ., Zhu, Guangyu., Vugrinovich, Bradley ., Kataphinan, Woraphon., Reneker, Darrell H. , & Wang, Ping . (2002). Enzyme-Carrying Polymeric Nanofibers Prepared via Electrospinning for Use as Unique Biocatalysts. Biotechnology Progress, 18(5), 1027–1032.
    Jia, Yong-Tang., Gong, Jian ., Gu, Xiao-Hua ., Kim, Hark-Yong., Dong, Jiong ., & Shena, Xin-Yuan. . (2007). Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydrate Polymers, 67(3), 403–409.
    Kim , Kwang-Je., Lee, Soo-Bok., & Han, Neung-Won. . (1994). Kinetics of crosslinking reaction of PVA membrane with glutaraldehyde. Korean Journal of Chemical Engineering 11(1), 41-47. doi: 10.1007/BF02697513
    Koski, A., Yim, K., & and Shivkumar, S. (2004). Effect of molecular weight on fibrous PVA produced by electrospinning. Mater.Lett., 58, 493-497.
    Lee , C.K., & Sureshkumar., Manthiriyappan. (2011). Polydopamine coated magnetic-chitin (MCT) particles as a new matrix for enzyme immobilization. Carbohydrate Polymers, 84, 775–780.
    Lee, Haeshin ., Dellatore, Shara M , Miller, William M.,, & Messersmith, Phillip B. *. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 318(5849), 426-430
    Lee, K. H., Kim, H. Y., La, Y. M., Lee, D. R., & & Sung, N. H. J. (2002). Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Polymer Science Polymer Physics, 40(19), 2259–2268.
    Lee, K.H. , Kim, H.Y. , Bangb, H.J., Jungb, Y.H., & Lee, S.G. . (2003). The change of bead morphology formed on electrospun polystyrene fibers. Polymer, 44(14), 4029–4034.
    Lee, Yuhan ., Lee, Haeshin., Kim, Young Beom ., Kim, Jaeyoon ., Hyeon, Taeghwan., Park, HyunWook., Messersmith, Phillip B., & Park, Tae Gwan. (2008). Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Advanced Materials, 20(21), 4154–4157.
    Li , Dan ., & ., Xia Younan. (2003). Fabrication of Titania Nanofibers by Electrospinning. American Chemical Society, 3(4), 555–560.
    Li, S.F., Chen, J.P., & Wu, W.T. (2007). Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. .Journal of Molecular Catalysis B-Enzymatic, 47, 117–124.
    Lu, Y. , Yin, Y. , Mayers, B. T., & Xina, Y. . (2002). Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-Gel Approach. Nano Letters, 2(3), 183-186.
    Ma, L., Gao, C., Mao, Z., Zhou, J., Shen , J., Hu, X., & Han, C. (2003). Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials, 24(26), 4833-4841.
    Mohapatra, M ., & and An, S. (2010). Synthesis and applications of nano-structured iron oxides/hydroxides – a review. International Journal of Engineering, Science and Technology, 2(8), 127-146.
    Mohapatra , S. , Panda , N. , & Pramanik , P. (2009). Boronic acid functionalized superparamagnetic iron oxide nanoparticle as a novel tool for adsorption of sugar. Materials Science and Engineering: C, 29(7), 2254–2260.
    Morton, W.J. . (1902). Method of dispersing fluids. United States Patent 705(691).
    Raghavana, Prasanth., Lima, Du-Hyun., Ahna, Jou-Hyeon., Nahb, Changwoon., C. David., c, Sherrington., Ryud, Ho-Suk ., & Ahnd, Hyo-Jun. (2012). Electrospun polymer nanofibers: The booming cutting edge technology. Reactive and Functional Polymers, 72(12), 915–930.
    Rayleigh , Lord . (1882). XX. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5, 14(87).
    Ren, Guanglei ., Xu, Xin., hua, Liu, Qiang ., Cheng, Juan., Yuan, Xiaoyan., Wu, Lili ., & Wan, Yizao. . (2006). Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. Reactive & Functional Polymers, 66, 1559–1564.
    Saha , Amit ., Leazer John*., & *., and Varma Rajender S. (2012). O-Allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system. Green Chem., 14, 67-71.
    Santana, Sara D. F. , Dhadge, Vijaykumar L. , & Roque*., and Ana C.A. (2012). Dextran-Coated Magnetic Supports Modified with a Biomimetic Ligand for IgG Purification. American Chemical Society, 4(11), 5907-5914.
    Son, W. K., Youk, J. H., Lee, T. S., & and Park, W. H. (2005). Effect of pH on electrospinning of poly(vinyl alcohol). Mater. Lett., 59, 1571-1575.
    Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., & Ryu, S. (2007). Poly-L-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. Journal of Biomedical Materials Research Part A, 82A(2), 445–454.
    Tanaka, Tsuyoshi, & Matsunaga, Tadashi. (2001). Detection of HbA1c by boronate affinity immunoassay using bacterial magnetic particles. Biosensors and Bioelectronics, 16(9-12): (9-12), 1089-1094.
    Taylor, Geoffrey . (1964). Disintegration of Water Drops in an Electric Field. Proceedings of the royal society of London.Series A. Mathematical and physical sciences, 280, 383-397.
    Taylor, Geoffrey . (1969). Electrically Driven Jets. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. , 313(1515), 453-475.
    Veiseh, Omid ., Gunn, Jonathan ., & and Zhang, Miqin.*. (2010). Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev., 62(3), 284–304.
    Wang, yuhong ., & Hsieh, You-Lo. (2010). Crosslinking of Polyvinyl Alcohol (PVA) Fibrous
    Membranes with Glutaraldehyde and PEG Diacylchloride. Journal of Applied Polymer Scienc, 116(6), 3249–3255. doi: 0.1002/app.31750
    Wannatong, Ladawan ., Sirivat , Anuvat ., & and Supaphol, Pitt . (2004). Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 53, 1851-1859.
    Wu, L , Yuan, X. , & Sheng, J. (2005). Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science, 250, 167-173.
    Xie, J. , Xu, C. , Kohler, N. , Hou, Y. , & Sun, S. . (2007). Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Advanced Materials, 19(20), 3163–3166.
    XIE, JIANG-BING , & HSIEH, YOU-LO* . (2003). Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. JOURNAL OF MATERIALS SCIENCE, 38, 2125 – 2133.
    Xu, Li Qun ., Yang, Wen Jing., Neoh, Koon-Gee., Kang , En-Tang ., & and Fu, Guo Dong. (2010). Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules, 43(20), 8336–8339.
    Xu, X., Deng, C., Gao, M., Yu, W. , Yang, p. , & Zhang, X. . (2006). Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry†. Advanced Materials, 18(24), 3289–3293.
    Xu, Xiuqing ., Deng, Chunhui *., Gao, Mingxia ., Yu, Wenjia ., Yang, Pengyuan ., & and Zhang, Xiangmin*. (2006). Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Advanced Materials, 18(24), 3289-3293.
    Ye P, Xu ZK, Wu J, Innocent C, & P., Seta. (2006). Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization. Biomaterials, 27(22), 4169-4176.
    Ye, Qian., Zhou , Feng ., & and Liu, Weimin . (2011). Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev, 40, 4244-4258.
    Zhang, C., Yuan, X., Wu, L., Han, Y., & and Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J., 41, 423-342.
    Zhang, Min., He, Xiwen ., Chen, Langxing., & and Zhang, Yukui. (2010). Preparation of IDA-Cu functionalized core–satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood. Journal of Materials Chemistry, 20(47), 10696-10704.
    Zhang, Y., Dong, C., Sheng, J., & uan*, Dr Xiao yan. (2004). Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 53(11), 1704–1710.
    Zhang, Y.W., Zhang, Yun., Wang, Hua., Shen, Guoli ., & Yu, Ruqin. (2009). Fabrication of a Novel Enzyme Immobilization Platform Using Bio-mimetic Dopamine Polymer Films and Nanogold particles. Acta Chim. Sinica 67(20), 2375-2380.
    Zhang, YZ., Wang, X., Feng, Y., Li. J., Lim CT, & Ramakrishna, S. (2006). Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules, 4, 1049-1057.
    Zhou, J., Cao, C., & Ma, X. (2009). A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. International Journal of Biological Macromolecules, 45(5), 504–510.
    Zhou, Juan., Cao, Chuanbao., & Ma, Xilan. (2009). A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. International Journal of Biological Macromolecules, 45(5), 504–510.
    Zong, X. H.;, Kim, K. S.;, Fang, D. F.;, Ran, S. F.; , Hsiao, B. S.; , & & Chu, B. J. (2002). Structure and process relationship of electrospun bioabsorbable nanoWber membranes. Polymer International, 43(16), 4403–4412.
    Zong, Xinhua., Kim, Kwangsok ., Fang, Dufei ., Ran, Shaofeng ., Hsiao, Benjamin S ., & Chua, Benjamin . (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43(16), 4403–4412.

    無法下載圖示 全文公開日期 2019/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE