簡易檢索 / 詳目顯示

研究生: 阮錦雲
Nguyen - Cam Van
論文名稱: 製備光催化交聯幾丁聚醣一雙相磷酸鈣電紡奈米纖維
One-step electrospinning of photo-crosslinked Chitosan/Biphasic Calcium Phosphate Nanofibers
指導教授: 何明樺
Ming-Hua, Ho
口試委員: 王孟菊
Meng-Jiy, Wang
李忠興
Zhong-Xing, Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 142
中文關鍵詞: 光催化交聯丁聚醣磷酸鈣電紡奈米 纖維
外文關鍵詞: Biphasic calcium phosphate, chitosan, Electrospinning, crosslinking
相關次數: 點閱:309下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本 實 驗 開 發 了 電 紡 絲 技 術 製 備 幾 丁 聚 醣/雙 相 磷 酸 鈣 (Chitosan/Biphasic Calcium Phosphate, CS/BCP) 奈 米 纖 維 的 程 序、 並 且 藉由調 整電 紡絲過程中的主要變因,包含電紡電壓、BCP濃度、電紡 率 及電極間距以得到直徑與結構最均勻的奈米纖維。
    本研究利用光交聯反應以增加CS/BCP奈米纖維的穩定性。在電紡絲的過程中加入tetra-ethyleneglycol diacrylate (TTEGDA) 及 2,2-dimethoxy-2-phenylacetophenone(DMPA),並結合UV光照 射 以 達 到 單 步 (one-step) 交 聯。藉由光交聯反應,本實驗得到有效率、可連續生產且具有良好穩定性的奈米纖維製備。藉由適合的交聯劑濃度及光照強度,CS/BCP電紡纖維膨潤度可以大幅的下降,並在水相中長時間維持其奈米纖維網狀結。同時,電紡纖維的型態並不會因光交聯反應而改變。
    接著以骨母細胞的培養鑑別CS/BCP奈米纖維的生物相容性,且由其結果得知經光交聯反應後其生物相容性增加,這是因為藉由改善奈米纖維的機械性質可以增加細胞貼覆性與增殖力。纖維對骨細胞的親和性亦會因添加BCP而提升,其骨母細胞在培養的初期、中期及末期皆能有所增長。CS/BCP奈米纖維對於骨類細胞有相當的選擇性,此一結果可由非骨母細胞於此材料上難以生長而得知。本研究中所開發的CS/BCP奈米纖維具有生物相容性、良好的骨傳導性及在水溶液態中穩定,表現出作為骨組織工程支架的良好潛能。


    In this research, chitosan/biphasic calcium phosphate (CS/BCP) nanofibers were prepared by electrospinning. The main parameters in electrospinning process, including applied voltage, BCP concentration, flow-rate and tip-to-collector distance, were optimized to obtaine most uniform CS/BCP nanofibers.
    To enhance the stability of CS/BCP nanofibers, photocrosslinking was applied with the addition of tetra-ethyleneglycol diacrylate (TTEGDA) and 2,2-dimethoxy-2-phenylacetophenone (DMPA), where the UV irradiation was incorporated with electrospinning set-up and thus a one-step crosslinking was achieved. By using the photocrosslinking process proposed in this research, nanofibers with good stability were produced continuously and efficiently. With suitable crosslinker concentrations and irradiation energy, the swelling degree of CS/BCP electrospun fibers greatly decreased, keeping network structures of nanofibers in aqueous condition. Meanwhile, the morphology of nanofibers was not changed due to the photocrosslinking.
    From the culture of osteogenic cells, the biocompatibility of CS/BCP nanofibrous substrates was identified and increased by the photocrosslinking. The enhancement in cell attachment and proliferation was caused by the improvement in nanofibers’ mechanical properties. The biocompatibility to osteoblasts was also promoted with the content of BCP. The osteogenic differentiation in early, middle and late stage was encouraged by the addition of BCP on nanofibrous substrates. The CS/BCP nanofibers were highly specific to osteogenic cells, revealed by difficulties in the growth of non-osteogenic cells on this composite nanofibrous scaffold. A modified electrospinning process which can continuously and easily produce biocompatible and osteoconductive CS/BCP nanofibers with high stability was developed in this study. The novel nanofibrous scaffolds showed great potential in the tissue engineering of bones.

    中文摘要 I Abstract III Abbreviation List IX Figure List XI Table List XVI Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1. Nanofibers in Tissue Engineering 4 2.2. Electrospinning Process 6 2.2.1 Mechanism of electrospinning 6 2.2.2 Parameter affecting on electrospinning process 8 2.2.3 Composite nanofibers for tissue engineering application 11 2.3. Chitosan (CS) 12 2.3.1. Degree of deacetylation and solubility of chitosan 14 2.3.2. The molecular weight 14 2.4. Calcium Phosphate Bioceramic 15 2.4.1 Hydroxyappatite (HA) 15 2.4.2 Beta Tri-calcium Phosphate (β-TCP) 16 2.4.3 Biphasis Calcium Phosphate for Bone Tissue Engineering 17 2.4.4 CS/BCP nano-composite for Biomedical Applications 18 2.5. Crosslinking Techniques 20 2.5.1 Glutaraldehyde (GA) 21 2.5.2 Genipin 22 2.5.3 Carbodiimide 23 2.5.4 Photo-crosslinking 23 Chapter 3. Materials and Experimental Procedure 30 3.1. Chemicals and Materials 30 3.2. Experimental apparatus 31 3.3. Preparation of BCP particles 33 3.4. Preparation of Photo-crosslinked Electrospun Chitosan/ Biphasis Calcium Phosphate (CS/BCP) nanofibers 33 3.4.1 Preparation and electrospinning of CS/BCP nanofibers 33 3.4.2 Electrospinning of photo-crosslinked CS/BCP solutions 34 3.5. Characterization 35 3.6. Biocompatibility and osteoconductivity analysis 39 3.6.1 Cells type 39 3.6.2 Cell Culture 42 3.6.3 Cell Counting 43 3.6.4 Preparation of medium 44 3.6.5 Cell De-freezing 45 3.6.6 Cell freezing 45 3.6.7 Cell adhesion 46 3.6.8 MTT (3 - (4, 5- dimethylthiazol-2-yl) - 2, 5 - diphenyltetrazolium bromide) assay 46 3.6.9 Alkaline phosphatase (ALPase) assay 47 3.6.10 Osteogenic Differentiation 48 3.6.11 Statistical analysis 49 Chapter 4. Results and Discussion 50 4.1. Effect of electrospinning parameters 50 4.1.1. Electrospinning ability of BCP 50 4.1.2. Effect of applied voltage 51 4.1.3. Effect of tip-to-collector distance 54 4.1.4. Effect of flow rate 56 4.1.5. Effect of CS concentration 58 4.1.6. Effects of PEGlyation of BCP on nanofiber diameter 59 4.1.7. Optimal conditions of CS/BCP electrospinning 60 4.2. Photo-Crosslinking CS/BCP Nanofibers 60 4.2.1. Effect of radiation power 61 4.2.2. Effect of Photo-crosslinker concentration 65 4.3. Effect of BCP concentration 72 4.3.1. Mophologies of Photo-crosskinked CS/BCP nanofibers 72 4.3.2. Fourier Transform Infrared Spectroscopy (FTIR) 73 4.3.3. Mophologies of 7F2 cells on Photo-crosskinked CS/BCP scaffolds 74 4.3.4. Energy-dispersive X-ray spectroscopy (EDS) 79 4.4. Biocompatibility and osteoconductivity of photo-crosslinked CS/BCP nanofibers 80 4.4.1. Viability of osteoblasts on CS/BCP nanofibers with various photo-crosslinker concentrations 80 4.4.2. Osteogenic differentiation of Osteoblasts on CS/BCP nanofibers with various photo-crosslinker concentration 84 4.4.3. Biocompatibility and osteoconductivity of CS/BCP nanofibers on 7F2 Osteoblasts with various BCP concentrations 89 4.4.4. Biocompatibility of CS/BCP membranes on L-929 Fibroblasts with various BCP concentration 92 4.4.5. Biocompatibility and osteoconductivity of CS/BCP membranes on Gingival Fibroblasts (GF) with various BCP concentration 99 Chapter 5. Conclusion 102 APPENDIX A. Determination of nanofiber diameter by the image J software 124 APPENDIX B. MTT assay 124 APPENDIX C. Protein assay 125 APPENDIX D. ALP assay 126

    References

    1. Cenni E., Pizzoferrato A., Ciapetti G., Granchi D., Savarino L., Stea S., Inflammatory response to metals and ceramics. Integrated Biomaterials Science, 2002. p. 735–791.
    2. Wagh A., Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications. Elsevier Science, 2004.
    3. Veis A., Phosphoproteins from teeth and bone. Ciba Found Symp, 1998. 136, p. 161-177.
    4. Songtao Shi, Martin Kirk, Arnold J. Kahn, The role of type I collagen in the regulation of the osteoblast phenotype. Journal of Bone and Mineral Research, 1996. 11(8), p. 1139-1145.
    5. Boskey AL., Posner AS., Bone structure, composition, and mineralization. Orthop Clin North Am, 1984. 15(597-612).
    6. Shams Nateri A., Modeling Light Reflection from Polyacrylonitrile Nanofiber. Journal of Computational and Theoretical Nanoscience, 2010. 7(2), p. 418-422.
    7. Milena Ignatova, Nevena Manolova, Iliya Rashkov, Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 2007. 43(4), p. 1112-1122.
    8. Schiffman JD., Schauer CL., One-Step Electrospinning of Cross-Linked Chitosan Fibers. Biomacromolecules, 2007. 8(9), p. 2665-2667.
    9. Starbova M., Ignatova K., Markova N., Manolova N., Rashkov I., Electrospun nanofiber mats with antibacterial properties from quaternized chitosan and poly(vinyl alcohol). Carbohydrate Researcg, 2006. 341, p. 2098-2107.
    10. Allen MR., Hock JM., Burr DB., Periosteum: biology, regulation, and response to osteoporosis therapies. Bone, 2004. 35(5), p. 1003-1012.
    11. Schiffman JD., Schauer CL., Cross-linking chitosan nanofibers. Biomacromolecules, 2007. 8, p. 594– 601.
    12. Schiffman JD., Schauer CL., One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules, 2007. 8, p. 2665–2667.
    13. Jameela SR., Jayakrishnan A., Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials, 1995. 16(10), p. 769-775.
    14. Chiou MS., Li HY., Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere, 2003. 50(8), p. 1095-1105.
    15. Ryousuke Touyama, Kenichiro Inoue, Yoshio Takeda, Masahiko Yatsuzuka, Takeshi Ikumoto, Nobuharu Moritome, Tetsuro Shingu, Toshio Yokoi, Hiroyuki Inouye, Studies on the Blue Pigments Produced from Genipin and Methylamine. II .On the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chemical & pharmaceutical bulletin, 1994. 42(8), p. 1571-1578.
    16. Touyama R., Takeda Y., Inoue K., Kawamura I., Yatsuzuka M., Ikumoto T., Shingu T., Yokoi T., Inouye H., Studies on the blue pigments produced from genipin and methylamine 0.1. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem. Pharm. Bull.42, 1994. p. 668 –673.
    17. Mi FL., Tan YC., Liang HC., Huang RN., Sung HW., In vitro evaluation of a chitosan membrane cross-linked with genipin. J. Biomater. Sci. Polym., 2001. 12, p. 835– 850.
    18. Eric RS. Welsh, Qadri CL., Syed BP., Ronald R., Chitosan Cross-Linking with a Water-Soluble, Blocked Diisocyanate. 1. Solid State. Biomacromolecules, 2002. 3(6), p. 1370-1374.
    19. Eric R. Schauer Welsh, Santos CL., John PP, Ronald R., In Situ Cross-Linking of Alternating Polyelectrolyte Multilayer Films. Langmuir, 2004. 20(5), p. 1807-1811.
    20. Wan Ngah WS., Endud CS., Mayanar R., Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. Reactive and Functional Polymers, 2002. 50(2), p. 181-190.
    21. Zhang Sisson K., Farach-Carson C., Chase MC., Rabolt DB., Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009. 10(7), p. 1675-1680.
    22. Tu R., Zeng M., H.W., Zhao J.H, Zha Z.G, Zhuo C.R., Preparation, structure and drug release behaviour of chitosan-base nanofibers. IET Nanobiotechnol, 2009. 3, p. 8-13.
    23. HyeSung Nam, Jeongho An, DongJune Chung, Ji-Heung Kim, Chong-Pyoung Chung, Controlled release behavior of bioactive molecules from photo-reactive hyaluronic acid-alginate scaffolds. Macromolecular Research, 2006. 14(5), p. 530-538.
    24. Yu Jin, Dongzhi Yang, Yingshan Zhou, Guiping Ma, Jun Nie, Photocrosslinked electrospun chitosan-based biocompatible nanofibers. Journal of Applied Polymer Science, 2008. 109(5), p. 3337-3343.
    25. Langer R., Vacanti J., Tissue engineering. Science. 1993. 260, p. 920-926.
    26. Atala A., Lanza RP., Methods of tissue engineering. Academic Pr, 2002.
    27. Ma PX., Zhang R., Synthetic nano-scale fibrous extracellular matrix. Journal of biomedical materials research, 1999. 46(1), p. 60-72.
    28. Kisiday J., Jin M., Kurz B., Hung H., Semino C., Zhang S., Grodzinsky AJ., Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences, 2002. 99(15), p. 9996-10001.
    29. Wan-Ju Li, Cato T. Laurencin, Edward J. Caterson, Rocky S. Tuan, Frank K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 2002. 60(4), p. 613-621.
    30. Wee-Eong Teo, Wei He, Seeram Ramakrishna, Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnology Journal, 2006. 1(9), p. 918-929.
    31. Kotaki M., Ma Z., Inai R., Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng., February 28, 2005a. 11(1-2), p. 101-109.
    32. Rajiv Padhye Rajkishore Nayak, Illias Louis Kyratzis, Yen Bach Truong and Lyndon Arnold, Recent advances in nanofibre fabrication techniques. Textile Research Journal, 2012. 82(2), p. 129-147.
    33. Shin M., Ishii O., Sueda T., Vacanti JP., Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 2004. 25(17), p. 3717-3723.
    34. Reneker DH., Chun I., Nanometer diameter fibers of polymer produced by electrospinning. Nanotechnology, 1996. 7, p. 216-223.
    35. Shin M., Yoshimoto H., Vacanti JP., In vivo bone tissue engineering using meshenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng., July 9, 2004. 10, p. 33-41.
    36. Sergey V. Fridrikh, Jian H. Yu, Michael P. Brenner, Gregory C. Rutledge, Controlling the Fiber Diameter during Electrospinning. Physical Review Letters, 2003. 90(14), p. 144502.
    37. Moses M. Hohman, Michael Shin, Gregory Rutledge, Michael P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids (1994-present), 2001. 13(8), p. 2201-2220.
    38. Moses M. Hohman, Michael Shin, Gregory Rutledge, Michael P. Brenner, Electrospinning and electrically forced jets. II. Applications. Physics of Fluids (1994-present), 2001. 13(8), p. 2221-2236.
    39. Doshi J., Reneker DH., Electospinning process and application of electrospun fibers. J Electrostat, 1995. 35, p. 151-160.
    40. Yarin AL., Koombhongse S., Reneker DH., Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. Journal of Applied Physics, 2001. 90(9), p. 4836-4846.
    41. John Zeleny, The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces. Physical Review, 1914. 3(2), p. 69-91.
    42. Darrell H. Reneker, Alexander L. Yarin, Hao Fong, Sureeporn Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 2000. 87(9), p. 4531-4547.
    43. Shin YM., Hohman MM., Brenner MP., Rutledge GC., Electrospinning: A whipping fluid jet generates submicron polymer fibers. Applied Physics Letters, 2001. 78(8), p. 1149-1151.
    44. Audrey Frenot, Ioannis S. Chronakis, Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science, 2003. 8(1), p. 64-75.
    45. Kameoka J., Craighead HG., Fabrication of oriented polymeric nanofibers on planer surfaces by electrospinning. Appl Phys Lett., 2003. 83, p. 371-373.
    46. Bibekananda S., Subramanian V., Natarajan TS., Rong-Zheng Xiang, Chia-Cheng Chang, Wun-Shain Fann, Electrospinning of continuous aligned polymer fibers. Applied Physics Letters, 2004. 84(7), p. 1222-1224.
    47. Dan Li, Gong Ouyang, Jesse T. McCann, Younan Xia, Collecting Electrospun Nanofibers with Patterned Electrodes. Nano Letters, 2005. 5(5), p. 913-916.
    48. Yang F., Murugan R., Wang S., Ramakrishna S., Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials, 2005. 26(15), p. 2603-2610.
    49. Theron A., Zussman E., Yarin AL., Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001. 12(3), p. 384.
    50. Chang Hun Lee, Ho Joon Shin, In Hee Cho, Young-Mi Kang, In Ae Kim, Ki-Dong Park, Jung-Woog Shin, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11), p. 1261-1270.
    51. Zong X., Kim K., Fang D., Ran S., Hsiao B.S., Chu B., Structure and process relationship of electrospun biodegradable nanofiber membrane. Polymer, 2004. 43(16), p. 4403-4412.
    52. Dhirendra S. Katti, Kyle W. Robinson, Frank K. Ko, Cato T. Laurencin, Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004. 70B(2), p. 286-296.
    53. Larrondo L., John Manley R., Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition, 1981. 19(6), p. 909-920.
    54. Sachiko Sukigara, Milind Gandhi, Jonathan Ayutsede, Michael Micklus, Frank Ko, Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer, 2003. 44(19), p. 5721-5727.
    55. Christopher J. Buchko, Loui C. Chen, Yu Shen, David C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999. 40(26), p. 7397-7407.
    56. Xiaoyan Yuan, Yuanyuan Zhang, Cunhai Dong, Jing Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004. 53(11), p. 1704-1710.
    57. Xinying Geng, Oh-Hyeong Kwon, Jinho Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27), p. 5427-5432.
    58. Chang Seok Ki, Doo Hyun Baek, Kyung Don Gang, Ki Hoon Lee, In Chul Um, Young Hwan Park, Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer, 2005. 46(14), p. 5094-5102.
    59. Chidchanok Mit-uppatham, Manit Nithitanakul, Pitt Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 2004. 205(17), p. 2327-2338.
    60. Crosby AJ., Lee J-Y., Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties. Polymer Reviews, 2007. 47(2), p. 217-229.
    61. Shu-Hua Teng, Eun-Jung Lee, Peng Wang, Hyoun-Ee Kim, Collagen/hydroxyapatite composite nanofibers by electrospinning. Materials Letters, 2008. 62(17–18), p. 3055-3058.
    62. Ashraf Sh Asran, S. Henning, Goerg H. Michler, Polyvinyl alcohol–collagen–hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level. Polymer, 2010. 51(4), p. 868-876.
    63. Zhang Y., Venugopal JR., El-Turki A., Ramakrishna S., Su B., Lim CT., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008. 29(32), p. 4314.
    64. Venugopal J., Vadgama P., Ramakrishna S., Biocompositenanofibers and osteoblasts for bone tissue engineering. Nanotechnology, 2007.
    65. Tze-Wen Chung, Ya-Fen Lu, Hsin-Ya Wang, Weng-Pin Chen, Shoei-Shen Wang, Yeong-Shang Lin, Shu-Hsun Chu, Growth of Human Endothelial Cells on Different Concentrations of Gly-Arg-Gly-Asp Grafted Chitosan Surface. Artificial Organs, 2003. 27(2), p. 155-161.
    66. Keisuke Kurita, Takanori Sannan, Yoshio Iwakura, Studies on chitin, 4. Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Die Makromolekulare Chemie, 1977. 178(12), p. 3197-3202.
    67. Kjell M. Varum, Marit W. Anthonsen, Hans Grasdalen, Olav Smidsrod, 13C-N.m.r. studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydrate Research, 1991. 217(0), p. 19-27.
    68. Yoshio Araki, Eiji Ito, A pathway of chitosan formation in Mucor rouxii: Enzymatic deacetylation of chitin. Biochemical and Biophysical Research Communications, 1974. 56(3), p. 669-675.
    69. Jong Eun Lee, Seoung Eun Kim, Ick Chan Kwon, Hyun Jeong Ahn, Hyunchul Cho, Sang-Hoon Lee, Hee Joong Kim, Sang Cheol Seong, Myung Chul Lee, Effects of a Chitosan Scaffold Containing TGF-β1 Encapsulated Chitosan Microspheres on In Vitro Chondrocyte Culture. Artificial Organs, 2004. 28(9), p. 829-839.
    70. Bumgardner JD., Wiser R., Elder SH., Jouett R., Yang Y., Ong JL., Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Journal of Biomaterials Science, Polymer Edition, 2003. 14(12), p. 1401-1409.
    71. Sohrabi A., Lahiji A., Hungerford DS., Frondoza CG., Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of Biomedical Materials Research Part A, 2000. 51(4), p. 586-595.
    72. Elder SH., Nettles DL., Gilbert JA., Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Engineering, 2002. 8(6), p. 1009-1016.
    73. Park YJ., Lee YM., Lee SJ., Ku Y., Han SB., Choi SM., Klokkevold PR., Chung CP., Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. Journal of Periodontology, 2000. 71(3), p. 410-417.
    74. Wiser R., Bumgardner JD., Gerard PD., Bergin P., Chestnutt B., Marin M., Ramsey V., Elder SH., Gilbert JA., Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science Polymer, 2003. 14(5), p. 423-438.
    75. Li D., Xia Y., Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 2004. 16(14), p. 1151-1170.
    76. Fujihara S., Teo WE., Lim CT., Ma Z., An introduction to electrospinning and nanofibers. World Scientific, 2005.
    77. Soon Hee Kim, Hyun Jung Ha, Youn Kyung Ko, Sun Jung Yoon, John M. Rhee, Moon Suk Kim, Hai Bang Lee, Gilson Khang, Correlation of proliferation, morphology and biological responses of fibroblasts on LDPE with different surface wettability. Journal of Biomaterials Science, Polymer Edition, 2007. 18(5), p. 609-622.
    78. Eric Guibal, Interactions of metal ions with chitosan-based sorbents: a review. Separation and Purification Technology, 2004. 38(1), p. 43-74.
    79. Li D., Xia Y., Electrospinning of Nanofibers: Reinventing the Wheel. Advanced Materials, 2004. 16, p. 1151-1170.
    80. Gao Qun ,Wan Ajun, Effects of molecular weight, degree of acetylation and ionic strength on surface tension of chitosan in dilute solution. Carbohydrate Polymers, 2006. 64(1), p. 29-36.
    81. Jenwithisuk R., Prasitsilp M., Kongsuwan K., Damrongchai N., Watts P., Cellular responses to chitosan in vitro: The importance of deacetylation. Journal of Materials Science: Materials in Medicine, 2000. 11(12), p. 773-778.
    82. Fatiha Chellat, Maryam Tabrizian, Severian Dumitriu, Esteban Chornet, Charles-Hilaire Rivard, L'Hocine Yahia, Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. Journal of Biomedical Materials Research, 2000. 53(5), p. 592-599.
    83. Wu Yue, Pingjia Yao, Yuanan Wei, Influence of ultraviolet-irradiated oxygen on depolymerization of chitosan. Polymer Degradation and Stability, 2009. 94(5), p. 851-858.
    84. Jing Liu ,Wenshui Xia, Purification and characterization of a bifunctional enzyme with chitosanase and cellulase activity from commercial cellulase. Biochemical Engineering Journal, 2006. 30(1), p. 82-87.
    85. Dhillon GS., Brar SK., Valero JR, Mausam V., Bioproduction of hydrolytic enzymes using apple pomace waste by A. niger: applications in biocontrol formulations and hydrolysis of chitin/chitosan. Bioprocess and Biosystems Engineering, 2011. 34(8), p. 1017-1026.
    86. Quanyuan Cai, Zhiming Gu, Yong Chen, Weiqing Han, Tingming Fu, Hongchang Song, Fengsheng Li, Degradation of chitosan by an electrochemical process. Carbohydrate Polymers, 2010. 79(3), p. 783-785.
    87. Simina Popa-Nita, Jean-Michel Lucas, Catherine Ladaviere, Laurent David, Alain Domard, Mechanisms Involved During the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control. Biomacromolecules, 2009. 10(5), p. 1203-1211.
    88. Hua Zhang ,Steven H. Neau, In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials, 2001. 22(12), p. 1653-1658.
    89. Maddali KK., Dhulipala VC., Welshons WV., Reddy CS., Secalonic acid D blocks embryonic palatal mesenchymal cell-cycle by altering the activity of CDK2 and the expression of p2l and cyclin E. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2005. 74(3), p. 233-242.
    90. Larry L. Hench, Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7), p. 1487-1510.
    91. Veis A., Phosphoproteins from teeth and bone. Ciba Found Symp, 1988. (136), p. 161-177.
    92. Lijun Kong, Yuan Gao, Wenling Cao, Yandao Gong, Nanming Zhao, Xiufang Zhang, Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A, 2005. 75A(2), p. 275-282.
    93. Haiguang Zhao, Lie Ma, Changyou Gao, Jiacong Shen, Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds. Polymers for Advanced Technologies, 2008. 19(11), p. 1590-1596.
    94. Isamu Yamaguchi, Shunsuke Iizuka, Akiyoshi Osaka, Hideki Monma, Junzo Tanaka, The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003. 214(1–3), p. 111-118.
    95. Xuan Cai, Hua Tong, Xinyu Shen, Weixuan Chen, Juan Yan, Jiming Hu, Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia, 2009. 5(7), p. 2693-2703.
    96. Racquel Zapanta LeGeros, Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clinical Orthopaedics and Related Research, 2002. 395, p. 81-98.
    97. Szpalski M., Gunzburg R., Applications of calcium phosphate-based cancellous bone void fillers in trauma surgery. Orthopedics, 2002. 25, p. 601-609.
    98. Driskell TD., Metsger DS., Paulsrud, Tricalcium phosphate ceramic--a resorbable bone implant: review and current status. The Journal of the American Dental Association, 1982. 105(6), p. 1035-1038.
    99. Akao M., Aoki H., Kato K., Sato A., Dense polycrystalline β-tricalcium phosphate for prosthetic applications. Journal of Materials Science, 1982. 17(2), p. 343-346.
    100. Paul Ducheyne, Shulamith Radin, Linda King, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. Journal of Biomedical Materials Research, 1993. 27(1), p. 25-34.
    101. Rejda BV., Peelen JGJ., Groot K., Tricalcium Phosphate as a Bone Substitute. J. Bioeng, 1977. 1, p. 93-97.
    102. Khashaba Rania M., Moussa Mervet M., Mettenburg Donald J., Rueggeberg Frederick A., Chutkan Norman B., Borke James L., Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations. International Journal of Biomaterials, 2010. 2010.
    103. Karen JL. Burg, Scott Porter, James F. Kellam, Biomaterial developments for bone tissue engineering. Biomaterials, 2000. 21(23), p. 2347-2359.
    104. Karin A. Hing, Lester F. Wilson, Thomas Buckland, Comparative performance of three ceramic bone graft substitutes. The Spine Journal, 2007. 7(4), p. 475-490.
    105. Metsger DS., Driskell TD., Paulsrud, Tricalcium phosphate ceramic--a resorbable bone implant: review and current status. The Journal of the American Dental Association, 1982. 105(6), p. 1035-1044.
    106. Asako Matsushima, Noriko Kotobuki, Mika Tadokoro, Kenji Kawate, Hiroshi Yajima, Yoshinori Takakura, Hajime Ohgushi, In Vivo Osteogenic Capability of Human Mesenchymal Cells Cultured on Hydroxyapatite and on β-Tricalcium Phosphate. Artificial Organs, 2009. 33(6), p. 474-481.
    107. Herve Petite, Veronique Viateau, Wassila Bensaied, Alain Meunier, Cindy de Pollak, Marianne Bourguignon, Karim Oudina, Laurent Sedel, Genevieve Guillemin, Tissue-engineered bone regeneration. Nature Biotechnology, 2000. 18(9), p. 959-963.
    108. Sun H., Ye F., Wang J., Shi Y., Tu Z., Bao J., Qin M., Bu H., Li Y., The Upregulation of Osteoblast Marker Genes in Mesenchymal Stem Cells Prove the Osteoinductivity of Hydroxyapatite/Tricalcium Phosphate Biomaterial. Transplantation Proceedings, 2008. 40(8), p. 2645-2648.
    109. Veronique Viateau, Genevieve Guillemin, Valerie Bousson, Karim Oudina, Didier Hannouche, Laurent Sedel, Delphine Logeart-Avramoglou, Herve Petite, Long-bone critical-size defects treated with tissue-engineered grafts: A study on sheep. Journal of Orthopaedic Research, 2007. 25(6), p. 741-749.
    110. Se-Kwon Kim ,Eresha Mendis, Bioactive compounds from marine processing byproducts – A review. Food Research International, 2006. 39(4), p. 383-393.
    111. Cheng Xianmiao, Li Yubao, Zuo Yi, Zhang Li, Li Jidong, Wang Huanan, Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering: C, 2009. 29(1), p. 29-35.
    112. Alberto Di Martino, Michael Sittinger, Makarand V. Risbud, Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 2005. 26(30), p. 5983-5990.
    113. Manjubala I., Igor Ponomarev, Ingo Wilke, Klaus D. Jandt, Growth of osteoblast-like cells on biomimetic apatite-coated chitosan scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 84B(1), p. 7-16.
    114. Hua Yuan, Ning Chen, Xiaoying Lu, Buzhong Zheng, Experimental study of natural hydroxyapatite/chitosan composite on reconstructing bone defects. Journal of Nanjing Medical University, 2008. 22(6), p. 372-375.
    115. Hung-Yin Tai, Earl Fu, Trong-Ming Don, Calcium phosphates synthesized by reverse emulsion method for the preparation of chitosan composite membranes. Carbohydrate Polymers, 2012. 88(3), p. 904-911.
    116. Gerstenfeld L., Aronow M., Owen T., Tassinari M., Stein G., Lian J., Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J. Cell. Physiol, 1990. 143(213-221).
    117. Ni M., Zhang Y., Zhang M., Ratner B., Calcium phosphate chitosan composite scaffolds for bone tissue engineering. Tissue Eng., 2003. 9, p. 337-345.
    118. Erhan Bat, Bas HM. Kothman, Gustavo A. Higuera, Clemens A. van Blitterswijk, Jan Feijen, Dirk W. Grijpma, Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials, 2010. 31(33), p. 8696-8705.
    119. Zhang X., Xu JF., Cross-linked electrospun fibrous scaffold for tissue engineering. Current Tissue Engineering, 2012. 1(2-14).
    120. Guillaume Tillet, Bernard Boutevin, Bruno Ameduri, Chemical reactions of polymer crosslinking and post-crosslinking at room and medium temperature. Progress in Polymer Science, 2011. 36(2), p. 191-217.
    121. Sen-lin Yang, Zhi-Hua Wu, Wei Yang, Ming-Bo Yang, Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 2008. 27(8), p. 957-963.
    122. Mukherjee DP., Tunkle AS., Roberts RA., Clavenna A., Rogers S., Smith D., An animal evaluation of a paste of chitosan glutamate and hydroxyapatite as a synthetic bone graft material. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 67B(1), p. 603-609.
    123. Jelena Rnjak Kovacina, Steven G. Wise, Zhe Li, Peter KM. Maitz, Cara J. Young, Yiwei Wang, Anthony S. Weiss, Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials, 2011. 32(28), p. 6729-6736.
    124. Lisa Nivison-Smith, Jelena Rnjak, Anthony S. Weiss, Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomaterialia, 2010. 6(2), p. 354-359.
    125. Sung HW., Huang RN., Huang LH., Tsai CC., In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1), p. 63-78.
    126. Valeria Chiono, Ettore Pulieri, Giovanni Vozzi, Gianluca Ciardelli, Arti Ahluwalia, Paolo Giusti, Genipin-crosslinked chitosan/gelatin blends for biomedical applications. Journal of Materials Science: Materials in Medicine, 2008. 19(2), p. 889-898.
    127. Bigi A., Cojazzi G., Panzavolta S., Roveri N., Rubini K., Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 2002. 23(24), p. 4827-4832.
    128. Long Bi, Zheng Cao, Yunyu Hu, Yang Song, Long Yu, Bo Yang, Jihong Mu, Zhaosong Huang, Yisheng Han, Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2011. 22(1), p. 51-62.
    129. Mirzae E., Faridi-Majidi., Preparation of chitosan based nanofibers as a potential wound dressing by electrospinning. In the 4th International Conference on Nanostructures (ICNS4), Kish Island, I.R Iran, 2012.
    130. Sunarso, Sutarno, Kanji Tsuru, Ika Dewi Ana, Kunio Ishikawa, Effect of crosslinking to the mechanical property of apatite gelatin hybrid for bone substitution purposes. Indo. J. Chem., 2011. 11(3), p. 267-172.
    131. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Wikipedia, the free encyclopedia, 2009, August 27.
    132. Ferreira P., Coelho JF, Almeida JF, Gil MH, Photocrosslinkable Polymers for Biomedical Applications. 2011.
    133. Sionkowska A., Wisniewski M., Skopinska J., Vicini S., Marsano E., The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polymer Degradation and Stability, 2005. 88(2), p. 261-267.
    134. Ting Liu, Wai Keng Teng, Barbara P. Chan, Sing Yian Chew, Photochemical crosslinked electrospun collagen nanofibers: Synthesis, characterization and neural stem cell interactions. Journal of Biomedical Materials Research Part A, 2010. 95A(1), p. 276-282.
    135. Reddy VJ., Zhang Y., Wong SY., Li X., Su B., Ramakrishna S., Enhanced bio-mineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyappatite/collagen/ chitosan. Tissue Eng Part A 2010. 16(1949-1960).
    136. Christopher Barner-Kowollik, Philipp Vana, Thomas P. Davis, Laser-induced decomposition of 2,2-dimethoxy-2-phenylacetophenone and benzoin in methyl methacrylate homopolymerization studied via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Polymer Science Part A: Polymer Chemistry, 2002. 40(5), p. 675-681.
    137. Shi Tang ,Ludvig Edman, On-demand photochemical stabilization of doping in light-emitting electrochemical cells. Electrochimica Acta, 2011. 56(28), p. 10473-10478.
    138. Aduba DJ., Bachelor of science. Master of Science, Biomedical Engineering, 2008.
    139. Wei-Han Lin ,Wei-Bor Tsai, In situ UV-crosslinking gelatin electrospun fibers for tissue engineering applications. Biofabrication, 2013. 5(3).
    140. Pakakrong Sangsanoh, Pitt Supaphol, Stability Improvement of Electrospun Chitosan Nanofibrous Membranes in Neutral or Weak Basic Aqueous Solutions. Biomacromolecules, 2006. 7(10), p. 2710-2714.
    141. Kiyoshi Yamauchi, Tatsuya Goda, Nobuyuki Takeuchi, Einaga H., Toshizumi Tanabe, Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials, 2004. 25(24), p. 5481-5489.
    142. Kousaku Ohkawa, Dongil Cha, Hakyong Kim, Ayako Nishida, Hiroyuki Yamamoto, Electrospinning of Chitosan. Macromolecular Rapid Communications, 2006. 25, p. 3291.
    143. D. Gupta, J. Venugopal, S. Mitra, V. R. Giri Dev, S. Ramakrishna, Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials, 2009. 30(11), p. 2085.
    144. Nezahat Kivrak, Cuneyt Tas A., Synthesis of Calcium Hydroxyapatite-Tricalcium Phosphate (HA-TCP) Composite Bioceramic Powders and Their Sintering Behavior. Journal of the American Ceramic Society, 1998. 81(9), p. 2245-2252.
    145. Satoshi Nakamura, Takayuki Kobayashi, Miho Nakamura, Soichiro Itoh, Kimihiro Yamashita, Electrostatic surface charge acceleration of bone ingrowth of porous hydroxyapatite/β-tricalcium phosphate ceramics. Journal of Biomedical Materials Research Part A, 2010. 92A(1), p. 267-275.
    146. Shahimin MM., Rodzi NHM., Poopalan P., Man B., Nor MNM., Hydrophobicity studies of polymer thin films with varied CNT concentration. 2013.
    147. Hai Yan Yin, Jong Hyun Ko, Jeongho An, Dong June Chung, Ji-Heung Kim, Soo Bok Lee, Do Gi Pyun, Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular Research, 2010. 18(2), p. 137-143.
    148. Catledge SA., Clem WC., Shrikishen N., Chowdhury S., Stanishevsky AV., Koopman M., An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed Mater 2007. (2), p. 142-50.
    149. Venugopal J., Sharon Low, AwTar Choon, Sampath Kumar TS., Ramakrishna S., Mineralization of osteoblasts with electrospun collagen/hydroxyapatite nanofibers. Journal of Materials Science: Materials in Medicine, 2008. 19(5), p. 2039-2046.
    150. Giri Dev VR., Venugopal JR., Senthilram T., Sathiskumar D., Gupta D., Ramakrishna S., Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Cell Biology International, 2010. 35, p. 73-80.
    151. Cartmell SH., Kirkham GR., Genes and proteins involved in the regulation of osteogenesis. Topics in tissue engineering, 2007. 3.
    152. Goldberg HA., Hunter GK., Proceedings of the National Academy of sciences of the United States. 1993. p. 8562-8565.
    153. Hae-Won Kim, Jonathan C. Knowles, Hyoun-Ee Kim, Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds. Journal of Biomedical Materials Research Part A, 2005. 72A(2), p. 136-145.
    154. Nadire N. Ali, Janice Rowe, Teich NM., Constitutive expression of non-bone/liver/kidney alkaline phosphatase in human osteosarcoma cell lines. Journal of Bone and Mineral Research, 1996. 11(4), p. 512-520.
    155. Hae-Won Kim, Hyoun-Ee Kim, Vehid Salih, Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005. 26(25), p. 5221-5230.
    156. Frauchiger V., Baxter LC., Textor M., Gwynn I., Richards RG., Fibroblast and osteoblast adhesion and morphology on calcium phospha te surfaces. eCM Journal, 2002. 4, p. 1-17.

    QR CODE