簡易檢索 / 詳目顯示

研究生: 周世芳
JHOU,SHIH-FANG
論文名稱: 活性開環複分解反應之聚降冰烯合成以及在陰離子交換膜燃料電池之應用
Synthesis and Properties of Crosslinked Polynorbornenes by Living Ring-Opening Metathesis Polymerization for Anion Exchange Membrane Fuel Cell Applications
指導教授: 陳志堅
JYH-CHIEN CHEN
口試委員: 陳秉彥
游進陽
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 聚降冰烯交聯陰離子傳導率四級銨鹽陰離子交換膜
外文關鍵詞: Keyword: polynorbornene,, cross link, anion conductivity, quaternary ammonium, anion exchange membrane
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以dicyclopentadiene (DCPD)為起始物,利用Diels-Alder 加成反應合成出兩種不同長脂肪側鏈之降冰烯單體,並以dichloromethane為溶劑以及[1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(phenylmethylene) bis(3-bromopyridine) ruthenium(II) (G3)進行活性開環複分解聚合反應,成功合出一系列擁有嵌段共聚物結構的聚降冰烯高分子(rPNB)。接著利用5‐butylbicyclo[2.2.1]hept‐2‐ene (M1)以及5‐(bromopropyl)bicyclo[2.2.1]hept‐2‐ene (M2)兩者親疏水單體進料比的不同,控制其IEC值(0.76~2.25 mmol/g),將不同IEC之高分子進行還原和四級銨化,最後以N,N,N′,N′-tetramethyl-1,3-diaminepropane (TMDAP)作為交聯劑,成功以溶液澆鑄法製成不同IEC以及交聯程度之陰離子交換膜,並對其做燃料電池性質之探討。
    由於其四級銨鹽本身之熱穩定性,使得薄膜在200 oC前皆無出現熱重損失,展現出極佳的熱穩定性。而調整不同IEC以及交聯含量所測得含水率和溶脹率分別為21 %至140 %以及2.1 %至23.1 %之間。而本次最高IEC值之CL10-1.91HPNB進行離子傳導率之測試,在IEC值為1.91 mmol/g且溫度80 oC下,離子傳導率可達122.54 mS/cm,而適當交聯含量之CL15-1.19HPNB在IEC值為1.19 mmol/g且溫度80 oC下,其離子傳導率也有110.37 mS/cm,證明適當的交聯有助於提升離子傳導率以及相分離性,最後藉由在60 oC之1 M KOH中進行鹼性穩定性之測試,並在720小時都未發現明顯降解,顯示極佳的鹼性穩定性,但過多的交聯含量,則會導致鹼穩定性產生下降。


    In this work, we used dicyclopentadiene (DCPD) as a starting material and synthesized two kind of norbornene with different long aliphatic side chains by Diels-Alder reaction. And we seuccessfully synthesized a series of polynorbornene with block copolymer structure by using [1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene] dichloro(phenylmethylene) bis(3-bromopyridine) ruthenium(II) (G3) and controlled the IECs and crosslinking degree of the anion exchange membrane (AEM) by feeding ratio.
    The membrane has excellent thermal stability and the water uptake and swelling ratio were measured by adjusting different IEC and crosslinking degree are 21 % to 140 % and 2.1 % to 23.1 %, respectively. The CL10-1.91HPNB which has the highest IEC value was tested for conductivity. When the IEC value is 1.91 mmol/g and the temperature is 80 oC, the conductivity can reach 122.54 mS/cm. The conductivity of CL15-1.19HPNB with appropriate crosslinking degree is 110.37 mS/cm, which prove that proper crosslinking can help to improve conductivity and phase separation. Alkaline stability were tested in 1 M KOH solution at 60 oC for 720 hr. The alkaline stability of the membrane was excellent with no detectable degradation in conductivity after 720 hr in 1M KOH at 60 oC,but high crosslinking content will reduce the alkaline stability.

    Abstract II 致謝 III Figure 索引 VI Scheme 索引 VIII Table 索引 IX 第一章 緒論 1 1.1 前言 1 1.2 燃料電池介紹 2 1.3 AEMFC之發電原理與結構 4 1.4 烯烴複分解反應 (olefin metathesis) 6 第二章 文獻回顧 9 2.1 陰離子交換膜之歷史與發展 9 2.2 陰離子交換膜之合成方式 15 2.3 鹼性穩定性與降解機制 17 2.4 聚降冰烯之介紹 21 2.5 開環複分解聚合(ring-opening metathesis polymerization) 23 2.5.1 催化劑歷史介紹 23 2.5.2 ROMP介紹 28 2.6 研究動機與目的 30 第三章 實驗 31 3.1 實驗儀器 31 3.2 實驗藥品 32 3.3 單體合成 33 3.4 聚降冰烯之合成 35 3.5 聚降冰烯之還原 36 3.6 交聯高分子薄膜之製備方法 37 第四章 結果與討論 38 4.1 單體合成與表徵 38 4.2 高分子合成與性質表徵 43 4.3 IEC、吸水率、溶脹率、Gel fraction 52 4.4 熱性質 55 4.5 機械性質 58 4.6 離子傳導率 60 4.7 鹼性穩定性 64 第五章 結論 66 未來展望 67 參考文獻 68

    1. Sana, B.; Jana, T., Polybenzimidazole Composite with Acidic Surfactant Like Molecules: A Unique Approach to Develop Pem for Fuel Cell. European Polymer Journal 2016, 84, 421-434.
    2. Winter, M.; Brodd, R. J., What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4270.
    3. Shaari, N.; Kamarudin, S. K., Chitosan and Alginate Types of Bio-Membrane in Fuel Cell Application: An Overview. Journal of Power Sources 2015, 289.
    4. Hou, H. Y., Recent Research Progress in Alkaline Polymer Electrolyte Membranes for Alkaline Solid Fuel Cells. Acta Physico-Chimica Sinica 2014, 30, 1393-1407.
    5. Gulzow, E.; Schulze, M., Long-Term Operation of AFC Electrodes with CO2 Containing Gases. Journal of Power Sources 2004, 127 (1-2), 243-251.
    6. Dekel, D. R., Review of Cell Performance in Anion Exchange Membrane Fuel Cells. Journal of Power Sources 2018, 375, 158-169.
    7. Pan, Z. F.; An, L.; Zhao, T. S.; Tang, Z. K., Advances and Challenges in Alkaline Anion Exchange Membrane Fuel Cells. Progress in Energy and Combustion Science 2018, 66, 141-175.
    8. Santosh Kavitake., A Synergy between Well-Defined Homogeneous and Heterogeneous Catalysts: The Case of Ring Opening - Ring Closing Metathesis of Cyclic. Universityé Claude Bernard- Lyon I 2011.
    9.Bicchielli, D.; Borguet, Y.; Delaude, L.; Demonceau, A.; Dragutan, I.; Dragutan, V.; Jossifov, C.; Kalinova, R.; Nicks, F.; Sauvage, X. In Recent Applications of Alkene Metathesis in Fine Chemical Synthesis. Green Metathesis Chemistry, 2010, 207-274.
    10. Grubbs, R. H., Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials (Nobel Lecture). Angewandte Chemie International Edition 2006, 45 (23), 3760-3765.
    11. Yelchuri, V.; Srikanth, K.; Prasad, R. B. N.; Karuna, M. S. L., Olefin Metathesis of Fatty Acids and Vegetable Oils. Journal of Chemical Sciences 2019, 131 (5).
    12. Martinez, H.; Ren, N.; Matta, M.; Hillmyer, M., Ring-Opening Metathesis Polymerization of 8-Membered Cyclic Olefins. Polym. Chem. 2014, 5.
    13. Choinopoulos, I., Grubbs’ and Schrock’s Catalysts, Ring Opening Metathesis Polymerization and Molecular Brushes—Synthesis, Characterization, Properties and Applications. Polymers 2019, 11, 298.
    14. You, W.; Noonan, K. J. T.; Coates, G. W., Alkaline-Stable Anion Exchange Membranes: A Review of Synthetic Approaches. Progress in Polymer Science 2020, 100, 101177.
    15. Gottesfeld, S.; Dekel, D. R.; Page, M.; Bae, C.; Yan, Y.; Zelenay, P.; Kim, Y. S., Anion Exchange Membrane Fuel Cells: Current Status and Remaining Challenges. Journal of Power Sources 2018, 375, 170-184.
    16. García-Nieto, D.; Barragán, V. M., A Comparative Study of the Electro-Osmotic Behavior of Cation and Anion Exchange Membranes in Alcohol-Water Media. Electrochimica Acta 2015, 154, 166-176.
    17. Vandiver, M. A.; Horan, J. L.; Yang, Y.; Tansey, E. T.; Seifert, S.; Liberatore, M. W.; Herring, A. M., Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes. Journal of Polymer Science Part B: Polymer Physics 2013, 51 (24), 1761-1769.
    18. Wang, Y.; Zhang, D.; Liang, X.; Shehzad, M. A.; Xiao, X.; Zhu, Y.; Ge, X.; Zhang, J.; Ge, Z.; Wu, L.; Xu, T., Improving Fuel Cell Performance of an Anion Exchange Membrane by Terminal Pending Bis-Cations on a Flexible Side Chain. Journal of Membrane Science 2020, 595, 117483.
    19. Li, T.; Yan, X.; Liu, J.; Wu, X.; Gong, X.; Zhen, D.; Sun, S.; Chen, W.; He, G., Friedel-Crafts Alkylation Route for Preparation of Pendent Side Chain Imidazolium-Functionalized Polysulfone Anion Exchange Membranes for Fuel Cells. Journal of Membrane Science 2019, 573, 157-166.
    20. Weiber, E. A.; Meis, D.; Jannasch, P., Anion Conducting Multiblock Poly(arylene ether sulfone)s Containing Hydrophilic Segments Densely Functionalized with Quaternary Ammonium Groups. Polymer Chemistry 2015, 6 (11), 1986-1996.
    21. Sayed Daud, S. N. S.; Jaafar, J.; Mohd Norrdin, M. N. A.; Sudirman, R., Poly (ether ether ketone) Based Anion Exchange Membrane for Solid Alkaline Fuel Cell: A Review. Journal of Membrane Science and Research 2019, 5 (3), 205-215.
    22. Lin, B.; Xu, F.; Su, Y.; Han, J.; Zhu, Z.; Chu, F.; Ren, Y.; Zhu, L.; Ding, J., Ether-Free Polybenzimidazole Bearing Pendant Imidazolium Groups for Alkaline Anion Exchange Membrane Fuel Cells Application. ACS Applied Energy Materials 2020, 3 (1), 1089-1098.
    23. Wu, X.; Chen, W.; Yan, X.; He, G.; Wang, J.; Zhang, Y.; Zhu, X., Enhancement of Hydroxide Conductivity by the Di-Quaternization Strategy for Poly(ether ether ketone) Based Anion Exchange Membranes. Journal of Materials Chemistry A 2014, 2 (31), 12222-12231.
    24. Pan, J.; Chen, C.; Li, Y.; Wang, L.; Tan, L.; Li, G.; Tang, X.; Xiao, L.; Lu, J.; Zhuang, L., Constructing Ionic Highway in Alkaline Polymer Electrolytes. Energy & Environmental Science 2014, 7 (1), 354-360.
    25. Lin, C. X.; Zhuo, Y. Z.; Hu, E. N.; Zhang, Q. G.; Zhu, A. M.; Liu, Q. L., Crosslinked Side-Chain-Type Anion Exchange Membranes with Enhanced Conductivity and Dimensional Stability. Journal of Membrane Science 2017, 539, 24-33.
    26. Zhang, X.; Shi, Q.; Chen, P.; Zhou, J.; Li, S.; Xu, H.; Chen, X.; An, Z., Block Poly(arylene ether sulfone) Copolymers Tethering Aromatic Side-Chain Quaternary Ammonium as Anion Exchange Membranes. Polymer Chemistry 2018, 9 (6), 699-711.
    27. Becerra-Arciniegas, R. A.; Narducci, R.; Ercolani, G.; Antonaroli, S.; Sgreccia, E.; Pasquini, L.; Knauth, P.; Di Vona, M. L., Alkaline Stability of Model Anion Exchange Membranes Based on Poly(phenylene oxide) (PPO) with Grafted Quaternary Ammonium Groups: Influence of the Functionalization Route. Polymer 2019, 185, 121931.
    28. Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K.; Xu, T.; Zhuang, L., Anion-Exchange Membranes in Electrochemical Energy Systems. Energy & Environmental Science 2014, 7 (10), 3135-3191.
    29. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M., Anion Conductive Block Poly(arylene ether)s: Synthesis, Properties, and Application in Alkaline Fuel Cells. Journal of the American Chemical Society 2011, 133 (27), 10646-10654.
    30. Yang, Z.; Guo, R.; Malpass-Evans, R.; Carta, M.; McKeown, N. B.; Guiver, M. D.; Wu, L.; Xu, T., Highly Conductive Anion-Exchange Membranes from Microporous Tröger's Base Polymers. Angewandte Chemie International Edition 2016, 55 (38), 11499-11502.
    31. Dang, H.-S.; Jannasch, P., Exploring Different Cationic Alkyl Side Chain Designs for Enhanced Alkaline Stability and Hydroxide Ion Conductivity of Anion-Exchange Membranes. Macromolecules 2015, 48 (16), 5742-5751.
    32. Dang, H.-S.; Weiber, E. A.; Jannasch, P., Poly(phenylene oxide) Functionalized with Quaternary Ammonium Groups Via Flexible Alkyl Spacers for High-Performance Anion Exchange Membranes. Journal of Materials Chemistry A 2015, 3 (10), 5280-5284.
    33. Merle, G.; Wessling, M.; Nijmeijer, K., Anion Exchange Membranes for Alkaline Fuel Cells: A Review. Journal of Membrane Science 2011, 377 (1), 1-35.
    34. Cheng, J.; He, G.; Zhang, F., A Mini-Review on Anion Exchange Membranes For fuel Cell Applications: Stability Issue and Addressing Strategies. International Journal of Hydrogen Energy 2015, 40 (23), 7348-7360.
    35. Mandal, M.; Huang, G.; Kohl, P. A., Anionic Multiblock Copolymer Membrane Based on Vinyl Addition Polymerization of Norbornenes: Applications in Anion-Exchange Membrane Fuel Cells. Journal of Membrane Science 2019, 570-571, 394-402.
    36. Pan, J.; Lu, S.; Li, Y.; Huang, A.; Zhuang, L.; Lu, J., High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications. Advanced Functional Materials 2010, 20 (2), 312-319.
    37. Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H., Synthesis and Thermal Stability of Novel Anion Exchange Resins with Spacer Chains. Journal of Applied Polymer Science 1997, 64 (6), 1161-1167.
    38. Hibbs, M. R., Alkaline Stability of Poly(phenylene)-Based Anion Exchange Membranes with Various Cations. Journal of Polymer Science Part B: Polymer Physics 2013, 51 (24), 1736-1742.
    39. Vijayakumar, V.; Nam, S. Y., Recent Advancements in Applications of Alkaline Anion Exchange Membranes for Polymer Electrolyte Fuel Cells. Journal of Industrial and Engineering Chemistry 2019, 70, 70-86.
    40. Fang, J.; Yang, Y.; Lu, X.; Ye, M.; Li, W.; Zhang, Y., Cross-Linked, ETFE-Derived and Radiation Grafted Membranes for Anion Exchange Membrane Fuel Cell Applications. International Journal of Hydrogen Energy 2012, 37 (1), 594-602.
    41. Fujimoto, C.; Kim, D.-S.; Hibbs, M.; Wrobleski, D.; Kim, Y. S., Backbone Stability of Quaternized Polyaromatics for Alkaline Membrane Fuel Cells. Journal of Membrane Science 2012, 423-424, 438-449.
    42. Akiyama, R.; Yokota, N.; Nishino, E.; Asazawa, K.; Miyatake, K., Anion Conductive Aromatic Copolymers from Dimethylaminomethylated Monomers: Synthesis, Properties, and Applications in Alkaline Fuel Cells. Macromolecules 2016, 49 (12), 4480-4489.
    43. Mohanty, A. D.; Tignor, S. E.; Krause, J. A.; Choe, Y.-K.; Bae, C., Systematic Alkaline Stability Study of Polymer Backbones for Anion Exchange Membrane Applications. Macromolecules 2016, 49 (9), 3361-3372.
    44. Arges, C.; Ramani, V., Two-Dimensional NMR Spectroscopy Reveals Cation-Triggered Backbone Degradation in Polysulfone-Based Anion Exchange Membranes. Proceedings of the National Academy of Sciences of the United States of America 2013, 110.
    45. Hagesteijn, K. F. L.; Jiang, S.; Ladewig, B. P., A Review of the Synthesis and Characterization of Anion Exchange Membranes. Journal of Materials Science 2018, 53 (16), 11131-11150.
    46. Clark, T. J.; Robertson, N. J.; Kostalik Iv, H. A.; Lobkovsky, E. B.; Mutolo, P. F.; Abruña, H. D.; Coates, G. W., A Ring-Opening Metathesis Polymerization Route to Alkaline Anion Exchange Membranes: Development of Hydroxide-Conducting Thin Films from an Ammonium-Functionalized Monomer. Journal of the American Chemical Society 2009, 131 (36), 12888-12889.
    47. Wang, C.; Mo, B.; He, Z.; Shao, Q.; Pan, D.; Wujick, E.; Guo, J.; Xie, X.; Xie, X.; Guo, Z., Crosslinked Norbornene Copolymer Anion Exchange Membrane for Fuel Cells. Journal of Membrane Science 2018, 556, 118-125.
    48. Price, S. C.; Ren, X.; Savage, A. M.; Beyer, F. L., Synthesis and Characterization of Anion-Exchange Membranes Based on Hydrogenated Poly(norbornene). Polymer Chemistry 2017, 8 (37), 5708-5717.
    49. Mandal, M.; Huang, G.; Kohl, P., Highly Conductive Anion-Exchange Membranes Based on Cross-Linked Poly(norbornene): Vinyl Addition Polymerization. ACS Applied Energy Materials 2019, 2.
    50. Jean-Louis Hérisson, P.; Chauvin, Y., Catalyse De Transformation Des Oléfines Par Les Complexes Du Tungstène. Ii. Télomérisation Des Oléfines Cycliques En Présence D'oléfines Acycliques. Die Makromolekulare Chemie 1971, 141 (1), 161-176.
    51. Kavitake, S., A Synergy between Well-Defined Homogeneous and Heterogeneous Catalysts : The Case of Ring Opening - Ring Closing Metathesis of Cyclooctene. 2011.
    52. Grubbs, R. H., The Development of Functional Group Tolerant ROMP Catalysts. Journal of Macromolecular Science, Part A 1994, 31 (11), 1829-1933.
    53. Schrock, R. R., Olefin Metathesis by Molybdenum Imido Alkylidene Catalysts. Tetrahedron 1999, 55 (27), 8141-8153.
    54. K. Armstrong, S., Ring Closing Diene Metathesis in Organic Synthesis. Journal of the Chemical Society, Perkin Transactions 1 1998, (2), 371-388.
    55. Novak, B. M.; Grubbs, R. H., The Ring Opening Metathesis Polymerization of 7-Oxabicyclo[2.2.1]Hept-5-Ene Derivatives: A New Acyclic Polymeric Ionophore. Journal of the American Chemical Society 1988, 110 (3), 960-961.
    56. Trnka, T. M.; Grubbs, R. H., The Development of L2X2RU=CHR Olefin Metathesis Catalysts: An Organometallic Success Story. Accounts of Chemical Research 2001, 34 (1), 18-29.
    57. Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W., Ring-Opening Metathesis Polymerization (ROMP) of Norbornene by a Group Viii Carbene Complex in Protic Media. Journal of the American Chemical Society 1992, 114 (10), 3974-3975.
    58. Choi, T.-L.; Grubbs, R. H., Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angewandte Chemie International Edition 2003, 42 (15), 1743-1746.
    59. Gringolts, M. L.; Denisova, Y. I.; Finkelshtein, E. S.; Kudryavtsev, Y. V., Olefin Metathesis in Multiblock Copolymer Synthesis. Beilstein Journal of Organic Chemistry 2019, 15, 218-235.
    60. Getty, K.; Delgado-Jaime, M. U.; Kennepohl, P., Assignment of Pre-Edge Features in the Ru K-Edge X-Ray Absorption Spectra of Organometallic Ruthenium Complexes. Inorganica Chimica Acta 2008, 361 (4), 1059-1059.
    61. Martínez-Arranz, S.; Albéniz, A. C.; Espinet, P., Versatile Route to Functionalized Vinylic Addition Polynorbornenes. Macromolecules 2010, 43 (18), 7482-7487.
    62. Leber, P.; Kidder, K.; Viray, D.; Dietrich-Peterson, E.; Fang, Y.; Davis, A., Stereoselectivity in a Series of 7-Alkylbicyclo[3.2.0]Hept-2-Enes: Experimental and Computational Perspectives. Journal of Physical Organic Chemistry 2018, 31 (12), e3888.
    63. Müller, K.; Kreiling, S.; Dehnicke, K.; Allgaier, J.; Richter, D.; Fetters, L. J.; Jung, Y.; Yoon, D. Y.; Greiner, A., Synthesis and Rheological Properties of Poly(5-n-Hexylnorbornene). Macromolecular Chemistry and Physics 2006, 207 (2), 193-200.
    64. Herndon, W. C.; Grayson, C. R.; Manion, J. M., Retro-Diels-Alder Reactions. Iii. Kinetics of the Thermal Decompositions of Exo- and Endo-Dicyclopentadiene. The Journal of Organic Chemistry 1967, 32 (3), 526-529.
    65. Rule, J. D.; Moore, J. S., Romp Reactivity of Endo- and Exo-Dicyclopentadiene. Macromolecules 2002, 35 (21), 7878-7882.
    66. Ye, Q.; Gao, T.; Wan, F.; Yu, B.; Pei, X.; Zhou, F.; Xue, Q., Grafting Poly(Ionic Liquid) Brushes for Anti-Bacterial and Anti-Biofouling Applications. Journal of Materials Chemistry 2012, 22 (26), 13123-13131.
    67. Yoon, K.-H.; Kim, K. O.; Schaefer, M.; Yoon, D. Y., Synthesis and Characterization of Hydrogenated Poly(norbornene endo-dicarboximide)s Prepared by Ring Opening Metathesis Polymerization. Polymer 2012, 53 (11), 2290-2297.
    68. Huang, Y.-C.; Wang, K.-L.; Lian, W.-R.; Liao, Y.-A.; Liaw, D.-J.; Lee, K.-R.; Lai, J.-Y., Synthesis of Novel Thermally Stable Electrochromic Polynorbornenes Containing Symmetrical Diarylamine and Unsymmetrical Triarylamine Chromophores Via Ring-Opening Metathesis Polymerisation. Polymer 2012, 53 (9), 1849-1856.
    69. Chen, W.; Mandal, M.; Huang, G.; Wu, X.; He, G.; Kohl, P. A., Highly Conducting Anion-Exchange Membranes Based on Cross-Linked Poly(norbornene): Ring Opening Metathesis Polymerization. ACS Applied Energy Materials 2019, 2 (4), 2458-2468.
    70. Phinyocheep, P.; Pasiri, S.; Tavichai, O., Diimide Hydrogenation of Isoprene–Styrene Diblock Copolymers. Journal of Applied Polymer Science 2003, 87, 76-82.
    71. Hahn, S. F., An Improved Method for the Diimide Hydrogenation of Butadiene and Isoprene Containing Polymers. Journal of Polymer Science Part A: Polymer Chemistry 1992, 30 (3), 397-408.
    72. Zhang, M.; Liu, J.; Wang, Y.; An, L.; Guiver, M. D.; Li, N., Highly Stable Anion Exchange Membranes Based on Quaternized Polypropylene. Journal of Materials Chemistry A 2015, 3 (23), 12284-12296.
    73. Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K.-t.; Lee, J. H., Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances and Challenges. Progress in Polymer Science 2011, 36 (6), 813-843.
    74. Zhang, F.; He, X.; Cheng, C.; Huang, S.; Duan, Y.; Zhu, C.; Guo, Y.; Wang, K.; Chen, D., Bis-Imidazolium Functionalized Self-Crosslinking Block Polynorbornene Anion Exchange Membrane. International Journal of Hydrogen Energy 2020, 45 (23), 13090-13100.
    75. Mandal, M.; Huang, G.; Kohl, P. A., Highly Conductive Anion-Exchange Membranes Based on Cross-Linked Poly(norbornene):Vinyl Addition Polymerization. ACS Applied Energy Materials 2019, 2 (4), 2447-2457.
    76. Hatjopoulos, J. D.; Register, R. A., Synthesis and Properties of Well-Defined Elastomeric Poly(alkylnorbornene)s and Their Hydrogenated Derivatives. Macromolecules 2005, 38 (24), 10320-10322.
    77. Contreras, A. P.; Tlenkopatchev, M. A.; del Mar López-González, M.; Riande, E., Synthesis and Gas Transport Properties of New High Glass Transition Temperature Ring-Opened Polynorbornenes. Macromolecules 2002, 35 (12), 4677-4684.
    78. Bates, C. M.; Chang, A. B.; Momčilović, N.; Jones, S. C.; Grubbs, R. H., Aba Triblock Brush Polymers: Synthesis, Self-Assembly, Conductivity, and Rheological Properties. Macromolecules 2015, 48 (14), 4967-4973.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE