簡易檢索 / 詳目顯示

研究生: 李易霖
Yi-Lin Lee
論文名稱: 以季銨離子液體催化甘油/二氧化碳兩步羧化反應並使用環氧丙烷作為偶聯劑
Two-step glycerol/carbon dioxide carboxylation using a quaternary ammonium ionic liquid as a catalyst with propylene oxide as a coupling agent
指導教授: 胡哲嘉
Che-Chia Hu
口試委員: 林子仁
Tzu-Jen Lin
游文岳
Wen-Yueh Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 二氧化碳轉化甘油轉化碳酸甘油酯高分子離子液體
外文關鍵詞: carbon dioxide conversion, glycerol conversion, glycerol carbonate, polymeric ionic liquids
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甘油羧化生產碳酸甘油酯被認為是一種很有前途的方法,可以同時產生高價值的化學品與解決廢甘油和二氧化碳應用的問題。然而,目前甘油碳酸酯的選擇性和產率仍然很低。在我們的研究中,我們將環氧丙烷引入到甘油羧化反應中,以取代傳統的脫水劑。替代的甘油羧化反應涉及環加成和酯交換反應,在季銨基離子液體作為催化劑的存在下,該反應在熱力學上變得更加有利。含有不同陰離子(I-、Cl-)的季銨離子液體同時表現出路易斯酸性和鹼性的特性,其中含碘離子液體(PDBA-I)自聚合後的催化活性最好。在甲醇作為助催化劑的情況下加入 PDBA-I,可以在相對溫和的條件下(100°C和15 bar CO2)獲得高產率的碳酸甘油酯。 高活性可歸因於碘離子的強親核攻擊能力以加速環加成反應(速率決定步驟)。我們也提出了一種可能的反應機制來理解這項研究的反應路徑。這是首次使用季銨離子液體作為催化劑通過兩步反應增強甘油羧化高活性的路易斯酸性和鹼性性質的研究。


    Glycerol carboxylation to produce glycerol carbonate has been considered a promising approach to simultaneously generate highly valuable chemicals and address the issue of waste glycerol and CO2 application. However, the selectivity and yield of glycerol carbon remained low at the current stage. In our study, we introduced propylene oxide to the glycerol carboxylation reaction to replace the conventional dehydration agent. The alternative glycerol carboxylation reaction involves a cycloaddition and transesterification reaction, which becomes more thermodynamically favorable in the presence of a quaternary ammonium ionic liquid as the catalyst. The quaternary ammonium ionic liquid containing different anions (I‒, Cl‒) exhibited both Lewis acidic and basic sites, and the iodine-containing ionic liquid (PDBA-I) had the best catalytic activity after self-polymerization. With the addition of PDBA-I in the presence of methanol as a co-catalyst, a high yield of glycerol carbon can be obtained at a relatively mild condition (100 °C and 15 bar of CO2). The high activity can be ascribed to the strong nucleophilic attack ability of the iodine ions to accelerate the cycloaddition reaction, which is the rate-determining step. A possible reaction mechanism was proposed to understand the reaction path in this work. This is the first study using a quaternary ammonium ionic liquid as a catalyst to strengthen Lewis acidic and basic properties for high activity of glycerol carboxylation through a two-step reaction.

    中文摘要 I Abstract II 目錄 III 致謝 V 圖目錄 VI 表目錄 VIII 第一章 文獻回顧 1 1.1 研究背景 1 1.1.1二氧化碳與全球暖化 3 1.1.2生質柴油與甘油 5 1.1.3碳酸甘油酯介紹 7 1.1.4由甘油合成碳酸甘油酯之路徑 10 1.1.5環加成與轉酯化之兩步串聯反應 17 1.2反應條件 23 1.2.1 環氧丙烷與甘油莫爾比之效應 23 1.2.2反應溫度之效應 24 1.2.3二氧化碳壓力之效應 25 1.2.4反應時間之效應 26 1.2.5觸媒之效應 26 1.2.6氫氧基之效應 27 1.3離子液體 28 1.3.1離子液體應用於催化環加成反應 29 1.3.2季氨基離子液體 29 第二章、實驗部分 31 2.1 實驗藥品與儀器 31 2.2 觸媒製備 33 2.2.1 合成離子液體(DBA-Cl) 33 2.2.2 合成DBA-Br 33 2.2.3 合成DBA-I 34 2.2.4 合成PDBA-Cl 34 2.2.5 合成PDBA-I 35 2.2.6 合成PDBA-ICl 35 2.3合成碳酸甘油酯實驗 37 2.3.1 產率的計算 37 2.4分析儀器與基本原理 38 2.4.1 分析儀器 38 2.4.2分析儀器基本原理 38 第三章、結果與討論 41 3.1季氨基離子液體之結構與形貌的分析 41 3.2季氨基離子液體於合成碳酸甘油酯之活性 46 3.3兩步驟合成碳酸甘油酯之可能的反應機制 58 第四章、結論 60 Self Introduction 61 參考文獻 62 附錄 70

    [1] B. Muhammad, Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries, Energy, 179 (2019) 232-245.
    [2] R. Waheed, S. Sarwar, C. Wei, The survey of economic growth, energy consumption and carbon emission, Energy Reports, 5 (2019) 1103-1115.
    [3] I. Dincer, Renewable energy and sustainable development: a crucial review, Renewable and sustainable energy reviews, 4 (2000) 157-175.
    [4] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and sustainable energy reviews, 15 (2011) 1513-1524.
    [5] N. Kannan, D. Vakeesan, Solar energy for future world:-A review, Renewable and Sustainable Energy Reviews, 62 (2016) 1092-1105.
    [6] S.I. Seneviratne, M.G. Donat, A.J. Pitman, R. Knutti, R.L. Wilby, Allowable CO2 emissions based on regional and impact-related climate targets, Nature, 529 (2016) 477-483.
    [7] K.O. Yoro, M.O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect, Advances in carbon capture, Elsevier2020, pp. 3-28.
    [8] J. Morison, D. Lawlor, Interactions between increasing CO2 concentration and temperature on plant growth, Plant, Cell & Environment, 22 (1999) 659-682.
    [9] L. Al‐Ghussain, Global warming: Review on driving forces and mitigation, Environmental Progress & Sustainable Energy, 38 (2019) 13-21.
    [10] T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models, Endeavour, 40 (2016) 178-187.
    [11] A. Dosio, L. Mentaschi, E.M. Fischer, K. Wyser, Extreme heat waves under 1.5 ℃ and 2 ℃ global warming, Environmental Research Letters, 13 (2018) 054006.
    [12] P. Friedlingstein, M.W. Jones, M. O'Sullivan, R.M. Andrew, D.C. Bakker, J. Hauck, C. Le Quéré, G.P. Peters, W. Peters, J. Pongratz, Global carbon budget 2021, Earth System Science Data, 14 (2022) 1917-2005.
    [13] R. Avtar, N. Sahu, A.K. Aggarwal, S. Chakraborty, A. Kharrazi, A.P. Yunus, J. Dou, T.A. Kurniawan, Exploring renewable energy resources using remote sensing and GIS—A review, Resources, 8 (2019) 149.
    [14] E. Elhaj, H. Wang, Y. Gu, Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and efficient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Molecular Catalysis, 468 (2019) 19-28.
    [15] T.A. Degfie, T.T. Mamo, Y.S. Mekonnen, Optimized biodiesel production from waste cooking oil (WCO) using calcium oxide (CaO) nano-catalyst, Scientific reports, 9 (2019) 1-8.
    [16] S. Nomanbhay, R. Hussein, M.Y. Ong, Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: a review, Green Chemistry Letters and Reviews, 11 (2018) 135-157.
    [17] W.K. Teng, G.C. Ngoh, R. Yusoff, M.K. Aroua, A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters, Energy Conversion and Management, 88 (2014) 484-497.
    [18] M. Aresta, A. Dibenedetto, F. Nocito, C. Ferragina, Valorization of bio-glycerol: New catalytic materials for the synthesis of glycerol carbonate via glycerolysis of urea, Journal of Catalysis, 268 (2009) 106-114.
    [19] C.-y. Park, H. Nguyen-Phu, E.W. Shin, Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure, Molecular Catalysis, 435 (2017) 99-109.
    [20] M.O. Sonnati, S. Amigoni, E.P.T. de Givenchy, T. Darmanin, O. Choulet, F. Guittard, Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications, Green Chemistry, 15 (2013) 283-306.
    [21] J.R. Ochoa-Gómez, O. Gómez-Jiménez-Aberasturi, C. Ramirez-Lopez, M. Belsué, A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical, Organic Process Research & Development, 16 (2012) 389-399.
    [22] D.M. Chaves, M.J. Da Silva, A selective synthesis of glycerol carbonate from glycerol and urea over Sn (OH) 2: A solid and recyclable in situ generated catalyst, New Journal of Chemistry, 43 (2019) 3698-3706.
    [23] C. Hammond, J.A. Lopez-Sanchez, M.H. Ab Rahim, N. Dimitratos, R.L. Jenkins, A.F. Carley, Q. He, C.J. Kiely, D.W. Knight, G.J. Hutchings, Synthesis of glycerol carbonate from glycerol and urea with gold-based catalysts, Dalton transactions, 40 (2011) 3927-3937.
    [24] L. Wang, Y. Ma, Y. Wang, S. Liu, Y. Deng, Efficient synthesis of glycerol carbonate from glycerol and urea with lanthanum oxide as a solid base catalyst, Catalysis Communications, 12 (2011) 1458-1462.
    [25] S.-i. Fujita, Y. Yamanishi, M. Arai, Synthesis of glycerol carbonate from glycerol and urea using zinc-containing solid catalysts: A homogeneous reaction, Journal of catalysis, 297 (2013) 137-141.
    [26] T.W. Turney, A. Patti, W. Gates, U. Shaheen, S. Kulasegaram, Formation of glycerol carbonate from glycerol and urea catalysed by metal monoglycerolates, Green chemistry, 15 (2013) 1925-1931.
    [27] S. Kondawar, A. Potdar, C. Rode, Solvent-free carbonylation of glycerol with urea using metal loaded MCM-41 catalysts, RSC advances, 5 (2015) 16452-16460.
    [28] S. Kondawar, R. Mane, A. Vasishta, S. More, S. Dhengale, C. Rode, Carbonylation of glycerol with urea to glycerol carbonate over supported Zn catalysts, Applied Petrochemical Research, 7 (2017) 41-53.
    [29] B. Mallesham, A. Rangaswamy, B.G. Rao, T.V. Rao, B.M. Reddy, Solvent-free production of glycerol carbonate from bioglycerol with urea over nanostructured promoted SnO2 catalysts, Catalysis Letters, 150 (2020) 3626-3641.
    [30] J. Zhu, D. Chen, Z. Wang, Q. Wu, Z. Yin, Z. Wei, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate over CaO-SBA-15 catalyst, Chemical Engineering Science, 258 (2022) 117760.
    [31] M. Malyaadri, K. Jagadeeswaraiah, P.S. Prasad, N. Lingaiah, Synthesis of glycerol carbonate by transesterification of glycerol with dimethyl carbonate over Mg/Al/Zr catalysts, Applied catalysis a: general, 401 (2011) 153-157.
    [32] F.S.H. Simanjuntak, T.K. Kim, S.D. Lee, B.S. Ahn, H.S. Kim, H. Lee, CaO-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate: Isolation and characterization of an active Ca species, Applied Catalysis A: General, 401 (2011) 220-225.
    [33] P. Saiyong, L. Zheng, N. Renfeng, X. Shuixin, C. Ping, H. Zhaoyin, Transesterification of glycerol with dimethyl carbonate to glycerol carbonate over Na–based zeolites, Chinese Journal of Catalysis, 33 (2012) 1772-1777.
    [34] K. Hu, H. Wang, Y. Liu, C. Yang, KNO3/CaO as cost-effective heterogeneous catalyst for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Journal of Industrial and Engineering Chemistry, 28 (2015) 334-343.
    [35] P. Okoye, A. Abdullah, B. Hameed, Glycerol carbonate synthesis from glycerol and dimethyl carbonate using trisodium phosphate, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 51-58.
    [36] X. Wang, P. Zhang, P. Cui, W. Cheng, S. Zhang, Glycerol carbonate synthesis from glycerol and dimethyl carbonate using guanidine ionic liquids, Chinese journal of chemical engineering, 25 (2017) 1182-1186.
    [37] S. Wang, P. Hao, S. Li, A. Zhang, Y. Guan, L. Zhang, Synthesis of glycerol carbonate from glycerol and dimethyl carbonate catalyzed by calcined silicates, Applied catalysis a: general, 542 (2017) 174-181.
    [38] Y. Li, J. Liu, D. He, Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts, Applied Catalysis A: General, 564 (2018) 234-242.
    [39] G. Pradhan, Y.C. Sharma, Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: A highly efficient heterogeneous catalyst, Fuel, 284 (2021) 118966.
    [40] H. Li, D. Gao, P. Gao, F. Wang, N. Zhao, F. Xiao, W. Wei, Y. Sun, The synthesis of glycerol carbonate from glycerol and CO2 over La2O2CO3–ZnO catalysts, Catalysis Science & Technology, 3 (2013) 2801-2809.
    [41] L.P. Ozorio, R. Pianzolli, L. da Cruz Machado, J.L. Miranda, C.C. Turci, A.C. Guerra, E.F. Souza-Aguiar, C.J. Mota, Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2, Applied Catalysis A: General, 504 (2015) 187-191.
    [42] J. Zhang, D. He, Synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide over Cu catalysts: the role of supports, Journal of Chemical Technology & Biotechnology, 90 (2015) 1077-1085.
    [43] J. Zhang, D. He, Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide, Journal of colloid and interface science, 419 (2014) 31-38.
    [44] H. Li, X. Jiao, L. Li, N. Zhao, F. Xiao, W. Wei, Y. Sun, B. Zhang, Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites, Catalysis Science & Technology, 5 (2015) 989-1005.
    [45] H. Li, C. Xin, X. Jiao, N. Zhao, F. Xiao, L. Li, W. Wei, Y. Sun, Direct carbonylation of glycerol with CO2 to glycerol carbonate over Zn/Al/La/X (X= F, Cl, Br) catalysts: The influence of the interlayer anion, Journal of Molecular Catalysis A: Chemical, 402 (2015) 71-78.
    [46] J. Liu, Y. Li, J. Zhang, D. He, Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters, Applied Catalysis A: General, 513 (2016) 9-18.
    [47] X. Su, W. Lin, H. Cheng, C. Zhang, Y. Wang, X. Yu, Z. Wu, F. Zhao, Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate, Green chemistry, 19 (2017) 1775-1781.
    [48] L.P. Ozorio, C.J. Mota, Direct carbonation of glycerol with CO2 catalyzed by metal oxides, ChemPhysChem, 18 (2017) 3260-3265.
    [49] J. Liu, D. He, Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst, Journal of CO2 Utilization, 26 (2018) 370-379.
    [50] J. Liu, Y. Li, H. Liu, D. He, Transformation of CO2 and glycerol to glycerol carbonate over CeO2ZrO2 solid solution——effect of Zr doping, Biomass and bioenergy, 118 (2018) 74-83.
    [51] J. Liu, Y. Li, H. Liu, D. He, Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts, Applied Catalysis B: Environmental, 244 (2019) 836-843.
    [52] N. Razali, M. Conte, J. McGregor, The role of impurities in the La2O3 catalysed carboxylation of crude glycerol, Catalysis Letters, 149 (2019) 1403-1414.
    [53] H. Liu, Y. Li, L. Ma, J. Liu, D. He, Photo-thermal conversion of CO2 and biomass-based glycerol into glycerol carbonate over Co3O4-ZnO pn heterojunction catalysts, Fuel, 315 (2022) 123294.
    [54] N. Kulal, R. Vetrivel, N. Ganesh Krishna, G.V. Shanbhag, Zn-Doped CeO2 Nanorods for Glycerol Carbonylation with CO2, ACS Applied Nano Materials, 4 (2021) 4388-4397.
    [55] C. Hu, M. Yoshida, H.-C. Chen, S. Tsunekawa, Y.-F. Lin, J.-H. Huang, Production of glycerol carbonate from carboxylation of glycerol with CO2 using ZIF-67 as a catalyst, Chemical Engineering Science, 235 (2021) 116451.
    [56] C. Hu, C.-W. Chang, M. Yoshida, K.-H. Wang, Lanthanum nanocluster/ZIF-8 for boosting catalytic CO2/glycerol conversion using MgCO3 as a dehydrating agent, Journal of Materials Chemistry A, 9 (2021) 7048-7058.
    [57] X. Song, Y. Wu, D. Pan, J. Zhang, S. Xu, L. Gao, R. Wei, G. Xiao, Functionalized DVB-based polymer catalysts for glycerol and CO2 catalytic conversion, Journal of CO2 Utilization, 28 (2018) 326-334.
    [58] J. Li, T. Wang, Chemical equilibrium of glycerol carbonate synthesis from glycerol, The Journal of Chemical Thermodynamics, 43 (2011) 731-736.
    [59] J. Ma, J. Song, H. Liu, J. Liu, Z. Zhang, T. Jiang, H. Fan, B. Han, One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent, Green Chemistry, 14 (2012) 1743-1748.
    [60] Y. Xie, Q. Sun, Y. Fu, L. Song, J. Liang, X. Xu, H. Wang, J. Li, S. Tu, X. Lu, Sponge-like quaternary ammonium-based poly (ionic liquid) s for high CO2 capture and efficient cycloaddition under mild conditions, Journal of Materials Chemistry A, 5 (2017) 25594-25600.
    [61] Y. Xie, J. Liang, Y. Fu, M. Huang, X. Xu, H. Wang, S. Tu, J. Li, Hypercrosslinked mesoporous poly (ionic liquid) s with high ionic density for efficient CO2 capture and conversion into cyclic carbonates, Journal of Materials Chemistry A, 6 (2018) 6660-6666.
    [62] S. Kondawar, C. Rode, Solvent-free glycerol transesterification with propylene carbonate to glycerol carbonate over a solid base catalyst, Energy & fuels, 31 (2017) 4361-4371.
    [63] Y.A. Alassmy, P.J. Paalman, P.P. Pescarmona, One‐pot Fixation of CO2 into Glycerol Carbonate using Ion‐Exchanged Amberlite Resin Beads as Efficient Metal‐free Heterogeneous Catalysts, ChemCatChem, 13 (2021) 475-486.
    [64] J. Sun, W. Cheng, W. Fan, Y. Wang, Z. Meng, S. Zhang, Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2, Catalysis Today, 148 (2009) 361-367.
    [65] L. Han, H.-J. Choi, S.-J. Choi, B. Liu, D.-W. Park, Ionic liquids containing carboxyl acid moieties grafted onto silica: Synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide, Green Chemistry, 13 (2011) 1023-1028.
    [66] W.-L. Dai, B. Jin, S.-L. Luo, S.-F. Yin, X.-B. Luo, C.-T. Au, Cross-linked polymer grafted with functionalized ionic liquid as reusable and efficient catalyst for the cycloaddition of carbon dioxide to epoxides, Journal of CO2 Utilization, 3 (2013) 7-13.
    [67] W. Silva, M. Zanatta, A.S. Ferreira, M.C. Corvo, E.J. Cabrita, Revisiting ionic liquid structure-property relationship: A critical analysis, International journal of molecular sciences, 21 (2020) 7745.
    [68] M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nature materials, 8 (2009) 621-629.
    [69] B. Tang, W. Bi, M. Tian, K.H. Row, Application of ionic liquid for extraction and separation of bioactive compounds from plants, Journal of Chromatography B, 904 (2012) 1-21.
    [70] R.L. Vekariya, A review of ionic liquids: Applications towards catalytic organic transformations, Journal of Molecular Liquids, 227 (2017) 44-60.
    [71] J. Peng, Y. Deng, Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids, New Journal of Chemistry, 25 (2001) 639-641.
    [72] J. Sun, J. Wang, W. Cheng, J. Zhang, X. Li, S. Zhang, Y. She, Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2, Green Chemistry, 14 (2012) 654-660.
    [73] M. Liu, L. Liang, T. Liang, X. Lin, L. Shi, F. Wang, J. Sun, Cycloaddition of CO2 and epoxides catalyzed by dicationic ionic liquids mediated metal halide: Influence of the dication on catalytic activity, Journal of Molecular Catalysis A: Chemical, 408 (2015) 242-249.
    [74] W. Deng, L. Shi, J. Yao, Z. Zhang, A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis, Carbon Resources Conversion, 2 (2019) 198-212.
    [75] D.B.G. Williams, M.S. Sibiya, P.S. van Heerden, M. Kirk, R. Harris, Verkade super base-catalysed transesterification of propylene carbonate with methanol to co-produce dimethyl carbonate and propylene glycol, Journal of Molecular Catalysis A: Chemical, 304 (2009) 147-152.
    [76] K. Shukla, V.C. Srivastava, Efficient synthesis of diethyl carbonate from propylene carbonate and ethanol using Mg–La catalysts: characterization, parametric, and thermodynamic analysis, Industrial & Engineering Chemistry Research, 57 (2018) 12726-12735.
    [77] Y. Ji, Recent development of heterogeneous catalysis in the transesterification of glycerol to glycerol carbonate, Catalysts, 9 (2019) 581.
    [78] Z. Taherian, A.S. Dehaghani, S. Ayatollahi, R. Kharrat, A new insight to the assessment of asphaltene characterization by using fortier transformed infrared spectroscopy, Journal of Petroleum Science and Engineering, 205 (2021) 108824.
    [79] R.M. Serra, E.E. Miró, A.V. Boix, FTIR study of toluene adsorption on Cs-exchanged mordenites, Microporous and Mesoporous Materials, 127 (2010) 182-189.
    [80] S. Wang, S.T. Thynell, A. Chowdhury, Experimental study on hypergolic interaction between N, N, N′, N′-tetramethylethylenediamine and nitric acid, Energy & Fuels, 24 (2010) 5320-5330.
    [81] S.C. Myneni, Formation of stable chlorinated hydrocarbons in weathering plant material, Science, 295 (2002) 1039-1041.
    [82] T. Platte, N. Finck, S. Mangold, R. Polly, H. Geckeis, Retention of Iodide and Chloride by Formation of a Green Rust Solid Solution GR-Cl1–x Ix: A Multiscale Approach, Inorganic Chemistry, 60 (2021) 10585-10595.
    [83] P. Worakajit, P. Kidkhunthod, S. Waiprasoet, H. Nakajima, T. Sudyoadsuk, V. Promarak, P. Pattanasattayavong, Origin of Hole-Trapping States in Solution-Processed Copper (I) Thiocyanate (CuSCN) and Defect-Healing by I2 Doping, arXiv preprint arXiv:2206.08040, (2022).
    [84] X. Yan, T. Xu, G. Chen, S. Yang, H. Liu, Q. Xue, Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, Journal of Physics D: Applied Physics, 37 (2004) 907.
    [85] X. Chen, X. Wang, D. Fang, A review on C1s XPS-spectra for some kinds of carbon materials, Fullerenes, Nanotubes and Carbon Nanostructures, 28 (2020) 1048-1058.
    [86] J. Tong, X. Han, S. Wang, X. Jiang, Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD), Energy & fuels, 25 (2011) 4006-4013.
    [87] J.-P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, The Journal of Physical Chemistry B, 108 (2004) 16864-16869.
    [88] L. Wang, X. Wen, X. Zhang, S. Yuan, Q. Xu, F. Fu, H. Diao, X. Liu, Durable antimicrobial cotton fabric fabricated by carboxymethyl chitosan and quaternary ammonium salts, Cellulose, 28 (2021) 5867-5879.
    [89] M. Wilson, R. Kore, A. Ritchie, R. Fraser, S. Beaumont, R. Srivastava, J. Badyal, Palladium–poly (ionic liquid) membranes for permselective sonochemical flow catalysis, Colloids and surfaces A: physicochemical and engineering aspects, 545 (2018) 78-85.
    [90] Y. Lin, X. Cui, J. Bontha, Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal, Environmental science & technology, 40 (2006) 4004-4009.
    [91] Z. Li, M. Wang, J. Shen, Z. Zhu, Y. Liu, Synthesis of BiOI nanosheet/coarsened TiO2 nanobelt heterostructures for enhancing visible light photocatalytic activity, RSC advances, 6 (2016) 30037-30047.
    [92] D. Hou, X. Hu, P. Hu, W. Zhang, M. Zhang, Y. Huang, Bi4Ti3O12 nanofibers–BiOI nanosheets p–n junction: facile synthesis and enhanced visible-light photocatalytic activity, Nanoscale, 5 (2013) 9764-9772.
    [93] A. Samanta, D.K. Chanda, P.S. Das, J. Ghosh, A. Dey, S. Das, A.K. Mukhopadhyay, Synthesis of mixed calcite–calcium oxide nanojasmine flowers, Ceramics International, 42 (2016) 2339-2348.
    [94] S. Veerasingam, M. Ranjani, R. Venkatachalapathy, A. Bagaev, V. Mukhanov, D. Litvinyuk, M. Mugilarasan, K. Gurumoorthi, L. Guganathan, V. Aboobacker, Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review, Critical Reviews in Environmental Science and Technology, 51 (2021) 2681-2743.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE