簡易檢索 / 詳目顯示

研究生: 高敏傑
Min-Jie Kao
論文名稱: 薄膜結構調控以改善Polyimide/TiO2光催化複合薄膜二氧化碳轉化效能之研究
Improving the Carbon Dioxide Photoreduction Performance of Polyimide/TiO2 Photocatalytic Composite Membranes by Controlling Membrane Structures
指導教授: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
孫一明
Yi-Ming Sun
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 119
中文關鍵詞: 聚醯亞胺成膜機制氣體分離CO2光催化還原光催化複合薄膜
外文關鍵詞: Polyimide, membrane formation, gas separation, CO2 photoreduction, photocatalytic composite membrane
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用太陽能將空氣中的二氧化碳(CO2)光催化還原成有價值的化合物或能源,能達成能源永續應用並降低大氣中二氧化碳濃度解決全球暖化的問題。本研究設計了一種光催化複合薄膜,在模擬太陽光的光源下,同時將空氣中的CO2提濃並光催化還原成甲烷(CH4)。光催化複合薄膜為氣體選擇層和光催化反應層所組成,氣體選擇層為無缺陷的聚醯亞胺(Polyimide)緻密薄膜,其具有優秀的氣體選擇性,有效地從空氣中將CO2提濃;光催化反應層為含有光觸媒二氧化鈦(TiO2)的Polyimide多孔混合基質薄膜,反應層能將滲透的CO2光催化還原成CH4。
    改善薄膜的光催化效率,除了可改良光觸媒的催化活性和提升氣體選擇層的CO2選擇性之外,亦可延長CO2於光催化反應層的滯留時間,增加CO2和TiO2的反應機會,提升CH4產率。本研究根據成膜機制的理論,利用霧點、黏度、光穿透及染色實驗,探討添加疏水性的界面活性劑和改變非溶劑對薄膜孔洞結構之影響。透過SEM、EDS、孔隙度、機械性質和氣體通量等實驗,鑑定不同薄膜之結構。GPA被用於分析光催化複合薄膜之CO2分離性能。選用封閉孔洞結構之多孔薄膜做為光催化反應層(20 wt% TiO2),可以有效地延長CO2在反應層內的滯留時間,提升CH4產率至0.70 μmol gcat-1 h-1。最佳添加量的TiO2 (30 wt%)能在反應層中均勻分散且增加反應位點,得到1.17 μmol gcat-1 h-1的最佳CH4產率。複合薄膜經過連續七日的光催化反應後,CH4產率損失了82 %。
    本研究成功結合成膜機制、氣體分離和光催化還原的技術,製備出一種能同時能將CO2提濃並還原成CH4的光催化複合薄膜,對於解決CO2排放的危機提供一個相當有潛力的方法。


    The use of solar energy to photocatalyze the carbon dioxide in the air into valuable compounds or energy can achieve sustainable energy applications and solve the problem of global warming. In this work, a photocatalytic composite membrane was designed to simultaneously enrich and photocatalytically reduce CO2 in the air to CH4 under the simulating sunlight. The photocatalytic composite membrane is composed of a gas selective layer and a photocatalytic reactive layer. The gas selective layer is a defect-free polyimide dense membrane, which has excellent gas selectivity and can enrich CO2 from the air. The photocatalytic reactive layer is a polyimide porous mix-matrix membrane containing photocatalyst TiO2, which can photocatalytically reduce the permeated CO2 to CH4.
    Improving the catalytic activity of the photocatalyst and increasing the CO2 flux and selectivity of the gas selective layer can improve the CO2 photocatalytic efficiency of the composite membrane. In addition, extending the residence time of CO2 in the photocatalytic reaction layer can increase the reaction opportunity of CO2 and TiO2 and then increase the yield of CH4. Based on the theory of membrane formation mechanism, the effects of adding hydrophobic surfactants and changing non-solvents on the pore structure of the membranes were investigated by cloud point, viscosity, light transmittance and optical observation experiments. Through SEM, EDS, porosity, mechanical properties and gas permeance, the structure of different membranes was identified. GPA was used to analyze the CO2 separation performance of the photocatalytic composite membranes. Selecting the porous membrane with closed pore structure as the photocatalytic reactive layer (20 wt% TiO2) can effectively prolong the residence time of CO2 in the reactive layer and get the CH4 yield of 0.70 μmol gcat-1 h-1. The optimal amount of TiO2 (30 wt%) can make the catalyst evenly dispersed in the reaction layer and increase the reaction sites, which obtains the best CH4 yield for 1.17 μmol gcat-1 h-1. After seven consecutive days of photocatalytic reaction, the CH4 yield decreased by 82 % of the photocatalytic composite membrane.
    This work successfully combines the membrane formation mechanism, gas separation and photocatalytic reduction technology to prepare a photocatalytic composite membrane. The composite membrane can simultaneously enrich and photocatalytically reduce CO2 to CH4. This work provides a promising method for solving the CO2 emission problem.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1.1背景 1 1.2二氧化碳捕捉技術 2 1.3薄膜概述 3 1.3.1薄膜種類 3 1.3.2薄膜分離程序種類 4 1.3.3薄膜製備方式 5 1.4研究動機 7 第二章 文獻回顧 9 2.1非溶劑誘導相分離之理論 9 2.1.1熱力學與薄膜結構 9 2.1.2質傳動力學與薄膜結構 11 2.1.3相分離速率與薄膜結構 13 2.2調控薄膜結構 14 2.3氣體分離薄膜 18 2.3.1 Polyimide薄膜之氣體分離 22 2.4光催化及薄膜反應器 24 2.3.1光催化薄膜反應器 26 第三章 研究方法與步驟 32 3.1實驗藥品 32 3.2實驗儀器 33 3.3實驗方法 34 3.3.1 Polyimide多孔薄膜之製備 34 3.3.2光催化複合薄膜之製備 35 3.3.3實驗鑑定方法 37 3.4光催化複合薄膜CO2還原CH4之實驗流程 48 3.5實驗架構 49 第四章 結果與討論 50 4.1 Polyimide多孔薄膜結構之調控 50 4.1.1非溶劑對薄膜結構之影響 50 4.1.2界面活性劑添加對薄膜結構之影響 59 4.2 TiO2光觸媒添加對薄膜結構和性質之影響 66 4.2.1添加TiO2後之薄膜結構 66 4.2.2薄膜孔隙度 68 4.2.3不同結構薄膜之機械性質 69 4.2.4薄膜化學組成之變化 70 4.2.5多孔薄膜之CO2通量 71 4.3光催化複合薄膜 73 4.3.1光催化複合薄膜之型態 73 4.3.2光催化複合薄膜之氣體分離性能 73 4.4 CO2光催化還原性能 76 4.4.1多孔薄膜結構變化對CO2光催化效能的影響 77 4.4.2 TiO2添加量對光催化複合薄膜於CO2光催化效能之影響 78 4.4.3長時間操作對光催化複合薄膜CO2光催化性能之影響 81 4.4.4 TiO2光催化反應器於CO2光催化還原效能之比較 86 第五章 結論 88 參考文獻 90

    [1] 賴君義, 薄膜科技概論 Introduction to Membrane Science and Technology, 五南圖書出版股份有限公司, Taipei, Taiwan, 2019.
    [2] I. Omae, Recent developments in carbon dioxide utilization for the production of organic chemicals, Coordination Chemistry Reviews, 256 (2012) 1384-1405.
    [3] G. M. Laboratory, Monthly Average Mauna Loa CO2, U.S. NOAA.
    [4] 談駿嵩, 王志盈, 二氧化碳捕獲, 科學發展, 2015.
    [5] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Quality Research, 12 (2012) 745-769.
    [6] P. Chiesa, S. Consonni, Shift reactors and physical absorption for low-CO2 emission IGCCs, Journal of Engineering Gas Turbines Power, 121 (1999) 295-305.
    [7] S. Bishnoi, G. Rochelle, Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility, Chemical Engineering Science, 55 (2000) 5531-5543.
    [8] G.T. Rochelle, Amine scrubbing for CO2 capture, Science, 325 (2009) 1652-1654.
    [9] G. Li, P. Xiao, P.A. Webley, J. Zhang, R. Singh, M. Marshall, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, 14 (2008) 415-422.
    [10] F.Y. Chang, K.J. Chao, H.H. Cheng, C.S. Tan, Adsorption of CO2 onto amine-grafted mesoporous silicas, Separation and Purification Technology, 70 (2009) 87-95.
    [11] N.P. Wickramaratne, M. Jaronie, Activated carbon spheres for CO2 adsorption, ACS Applied Materials & Interfaces, 5 (2013) 1849-1855.
    [12] Y. Belmabkhout, R. Serna-Guerrero, A. Sayari, Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and high pressure. 1: pure CO2 adsorption, Chemical Engineering Science, 64 (2009) 3721-3728.
    [13] M.J. Tuinier, M.S. Annaland, G.J. Kramer, J.A.M. Kuipers, Cryogenic capture using dynamically operated packed beds, Chemical Engineering Science, 65 (2010) 114-119.
    [14] C.F. Song, Y. Kitamura, S.H. Li, Evaluation of Stirling cooler system for cryogenic CO2 capture, Applied Energy, 98 (2012) 491-501.
    [15] A. Brunettia, F. Scuraa, G. Barbieria, E. Drioli, Membrane technologies for CO2 separation, Journal of Membrane Science, 359 (2010) 115-125.
    [16] P. Luis, T.V. Gerven, B.V. Bruggen, Recent developments in membrane-based technologies for CO2 capture, Progress in Energy and Combustion Science, 38 (2012) 419-448.
    [17] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Netherlands, 1996.
    [18] S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: a review of research trends over the past decade, Journal of Water Process Engineering, 32 (2019) 100941.
    [19] P.K. Su, C.H. Changa, Y.M. Sun, C.C. Hu, J.Y. Lai, Y.L. Liu, Porous membranes of thermosetting polybenzoxazine resins with interconnected-pores for organic solvent microfiltration, Journal of Membrane Science, 586 (2019) 267-273.
    [20] T. Ahmad, C. Guria, A. Mandal, A review of oily wastewater treatment using ultrafiltration membrane: a parametric study to enhance the membrane performance, Journal of Water Process Engineering, 36 (2020) 101289.
    [21] S.T. Kassa, C.C. Hu, D.L. Keshebo, M.B.M. Ang, J.Y. Lai, J. Chu, Surface modification of high-rejection ultrafiltration membrane with antifouling capability using activated oxygen treatment and metallic glass deposition, Applied Surface Science, 529 (2020) 147131.
    [22] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Advanced Functional Materials, 23 (2013) 3693-3700.
    [23] A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356 (2015) 226-254.
    [24] G.M. Shi, Y. Feng, B. Li, H.M. Tham, J.Y. Lai, T.S. Chung, Recent progress of organic solvent nanofiltration membranes, Progress in Polymer Science, 123 (2021) 101470.
    [25] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential, Journal of Membrane Science, 370 (2011), 1-22.
    [26] Y.H. Chiao, A. Sengupta, S.T. Chen, W.S. Hung, J.Y. Lai, L. Upadhyaya, X. Qian, S.R. Wickramasinghe, Novel thin-film composite forward osmosis membrane using polyethylenimine and its impact on membrane performance, Separation Science and Technology, 55 (2020) 590-600.
    [27] V. Lindstrand, A.S. Jonsson, G. Sundstrom, Organic fouling of electrodialysis membranes with and without applied voltage, Desalination, 130 (2000) 73-84.
    [28] E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Performance-determining membrane properties in reverse electrodialysis, Journal of Membrane Science, 446 (2013) 266-276.
    [29] P. Wang, T.S. Chung, Recent advances in membrane distillation processes: membrane development, configuration design and application exploring, Journal of Membrane Science, 474 (2015) 39-56.
    [30] E. Drioli, A. Ali, F. Macedonio, Membrane distillation: recent developments and perspectives, Desalination, 356 (2015) 56-84.
    [31] H.K. Shon, S. Phuntsho, D.S. Chaudhary, S. Vigneswaran, J. Cho, Nanofiltration for water and wastewater treatment - a mini review, Drinking Water Engineering and Science, 6 (2013) 59-77.
    [32] E. Levanen, T. Mantyla, Effect of sintering temperature on functional properties of alumina membranes, Journal of the European Ceramic Society, 22 (2002), 613-623.
    [33] S. Liu, K. Li, R. Hughes, Preparation of porous aluminum oxide (Al2O3) hollow fiber membranes by a combined phase inversion and sintering method, Ceramics International, 28 (2003), 875-881.
    [34] A.A. Komaladewi, P.T. Aryanti, G. Lugito, I.W. Surata, I.G. Wenten, Recent progress in microfiltration polypropylene membrane fabrication by stretching method, E3S Web of Conferences, 67 (2018) 03018.
    [35] K. Li, Y. Zhang, L. Xu, F. Zeng, D. Hou, J. Wang, Optimizing stretching conditions in fabrication of PTFE hollow fiber membrane for performance improvement in membrane distillation, Journal of Membrane Science, 550 (2018) 126-135.
    [36] K. Awasthi, V. Kulshreshtha, B. Tripathi, N.K. Acharya, M. Singh, Y.K. Vijay, Transport through track etched polymeric blend membrane, Bulletin of Materials Science, 29 (2006) 261-264.
    [37] J.F. Allaeys, B. Marcilhac, J.C. Mage, Influence of track-etching on polycarbonate membrane permittivity, Journal of Physics D: Applied Physics, 40 (2007) 3714.
    [38] J.Y. Lai, J.M. Jien, S.H. Lin, Gas permeation in polycarbonate membranes prepared by the wet-phase inversion method, Chemical Engineering Science, 48 (1993) 4069-4074.
    [39] H.C. Park, Y.P. Kim, H.Y. Kim, Y.S. Kang, Membrane formation by water vapor induced phase inversion, Journal of Membrane Science, 156 (1999) 169-178.
    [40] W.L. Hung, D.M. Wang, J.Y. Lai, S.C. Chou, On the initiation of macrovoids in polymeric membranes-effect of polymer chain entanglement, Journal of Membrane Science, 505 (2016) 70-81.
    [41] 蘇詩芸, 利用傅立葉轉換紅外光顯微鏡探討聚醚碸薄膜之成膜機制, 國立台灣大學化學工程學研究所, 碩士論文, 2020.
    [42] 莊雨潔, 聚醯亞胺薄膜的製備與其過濾機制和效能之探討, 國立台灣大學化學工程學研究所, 碩士論文, 2021.
    [43] H. Tompa, Polymer Solutions. Butterworths Scientific Publications, Butterworths, London, 1956.
    [44] K. Kamide, Thermodynamics of Polymer Solutions: Phase Equilibria and Critical Phenomena, Elsevier Science Ltd, 1990.
    [45] L. Zeman, G. Tkacik, Thermodynamic analysis of a membrane-forming system water/N-methyl-2-pyrrolidone/polyethersulfone, Journal of Membrane Science, 36 (1988) 119-140.
    [46] C.A. Smolders, A.J. Reuvers, R.M. Boom, I.M. Wienk, Microstructures in phase-inversion membranes. part 1. formation of macrovoids, Journal of Membrane Science, 73 (1992) 259-275.
    [47] J.H. Kim, B.R. Min, J. Won, H.C. Park, Y.S. Kang, Phase behavior and mechanism of membrane formation for polyimide/DMSO/water system, Journal of Membrane Science, 187 (2001) 47-55.
    [48] J.J. Shieh, T.S. Chung, Effect of Liquid-liquid Demixing on the membrane morphology, gas permeation, thermal and mechanical properties of cellulose acetate hollow fibers, Journal of Membrane Science, 140 (1998) 67-79.
    [49] I. Soroko, M. Lopes, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): part A. effect of polymer/solvent/non-solvent system choice, Journal of Membrane Science, 381 (2011) 152-162.
    [50] C. Kahrs, J. Schwellenbach, Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study, Polymer, 186 (2020) 122071.
    [51] J.Y. Lai, F.C. Lin, C.C. Wang, D.M. Wang, Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes, Journal of Membranes, 118 (1996) 49-61.
    [52] J.M. Cheng, D.M. Wang, F.C. Lin, J.Y. Lai, Formation and gas flux of asymmetric PMMA membranes, Journal of Membranes, 109 (1996) 93-107.
    [53] N. Leblanc, D.L. Cerf, C. Chappey, D. Langevin, M. Métayer, G. Muller, Influence of solvent and non-solvent on polyimide asymmetric membranes formation in relation to gas permeation, Separation and Purification Technology, 22 (2001) 277-285.
    [54] H.A. Tsai, R.C. Ruaan, D.M. Wang, J.Y. Lai, Effect of temperature and span series surfactant on the structure of polysulfone membranes, Journal of Applied Polymer Science, 86 (2002) 166-173.
    [55] J. Wisniak, T. Graham, Contributions to diffusion of gases and liquids, colloids, dialysis, and osmosis, Educación Química, 24 (2013) 506-515.
    [56] F.C. Lin, D.M. Wang, C.L. Lai, J.Y. Lai, Effect of surfactants on the structure of PMMA membranes. Journal of Membrane Science, 123 (1997) 281-291.
    [57] P. Pandey, R.S. Chauhan, Membranes for gas separation, Progress in Polymer Science, 26 (2001) 853-893.
    [58] L. Shao, B.T. Low, T.S. Chung, A.R. Greenberg, Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future, Journal of Membrane Science, 327 (2009) 18-31.
    [59] T.J. Kim, B. Li, M.B. Hagg, Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture, Journal of Polymer Science Part B: Polymer Physics, 42 (2004) 4326-4336.
    [60] E.P. Favvas, F.K. Katsaros, S.K. Papageorgiou, A.A. Sapalidis, A. C. Mitropoulos, A review of the latest development of polyimide based membranes for CO2 separations, Reactive and Functional Polymers, 120 (2017) 104-130.
    [61] C.S. Bickel, W.J. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking, Journal of Membrane Science, 155 (1999) 145-154.
    [62] O.C. David, D. Gorri, A. Urtiaga, I. Ortiz, Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO¬2 post combustion mixtures using a Matrimid membrane, Journal of Membrane Science, 378 (2011) 359-368.
    [63] S.F. Wang, Z.Z. Tian, J.Y. Feng, H. Wu, Y.F. Li, Y. Liu, X.Q. Li, Q.P. Xin, Z.Y. Jiang, Enhanced CO2 separation properties by incorporating poly(ethylene glycol) containing polymeric submicrospheres into polyimide membrane, Journal of Membrane Science, 473 (2015) 310-317.
    [64] A. Ito, T. Yasuda, T. Yoshioka, A. Yoshida, X. Li, K. Hashimoto, K. Nagai, M. Shibayama, M. Watanabe, Sulfonated polyimide/ionic liquid composite membranes for CO2 separation: transport properties in relation to their nanostructures, Macromolecules, 51 (2018) 7112-7120.
    [65] Z.G. Wang, J.W. Yuan, R.H. Li, H.P. Zhu, J.G. Duan, Y.A. Guo, G.P. Liu, W.Q. Jin, ZIF-301 MOF/6FDA-DAM polyimide mixed-matrix membranes for CO2/CH4 separation, Separation and Purification Technology, 264 (2021) 118431.
    [66] M.Z. Ahmad, V.M. Gil, T. Supinkova, P. Lambert, R.C. Munoz, P. Hrabanek, M. Kocirik, V. Fila, Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation, Separation and Purification Technology, 254 (2021) 117582.
    [67] P.D. Tran, L.H. Wong, J. Barder, J.S.C. Loo, Recent advances in hybrid photocatalysts for solar fuel production, Energy & Environmental Science, 5 (2012) 5902-5918.
    [68] C. Prasad, H. Tang, Q.Q. Liu, S. Zulfiqar, S. Shah, I. Bahadur, An overview of semiconductors/layered double hydroxides composites: properties, synthesis, photocatalytic and photoelectrochemical applications, Journal of Molecular Liquids, 289 (2019) 111114.
    [69] G.M. Zuo, Z.X. Cheng, H. Chen, G.W. Li, T. Miao, Study on photocatalytic degradation of several volatile organic compounds, Journal of Hazardous Materials, 128 (2006)158-163.
    [70] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
    [71] S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, 77 (2003) 65-82.
    [72] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RCS Advance, 4 (2014) 37003-37026.
    [73] R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Materials Science in Semiconductor Processing, 42 (2016) 2-14.
    [74] F.F. Moreira, N.D. Rocha, M.I. Polo-López, M.P. Martinez, J.L. Faria, M. Manaia, P.F. Ibáñezde, C. Nunesb, M.T. Silva, Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater, Water Research, 135 (2018) 195-206.
    [75] D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, Z. Li, Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal organic frameworks, Chemistry-A European Journal, 19 (2013) 14279-14285.
    [76] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24 (2015) 16-42.
    [77] A. Fujishima, X. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surface science reports, 63 (2008) 515-582.
    [78] A. Jitan, G. Palmisano, C. Garlisi, Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2, Catalysts, 10 (2020) 227.
    [79] I. Soroko, M. Lopes, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): part A. effect of polymer/solvent/non-solvent system choice, Journal of Membrane Science, 381 (2011) 152-162.
    [80] A.A. Khan, M. Tahir, Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels, Journal of CO2 Utilization, 29 (2019) 205-239.
    [81] S. Mozia, Photocatalytic membrane reactors (PMRs) in water and wastewater treatment: A review, Separation and Purification Technology, 73 (2010) 71-91.
    [82] S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, H. Wang, TiO2 based photocatalytic membranes: A review, Journal of Membrane Science, 472 (2014) 167-184.
    [83] Z.A. Hir, P. Moradihamedani, A.H. Abdullah, M.A. Mohamed, Immobilization of TiO2 into polyethersulfone matrix as hybrid film photocatalyst for effective degradation of methyl orange dye, Materials Science in Semiconductor Processing, 57 (2017) 157-165.
    [84] M. Ehsani, A. Aroujalian, Fabrication of electrospun polyethersulfone/titanium dioxide composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution, Polymers for Advanced Technologies, 31 (2020) 772-785.
    [85] M. Sellaro, M. Bellardita, A. Brunetti, E. Fontananova, L. Palmisano, E. Drioli, G. Barbieri, CO2 conversion in a photocatalytic continuous membrane reactor. RSC Advances, 6 (2016) 67418-67427.
    [86] F.R. Pomilla, A. Brunetti, G. Marcì, E.I. Garcı́a-López, E. Fontananova, L. Palmisano, G. Barbieri, CO2 to liquid fuels: photocatalytic conversion in a continuous membrane reactor. ACS Sustainable Chemistry & Engineering, 6 (2018) 8743-8753.
    [87] M. Baniamer, A. Aroujalian, S. Sharifnia, Photocatalytic membrane reactor for simultaneous separation and photoreduction of CO2 to methanol, International Journal of Energy Research, 45 (2021) 2353-2366.
    [88] Y.S. Kang, H.J. Kim, U.Y. Kim, Asymmetric membrane formation via immersion precipitation method. I. kinetic effect, Journal of Membrane Science, 60 (1991) 219-232.
    [89] H. Strathmann, K. Kock, P. Amar, R.W. Baker, The Formation mechanism of asymmetric membranes, Desalination, 16 (1975) 179-203.
    [90] L.Y. Jiang, T.S. Chung, R. Rajagopalan, Dehydration of alcohols by pervaporation through polyimide Matrimid® asymmetric hollow fibers with various modifications, Chemical Engineering Science, 63 (2008) 204-216.
    [91] C.M. Hansen, Hansen Solubility Parameters, A User's Handbook, Second Edition, CRC Press, USA, 2007.
    [92] D.M. Wang, F.C. Lin, T.T. Wu, J.Y. Lai, Formation mechanism of the macrovoids induced by surfactant additives, Journal of Membrane Science, 142 (1998) 191-204.
    [93] J.Y. Lai, F.C. Lin, T.T. Wu, D.M. Wang, On the formation of macrovoids in PMMA Membranes, Journal of Membrane Science, 155 (1999) 31-43.
    [94] I. Cabasso, E. Klein, J.K. Smith, Polysulfone hollow fibers Ⅱ. morphology, Journal of Applied Polymer Science, 21 (1977) 165-180.
    [95] S. Doi, K. Hamanaka, Pore size control technique in the spinning of polysulfone hollow fiber ultrafiltration membranes, Desalination, 80 (1991) 167-180.
    [96] 蔡惠安, 添加劑對Polysulfone非對稱性薄膜型態與滲透蒸發之影響-平板膜與管狀膜, 中原大學化學工程學系, 博士論文, 2002.
    [97] W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Advanced Functional Materials, 23 (2013) 1743-1749.
    [98] K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, O. Šolcová, Effect of TiO2 particle size on the photocatalytic reduction of CO2, Applied Catalysis B: Environmental, 89 (2009) 494-502.
    [99] B.D. Credico, B. Redaelli, M. Bellardita, M. Calamante, C. Cepek, E. Cobani, M. D’Arienzo, C. Evangelisti, M. Marelli, M. Moret, L. Palmisano, R. Scotti, Step-by-step growth of HKUST-1 on functionalized TiO2 surface: an efficient material for CO2 capture and solar photoreduction, Catalysts, 8 (2018) 353.
    [100] S. Liu, T. Jiang, M. Fan, G. Tan, S. Cui, X. Shen, Nanostructure rod-like TiO2-reduced graphene oxide composite aerogels for highly-efficient visible-light photocatalytic CO2 reduction, Journal of Alloys and Compounds, 861 (2021) 158598.
    [101] A. Razzaq, A. Sinhamahapatra, T.H. Kang, C.A. Grimes, J.S. Yu, S.I. In, Efficient solar light photoreduction of CO2 to hydrocarbon fuels via magnesiothermally reduced TiO2 photocatalyst, Applied Catalysis B: Environmental, 215 (2017) 28-35.
    [102] M.A. Cortes, J.W.J. Hamilton, P.K. Sharma, A. Brown, M. Nolan, K.A. Gray, J.A. Byrne, Formal quantum efficiencies for the photocatalytic reduction of CO2 in a gas phase batch reactor, Catalysis Today, 326 (2019) 75-81.
    [103] L.L. Tan, W.J. Ong, S.P. Chai, B.T. Goh, A.R. Mohamed, Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction, Applied Catalysis B: Environmental, 179 (2015) 160-170.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE