簡易檢索 / 詳目顯示

研究生: 黃英治
Ying-Chih Huang
論文名稱: 高性能聚縮合系高分子材料合成:含吡啶及不對稱咔唑可溶性全芳香族聚醯胺和高介電聚醯亞胺
Synthesis of high-performance polycondensation polymer materials: soluble aromatic polyamides containing pyridine and asymmetric carbazole and high dielectric polyimides
指導教授: 廖德章
Der-Jang Liaw
口試委員: 戴龑
Yain Tai
汪昆立
Kun-Li Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 64
中文關鍵詞: 聚醯亞胺聚醯胺高介電常數質子化CuPC吡啶聚縮合高分子改質儲能電容納米雜化
外文關鍵詞: polyimide, polyamide, high dielectric constant, protonation, CuPC, pyridine, polycondensation, polymer modification, energy storage capacitors, nanohybrid
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要透過聚縮合反應合成聚醯亞胺及聚醯胺,聚醯亞胺本身有相當好的熱穩定性、耐化學藥品性、低介電常數(含氟及脂環之聚醯亞胺)、耐候性、透明性、高機械強度及低熱膨脹係數等優異性質,以薄膜或塗料的型態廣泛地應用在半導體工業、精密機械工業、軟性印刷電路板、液晶顯示器等電子相關產業,做為電子材料是很好的選擇。聚醯胺可以應用在氣體-氣體分離、液體-液體分離以及氣體-液體分離薄膜之上在當今提倡節約能源以及開發新能源之時代,此類的薄膜極具重要性。另外,聚醯胺可與一般纖維及無機填充物製作成強化的聚醯胺複合材料。也可利用與金屬離子的相互作用作為高性能及高強度之聚醯胺。利用與聚醯胺改質之技術,更可做出優異之耐熱、耐候、耐燃、具柔軟性、彈性體及增加尺寸安定性之聚醯胺。
    第一章經由氯甲基化的聚醯亞胺與含有羧酸之銅酞菁的酯化反應製備奈米雜化之含酞菁銅(CuPc)側鏈的高介電常數(κ)聚醯亞胺(PI-CuPC),在鋁和ITO電極之間放置厚度為1.2μm的納米雜化PI-CuPC薄膜製做Al / PI-CuPC/ ITO夾心元件,顯示線性電荷位移 - 電場特性(DE),可利用在高效率的電介質儲存能量的應用。本設備具有更高的擊穿強度大於1800的MV/ m時,能量密度為31 J/cm3,和能量損失小於10%。優異的容性能量存儲的PI-酞菁銅納米雜化物的屬性,可以歸因於銅酞菁半導體低聚物的高介電常數和高擊穿強度的聚醯亞胺聚合物的整合。
    第二章藉由齊齊巴賓反應(Chichibabin reaction)合成新型具有咔唑的吡啶雜環化合物及透過聚縮合聚合製備一系列含吡啶雜環耐熱性聚醯胺新材料。並探討一系列含功能性基團之高分子材料的物性,如:聚合物之結晶度、溶解度、分子量、分子量分佈、高分子密度、介電常數、機械性質及熱性質等,並特別探討吡啶雜環上的氮原子在酸性環境下形成質子化(Protonation),對聚合物物性(電致變色、波長位移等)與聚合物構型的影響及電致變色相關物性測試,如:紫外線光譜儀(UV-vis)、光激發光光譜儀(Photoluminescence,PL)及循環伏安儀(CV)


    In this study, polyimides and polyamides are synthesized through the polycondensation. Polyimides have a fairly good thermal stability, chemical resistance, weather resistance, transparency, high mechanical strong level and low thermal expansion coefficient number of Merit nature, patterns of thin film or coating materials widely applications in the semiconductor industry, precision machinery industry, soft printed electrical circuit boards, liquid crystal display and other electronic related industry is a good choice for electronic materials. Polyamides can be applied to gas - gas separation, liquid - liquid separation and gas - liquid separation film on top to promote energy conservation and the development of new energy. In addition, the polyamide may be made into a general fiber and inorganic filler reinforced polyamide composite materials. The use of polyamide modified technology, more make excellent heat resistance, weather ability, fire, a soft elastomer and increase the dimensional stability of the polyamide.
    In Chapter I, Nanohybrids (PI-CuPC) of polyimide with copper phthalocyanine (CuPC) side chains have been prepared by coupling the high dielectric constant (κ) CuPC oligomer into the PI matrix through chloromethylation and then esterfication with copper phthalocyanine containing carboxylic acids. Al/PI-CuPC/ITO sandwich devices, based on a thin film of PI-CuPC nanohybrid of 1.2 μm in thickness placed between gold and indium-tin oxide (ITO) electrodes, show linear charge displacement-electric field (D-E) characteristics with minimum polarization hysteresis and small remnant polarization, and can be utilized for high efficiency dielectric energy storage applications. The present devices exhibit breakdown strength higher than 1800 MV/m, energy density of 31 J/cm3, and energy loss of less than 10%. The excellent capacitive energy storage properties of the PI-CuPC nanohybrid can be ascribed to the integration of the high dielectric constant of the CuPC semiconductor oligomer and the high breakdown strength of the polyimide polymer matrix.
    In Chapter II, novel carbazole pyridine heterocyclic compounds synthesis by Chichibabin reaction and pyridine heterocyclic heat-resistant polyamide synthesis through the polycondensation of a series containing. Their physical properties such as crystallinity, solubility, molecular weight, polydispersity, polymer density, dielectric constant, mechanical properties, thermal properties and electrochromic properties (UV-vis spectroscopy, photoluminescence and cyclic voltammetry) were explained, especially in polymer properties (electrochromic and wavelength shifted) and polymer conformation after protonation.

    Table of Contents (目錄) 中文摘要....................................................................................................................... I 英文摘要(Abstract) ................................................................................................... III 致謝 .............................................................................................................................V Chapter I High Efficiency Dielectric Energy Storage Capacitors Based on Polyimide-Copper Phthalocyanine Nanohybrids 1. Introduction 3 2. Experimental Section 5 2.1 Materials. 5 2.2 Instrumentation. 5 2.3 Synthesis of CuPC oligomer 6 2.4 Synthesis of PI-CuPC nanohybrid. 6 2.5 Device Fabrication and Characterization. 8 2.6 Molecular Computation. 8 3. Results and Discussion 9 4. Conclusion 15 5. Captions for Schemes, Figures, Tables and References 16 Chapter II Novel Highly Thermal Stable and Organosoluble Aramides Containing Pyridine and Unsymmetrical Carbazole Moieties as Proton Sensors 1. Introduction 31 2. Experimental 32 2.1 Materials 32 2.2 Instrumentation. 33 2.3 Synthesis of 4-(9-ethyl-3-carbazole)-2, 6-bis(4-nitrophenyl)pyridine (CBNPP) (Scheme 1) 33 2.4 Synthesis of 4-(9-ethyl-3-carbazole)-2, 6-bis(4-aminophenyl)pyridine (CBAPP) 34 2.5 Synthesis of polyamides 35 3. Results and discussion 35 4. Conclusion 40 5. Captions for Schemes, Figures, Tables and References 42

    [A1] Winter, M., Brodd, R. J., Chem. Rev., Vol. 104, pp. 4245-4269 (2004)
    [A2] Karden, E., Ploumen, S., Fricke, B., Miller, T., Synder, K., J. Power Source, , Vol. 168, pp. 2-11 (2007)
    [A3] Osaka, T., Datta, M., Energy Storage Systems for Electronics, Gordon & Breach, Amsterdam, The Netherlands 2001.
    [A4] Nalwa, H., Handbook of Low and High Dielectric Constant Materials and Their Applications, Academic Press, London 1999.
    [A5] Sarjeant, W. J., Zirnheld, J., MacDougall, F. W., IEEE Trans. Plasma Sci., Vol. 26, pp. 1368-1392 (1998)
    [A6] Cao, Y., Irwin, P. C., Younsi, K., IEEE Trans. Dielectr. Electr. Insul., Vol. 11, pp. 97-807 ( 2004)
    [A7] Zhang, Z., Meng, Q., Chung, M. T. C., Polymer, Vol. 50, pp. 707-715 (2009)
    [A8] Reed, C. W., Cichanowski, S. W., IEEE Trans. Dielectr. Electr. Insul., Vol. 1, pp. 904-922 (1994)
    [A9] Zhang, Z., Chung, M. T. C., Macromolecues, Vol. 40, pp. 783–785 (2007)
    [A10] Li, J. Y., Zhang, L., Ducharme, S., Appl. Phys. Lett., Vol. 90, pp. 132901–132903 (2007)
    [A11] Chu, B., Zhou, X., Ren, K., Neese, B., Lin, M., Wang, Q., Bauer, F., Zhang, Q. M., Science, Vol. 313, pp. 334–337 (2006)
    [A12] Rabuffi, M., Picci, G., IEEE Trans. Plasma Sci., Vol. 30, pp. 1939-1942. (2002)
    [A13] Scaife, B. K. P., Principles of Dielectrics, Rev. Ed., Oxford: Clarendon Press, 1998.
    [A14] Burn, I., Smyth, D. M., J. Mater. Sci., Vol. 7, pp. 339-343 (1972)
    [A15] Picci, G., Rabuffi, M., IEEE Trans. Plasma Sci., Vol. 28, pp. 1603-1606. (2002)
    [A16] Tortai, J. H., Bonifaci, N., Denat, A., Trassy, C., J. Appl. Phys., Vol. 97, Art. No. 053304 2005,
    [A17] Nash, J. L., Polym. Eng. Sci., Vol. 28, pp. 862-870 (1988)
    [A18] Yoda, N., Polym. Adv. Technol., Vol. 8, pp. 215-226 (1996)
    [A19] Li, J., Seok, S. I., Chu, B., Dogan, F., Zhang, Q. M., Wang, Q., Adv. Mater., Vol. 21, pp. 217-221 (2009)
    [A20] Kim, P., Jones, S. C., Hotchkiss, P. J., Haddock, J. N., Kippelen, B., Marder, S. R., Perry, J. W., Adv. Mater., Vol. 19, 1001-1005 (2007)
    [A21] Wang, J., Wang, Y., Wang, F., Li, S. Q., Xiao, J., Shen, D. Q., Polymer, Vol. 50, pp. 679-684 (2009)
    [A22] Zhang, Q. M., Li, H. F., Poh, M., Xia, F., Cheng, Z. Y., Xu, H. S., Huang, C., Nature, Vol. 419, 284-287 (2002)
    [A23] Gaussian 09 (Revision A.02), Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Gaussian, Inc., Wallingford CT (2009)
    [A24] Tajitsu, Y., Chiba, A., Furukawa, T., Date, M., Fukaka, E., Appl. Phys. Lett., Vol. 36, pp. 286-288 (1980)
    [A25] Chisca, S., Musteata, V., Sava, I., Bruma, M., Semicon. Confer. (CAS), Int., pp. 325-328. 2010
    [A26] Chu, B., Lin, M., Neese, B., Zhou, X., Chen, Q., Zhang, Q. M., Appl. Phys. Lett., Vol. 91, Art. No. 122909 (2007)
    [A27] Gitsas, A., Floudas, G., Macromolecule, Vol. 41, pp. 9423-9429 (2008)
    [A28] Yuan, X., Matsuyama, Y., Chung, T. C. M., Macromolecules, Vol. 43, pp. 4011-4015 (2010)
    [A29] Zhang, Z., Meng, Q., Chung, T. C. M., Macromolecules, Vol. 40, pp. 9391(2007)
    [A30] Meng, Q., Li, W., Zheng, Y., Zhang, Z., J. Appl. Polym. Sci., Vol. 116, pp. 2674-2684 (2010)
    [A31] Niwa, T., Hatada, M., Miyata, H., Takahashi, T., IEEE Trans. Electr. Insul. Vol. 28, pp. 30-34 (1993)
    [A32] Gilbert, L. J., Schuman, T. P., Dogan, F., Ceram. Trans. Vol. 179, pp. 17-26 (2006)
    [A33] Rao, Y., Wong, C. P., J. Appl. Polym. Sci. Vol. 92, pp. 2228-2231 (2004)
    [A34] Li, W., Meng, Q., Zheng, Y., Zhang, Z., Xia, W., Xu, Z., Appl. Phys. Lett., Vol. 96, Art. No. 192905 (2010)
    [A35] Brown, S. T., Rienstra-Kiracofe, J. C., Schaefer, H. F., J. Phys. Chem. A. Vol. 103, pp. 4065-4077 (1999)

    [B1] Garcia, J. M., Garcia, F. C., and Serna, F., de la Pena J.L., Prog. Polym. Sci. Vol. 35, 623-686 (2010)
    [B2] Liaw, D. J., Chen, W. H., and Huang, C. C., In: Mittal KL, editor. Polyimides and other high temperature polymers. VSP Publisher; pp. 47–70 (2003)
    [B3] Liaw, D. J., In: Ueyama N, Harada A, editors. Macromolecular nanostructured materials. Kodansha & Springer; pp. 80–100 [chapter 2.2]. (2004)
    [B4] Liaw, D. J., Liaw, B. Y., and Yang, C. M., Macromolecules Vol. 32, pp. 7248–7250 (1999)
    [B5] Liaw, D. J., Wang, K. L., Huang, Y. C., Lee, K. R., Lai, J. Y., and Ha, C. S., Prog. Polym. Sci. Vol. 37, pp. 907 (2012)
    [B6] Liaw, D. J., Wang, K. L., and Chang, F. C., Macromolecules 2007, 40, 3568-3574.
    [B7] Liaw, D. J.; Liaw, B. Y.; Chen, J. R.; Yang, C. M.; Macromolecules 32, 6860-6863 (1999)
    [B8] Wang, K. L., Liou, W. T., Liaw, D. J., and Chen, W. T., Dyes and Pigments Vol. Vol. 78, pp. 93-100 (2008)
    [B9] Liaw, D. J., Wang, K. L., Kang, E. T., Pujari, S. P., Chen, M. H., Huang, Y. C., Tao, B. C., Lee, K. R., and Lai, J. Y., J. Polym. Sci., Part A: Polym. Chem. Vol. 47, pp. 991-1002 (2009)
    [B10] Liaw, D. J., Wang, K. L., Pujari, S. P., Huang, Y. C., Tao, B. C., Chen, M. H., Lee, K. R., and Lai, J. Y., Dyes Pigments, Vol. 82, pp. 109-117 (2009)
    [B11] Koleva, B. B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Spiteller, M., and Sheldrick, W. S., Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 2010, 75, 172-176; Koleva, B. B., Nikolova, R., Zareva, S., Kolev, T., Seidel, R. W., Mayer-Figge, H., and Sheldrick, W. S., J. Phys. Org. Chem. 2009, 22, 726-734; Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Spiteller, M., Sheldrick, W. S., and Koleva, B. B., Dyes and Pigments, Vol. 82, pp. 95-101 (2009)
    [B12] Liu, G., Ling, Q. D., Kang, E. T., Neoh, K. G., Liaw, D. J., Chang, F. C., Zhu, C. X., and Chan, S. H., J. Appl. Phys. Vol. 102, pp. 024502 (2007)
    [B13] Grazulevicius, J. V., Strohriegl, P., Pielichowski, J., and Pielichowski, K., Prog. Polym. Sci. Vol. 28, pp. 1297–1353 (2003)
    [B14] Fu, Y., and Bo, Z., Macro. Rapid Comm. Vol. 26, pp. 1704–1710 (2005)
    [B15] Vetrichelvan, M., Nagarajan, R., and Valiyaveettil, S., Macromolecules Vol. 39, pp. 8303–8310 (2006)
    [B16] Zhao, H., and Sanda, F., Macromolecules, Vol. 37, pp. 8893-8896 (2004)
    [B17] Ambrose, J. F., Carpenter, L. L., Nelson, R. F., J. Electrochem. Soc. Vol. 122, pp. 876-894 (1975)
    [B18] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, Jr., T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., Pople, J. A. Gaussian 03, Revision D.02; Gaussian, Inc.: Wallingford, CT (2004)
    [B19] Hung, Y. C., Jiang, J. C., Chao, C. Y., Su, W. F., Lin, S. T., J. Phys. Chem. B, Vol. 113, pp. 8268–8277 (2009)

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE