簡易檢索 / 詳目顯示

研究生: 廖貞玟
Chen-Wen Liao
論文名稱: 大腸桿菌表現FPO重組蛋白以測定糖化血紅素(HbA1c)
Protein Expression of E.coli pET23a-FPO for HbA1c detection
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 王孟菊
Meng-Jiy Wang
楊佩芬
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: fructosyl valine(FV)糖化血紅素FPOODADA-64
外文關鍵詞: fructosyl valine(FV), HbA1c, FPO, ODA, DA-64
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • HbA1c (Hemoglobin A1c) 在總糖化血紅素中含量最多,且可代表二至三個月體內平均血糖濃度,因此HbA1c的指數一直是糖尿病患者的平均血糖指標。分析HbA1c含量的方法有許多種,本論文是以FPO (fructosyl peptide oxidase) 酵素氧化HbA1c中valine殘基上之fructose (稱為fructosyl valine, FV) 產生H2O2,再利用過氧化酶 (horseradish peroxidase, HRP) 催化呈色劑呈色,由呈色的深淺推算HbA1C的濃度。本研究首先將FPO表現質體在大腸桿菌中進行大量表現,發現在37℃、LB培養基的培養下,過量表現之FPO異源性蛋白質多以不具活性的內涵體形式存於胞內,若降低培養溫度為26℃,可大幅增加具活性和可溶性FPO的含量。以固定化金屬螯合層析法 (IMAC) 純化大腸桿菌所表現生產之FPO氧化酵素,其比活性可達26.01U/mg,為市售之FAO的五倍。此FPO酵素在溫度4℃~40℃、pH 5~10 環境下,仍能保有相當之活性。
    此外,本論文也探討使用兩種不同的呈色劑ODA與DA-64對偵測FV靈敏度之差異,結果顯示DA-64之靈敏度為ODA的6.3倍,可偵測到0.02 mM之FV。最後將FPO氧化酵素利用多巴胺 (dopamine) 能自我氧化聚合的效應固定在PP微孔膜中,製作出能偵測FV濃度之酵素膜,此酵素膜可以重覆使用至8次仍能保有約20% 之活性。


    HbA1c (Hemoglobin A1c) is the major glycated hemoglobin in human blood, the amount of the HbA1c reflects the average blood glucose concentration of the past few months. HbA1c is recognized as an important diagnostic indicator of diabetes mellitus.
    HbA1c is a hemoglobin molecule in which the N-terminal valine residue of its β-subunit has been modified by blood glucose. In this study, the enzymatic method was developed to detect HbA1c concentration in blood. It consists three steps: (1) proteolysis of the HbA1c β-subunits to release fructosyl valine (FV) (2) oxidation of the released FV by FPO (fructosyl peptide oxidase) to produce H2O2 (3) detection of the produced H2O2
    FPO was expressed by a genetic engineered E.coli pET23a-FPO in this work. The recombinant E.coli strain cultured at 26℃ was found out can produce more FPO activity than at 37℃. The specific activity of purified FPO protein is 26.01 U/mg after IMAC purification. It is about 5 fold higher than that of commercially available FAO. The FPO protein can well maintain its activity in the range of 4℃~ 40℃ and pH 5~10.
    In addition, the FV detection sensitivity using the dye of ODA and DA-64 has been investigated. The results showed that the sensitivity of the DA-64 was 6.3 fold higher than that of ODA. FV concentration as low as 0.02Mm could be detected by using this enzymatic colorimetric method.

    中文摘要 I 英文摘要 III 目錄.............................. …...........................................V 圖目錄.............. IX 表目錄........... XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的及研究內容簡介 2 第二章 文獻回顧 3 2.1 糖化血紅素 (GYCATED HEMOGLOBIN) 之來源與組成 3 2.1.1 HbA1C 5 2.2 糖化血紅素的測定與分析 7 2.2.1 陽離子交換樹脂層析法 (Cation exchange HPLC) 8 2.2.2 硼酸親合性層析法 (Boronate affinity HPLC) 9 2.2.3 免疫比濁法 (Immunoassay) 10 2.2.4 電化學法 10 2.2.5 酵素比色法 11 2.3酵素比色法所使用的氧化酵素 12 2.3.1 FAO (fructosyl amino acid oxidase) 13 2.3.2 FPO (fructosyl peptide oxidase) 13 2.4 酵素比色法測試糖化血紅素HBA1C所使用的呈色劑 16 2.4.1 O-Dianisidine(ODA) 16 2.4.2 DA-64 17 2.5多巴胺的氧化聚合反應及其在酵素固定化之應用 18 第三章 實驗材料與方法 20 3.1 實驗流程 20 3.2 實驗材料 21 3.2.1 菌株 21 3.2.2 載體 21 3.2.3 操作試液套件組 (Kit) 21 3.2.4其它 21 3.3 實驗藥品 22 3.4 各式緩衝液與反應液 24 3.5 實驗儀器及設備 27 3.6 FPO基因表現載體 PET23A - FPO 之建構 27 3.6.1 質體 pET23a - FPO 之純化 28 3.7 質體轉質於勝任細胞 (BL21) 29 3.8 E.COLI重組基因菌株培養及FPO重組蛋白之生產 30 3.8.1 搖瓶培養 30 3.8.2 發酵槽培養 31 3.9 FPO重組蛋白之純化 32 3.10 FPO重組蛋白質之濃度分析 33 3.11 蛋白質電泳分析 34 3.12 FPO活性分析 35 3.13 FPO專一性測試 36 3.14 溫度與PH值對FPO活性的影響 36 3.15 利用兩種不同呈色劑ODA與DA-64測定FV之檢量線 37 3.16 將反應基質FV溶於人類血液中,模擬測試HBA1C之環境 37 3.17 固定FPO氧化酵素於微孔性PP膜上 38 3.17.1 酒精前處理微孔性PP膜 38 3.17.2 修飾聚多巴胺Polydopamine於微孔性PP膜上 38 3.17.3 固定FPO氧化酵素於多巴胺修飾後之PP膜 39 第四章 結果與討論 40 4.1 PET23A - FPO轉型之大腸桿菌表現生產FPO 40 4. 1.1 培養條件 40 4.1.2 發酵槽培養E.coli(DE3) pET23a-FPO之生長曲線 41 4.2 FPO活性分析及其純化表 43 4.3 重組蛋白FPO與市售FAO活性比較..... 45 4.4 溫度與PH值對FPO活性之影響 45 4.5 FPO酵素動力學 47 4.6 FPO對基質反應之專一性 50 4.7呈色劑ODA與DA-64對測定FV檢量線之靈敏度 51 4.7.1 ODA為呈色劑 51 4.7.2 DA-64為呈色劑 52 4.8 添加基質FV於血液中模擬測試HBA1C 55 4.8.1 以ODA作為呈色劑 56 4.8.2 以DA-64作為呈色劑 57 4.9 利用多巴胺自我氧化聚合反應固定酵素於PP膜上 588 第五章 結論 64 第六章 建議 66 參考文獻 67

    Akazawa, S., Karino, T., Yoshida, N., Katsuragi, T., Tani, Y., 2004. Functional Analysis of Fructosyl Amino Acid Oxidase of Aspergillus oryzae. Environmental Microbiology,70(10):5882-5890.

    Blaedel, W.J., Uhi, J.M., 1975. Nature of Materials in Serum That Interfere in the Glucose Oxidase-Peroxidase--o- Dianisidine Method for Glucose, and Their Mode of Action. Clinical Chemistry, 21(1):119-124

    Bunn, H.F., Haney, D.N., Kamin,S., Gabbay,K.H., Gallop, P.M.,1976. The Biosynthesis of Human Hemoglobin A. Clinical Investigation, 57:1652-1659.

    Chien, H.C., Chou, T.C., 2010. Glassy Carbon Paste Electrodes for the Determination of Fructosyl Valine. Electroanalysis, 22(6): 688 – 693.

    Ferri, S., Kim, S., M. Eng., Tsugawa, W., Sode, K., 2009. Review of Fructosyl Amino Acid Oxidase Engineering Research: A Glimpse into the Future of Hemoglobin A1c Biosensing. J Diabetes Sci Technol, 3(3):585-592.

    Gabriele, H.B., Katzensteiner, S., Schnedl, W.,Pu‥ rstner, P., Pieber, T., and Martie, W.T., 1997. Comparative evaluation of three assay systems for automated determination of hemoglobin A1c. Clinical Chemistry, 43(3):511-517.

    Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N.,Wang, T., Feng, J.,Yang, D.,Perrett, S.,Yan, X., 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2:577-583.

    Hirokawa, K., Gomi, K., Kajiyama, N., 2003. Molecular cloning and expression of novel fructosyl peptide oxidases and their application for the measurement of glycated protein. Biochemical and Biophysical Research Communications, 311:104–111.

    Hirokawa , K., Nakamura, K., Kajiyama, N., 2004. Enzymes used for the determination of HbA1C. FEMS Microbiology Letters, 235:157–162.

    Hirokawa, K., Shimoji, K., Kajiyama, N., 2005. An enzymatic method for the determination of hemoglobinA1C. Biotechnology Letters, 27: 963–968.

    Iberg, N., Fluckiger, R., 1986. Nonenzymatic Glycosylation of Albumin in Vivo.The Journal of Biological Chemistry,261(29): 13542-13545.

    Isarankura-Na-Ayudhya,Chartchalerm1,Tansila1,N.,Worachartcheewan, A., Bulow, L., and Prachayasittikul, V.,2010. Biochemical and Cellular Investigation of Vitreoscilla Hemoglobin (VHb) Variants Possessing Efficient Peroxidase Activity. J. Microbiol. Biotechnol, 20(3):532–541.

    Jeppsson, J.O., Kobold, U.,Barr, J., Finke, A., Hoelzel, W.,Hoshino, T., Miedema, K., Mosca, A., Mauri, P.,Paroni, R., Thienpont, L., Umemoto., M., Weykamp, C., 2002. Approved IFCC Reference Method for the Measurement of HbA1c in Human Blood. Clin Chem Lab Med , 40(1):78–89.

    Kim, S., Ferri, S., Tsugawa, W., Mori, K., Sode, K., 2010. Motif-Based Search for a Novel Fructosyl Peptide Oxidase From Genome Databases. Biotechnology and Bioengineering, 106(3):358-366.

    Kobold, U., Jeppsson, J.O., Du‥ lffer, T., Finke, A., Hoelzel, W., Miedema, K., 1997. Candidate reference methods for hemoglobin A1c based on peptide mapping. Clinical Chemistry, 43(10):1944-1951.

    Lavoie, M.J., Ostaszewski, B.L., Weihofen, A., Schlossmacher, M.G., Selkoe, D.J., 2005. Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine, 11(11):1214-1221.

    Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B., 2007. Mussel-inspired surface chemistry for multifunctional coatings. Science, 318(5849):426-430.

    Liu, L., Hood, S., Wang, Y., Bezverkov, R., Dou, C., Datta, A., Yuan., C., 2008. Direct enzymatic assay for %HbA1c in human whole blood samples. Clinical Biochemistry, 41:576–583.

    Lynge, M.E., Westen, R., Postmab, A., Stadler, B., 2011. Polydopamine—a nature-inspired polymer coating for biomedical science. Nanoscale, 3:4916–4928.

    Martin, R., Sua′rez., J.E., 2010. Biosynthesis and Degradation of H2O2 by Vaginal Lactobacilli. Environmental Microbiology, 76(2):400–405.

    Miura, S., Ferri, S., Tsugawa,W., Kim ,S., Sode, K., 2008. Development of fructosyl amine oxidase specific to fructosyl valine by site-directed mutagenesis. Protein Engineering, Design & Selection ,21(4): 233–239.

    Nanjo, Y., Hayashi, R., Yao, T., 2007. An enzymatic method for the rapid measurement of the hemoglobin A1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer. Analytica Chimica Acta, 583: 45–54.

    Raabo, E., Terkildsen, T.C., 1960. On the Enzymatic Determination of Blood Glucose. Scandinav. J. Clin. & Lab. Investigation, 12:402-407.

    Ryou, M.H., Lee, Y.M., Park, J.K., Choi, J.W., 2011. Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries. Adv. Mater, 23:3066–3070.

    Sakurabayashi, I., Watano, T., Yonehara, S., Ishimaru, K., Hirai, K., Komori, T., Yagi, M., 2003. New Enzymatic Assay for Glycohemoglobin. Clinical Chemistry, 49(2):269-274.

    Schnedl, W.J., Krause, R., Gabriele, H.B.,Trinker, M., LIPP, R.W., Krejs, G.J., 2000. Evaluation of HbA1c Determination Methods in Patients With Hemoglobinopathies. Diabetes Care,23:339-344.

    Shapiro, R., McManus, J.M., Zalut, C., Bunn, H.F., 1980. Sites of Nonenzymatic Glycosylation of Human Hemoglobin A*. Biological Chemistry, 255(7):3120-3127.

    Sheikholeslam, S., Pritzker, M.D., Chen, P., 2011. Electrochemical Biosensor for Glycated Hemoglobin (HbA1c), Biosensors for Health, Environment and Biosecurity, Pier Andrea Serra (Ed.), ISBN: 978-953-307-443-6, InTech, 13:293-320.

    Song, S.Y., Yoon, H.C., 2009. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B, 140:233–239.

    Weets I., Gorus, F.K., Gerlo, E., 1996. Evaluation of an Immunoturbidimetric Assay for Haemoglobin Alc on a CobasR Mira S Analyser. Eur J Clin Chem Clin Biochem, 34:449-453.

    Yang, F., Zhao, B., 2011.Adhesion Properties of Self-Polymerized Dopamine Thin Film. The Open Surface Science Journal, 3: 115-122.

    Ye, Q., Zhou, F., Liu, W., 2011. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev ,40:4244–4258.

    Zeng, R., Luo, Z., Zhou, D., Cao, F., Wang, Y., 2010. A novel PEG coating immobilized onto capillary through polydopamine coating for separation of proteins in CE. Electrophoresis, 31:3334–3341.

    Zhang, L., Shi, J., Jiang, Z., Jiang, Y., Qiao, S., Li, J., Wang, R., Meng, R., Zhua, Y., Zheng, Y., 2011. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem., 13:300-306.

    無法下載圖示 全文公開日期 2016/05/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE