簡易檢索 / 詳目顯示

研究生: 郭力彬
Li-Pin Kuo
論文名稱: 紫膜生物光電晶片應用於糖化血紅素 (HbA1c) 檢測之探討
Application of purple membrane photoelectric chips on HbA1c detection
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 曾文祺
Wen-Chi Tseng
蔡伸隆
Shen-Long Tsai
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 173
中文關鍵詞: 紫膜糖化血紅素
外文關鍵詞: purple membrane, HbA1c
相關次數: 點閱:281下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 古生嗜鹽菌Halobacterium salinarum細胞膜上含有紫膜 (purple membrane, PM) ,其內含有細菌視紫質 (bacteriorhodopsin, BR) ,為一種光驅動質子泵浦,受光激發後其膜兩側會產生質子梯度差,可進而產生光電流。本研究基於BR光電響應與入射光強度呈正向關係之事實,並以核酸適體 (aptamer) 作為生物辨識分子,分別將針對人類血紅素 (hemoblobin, Hb) 與糖化血紅素 (HbA1c) 的核酸適體以架橋固定化於PM晶片上,以分別定量檢測Hb與HbA1c。研究中探討晶片製程及檢測最適化條件,並且以PM感測晶片之光電流與拉曼光譜分析分別確認這兩種核酸適體之固定化及Hb與HbA1c之檢測。在最適化條件下,15分鐘即可完成檢測,且兩種晶片檢測靈敏度均可低達0.1 μg/mL以下。而在實地樣品檢測時,晶片檢測所得的HbA1c值 (HbA1c %) 和標準測量法相比,平均誤差值為2.53±1.44 %,且對每個樣品晶片檢測之RSD %皆在5 %以下 (n=3) 。此外與市售A1CNow 檢測儀器的量測HbA1c %值相比,本研究晶片結果不僅與標準方法之關係稍高,且具有更寬廣檢測範圍,顯示其未來商業化之可行性。


    One of the archaeon Halobacterium salinarum cellular membranes is purple membrane (PM) containing bacteriorhodopsin (BR), a light-driven proton pump which generates a proton gradient and thus photocurrent across the membrane upon illumination. Based on the positive correlation of BR photoelectric response with the incident-light intensity, this study first demonstrates a novel quantitative detection method of hemoglobin (Hb) and hemoglobin A1c (HbA1c) by immobilizing their respective aptamers on PM-coated chips to serve as the recognition element. Chip fabrication and Hb/HbA1c detection were both optimally investigated and confirmed by both Raman spectroscopy and PM-photocurrent measurement. Both Hb and HbA1c were sensitively detected at 0.1 μg/mL in 15 min. For real field sample detection, an averaged accuracy of 2.53±1.44 % was obtained for the HbA1c% value, with RSD < 5 % (n=3) for each sample. In comparison with the commercial HbA1c detection instrument, A1CNow, the current PM-based measurement method not only yielded results with a slightly better correlation with what were obtained by the standard method but also exhibited a wider dynamic range, suggesting its future commercial potentials.

    中文摘要 I 英文摘要 II 目錄 III 表目錄 V 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2-1 血紅素、糖化血紅素及糖化血紅素檢測方法 3 2-1-1 血紅素 (hemoglobin, Hb) 3 2-1-2 糖化血紅素 (glycated hemoglobin, GHb) 4 2-1-2-1 HbA1c 5 2-1-3 糖化血紅素檢測方法 8 2-1-3-1 陽離子交換層析法 8 2-1-3-2 毛細管電泳法 10 2-1-3-3 免疫法 11 2-1-3-4 硼酸親合層析法 14 2-1-3-5 酵素分析法 15 2-1-3-6 電化學法 16 2-1-3-7 拉曼光譜分析 22 2-1-3-8 適體式分析 23 2-1-3-9 高效液相層析-毛細管電泳聯用 (HPLC-capillary electrophoresis,HPLC-CE) 26 2-1-3-10 高效液相層析-質譜聯用 (HPLC-mass spectrometry, HPLC-MS) 26 2-1-4 便攜式就地照護檢測裝置 (point of care, POC) 27 2-1-5 POC檢測裝置認證 33 2-1-5-1 美國醣化血紅素標準化協會 (National Glycohemoglobin Standardization Program, NGSP) 33 2-1-5-2 美國食品藥品監督管理局 (U.S. Food and Drug Administration, FDA) 36 2-1-5-3 臨床實驗室改進修正案 (Clinical Laboratory Improvement Amendments, CLIA) 37 2-2 細菌視紫質 (bacteriorhodopsin, BR) 39 2-2-1 Halobacterium salinarum 39 2-2-2 BR結構 40 2-2-3 BR光循環與質子傳遞 41 2-2-4 BR光電響應 43 2-2-5 PM之單層定向固定化 47 2-2-6 PM晶片之微生物檢測應用 49 第三章 實驗 51 3-1 實驗目的 51 3-2 實驗流程 53 3-3 量測 56 3-3-1 微分光電流量測 56 3-3-2 拉曼光譜分析 57 第四章 結果討論 58 4-1 Hb、HbA1c及PM光譜圖及消光係數比較 58 4-2 aptamer結構模擬 59 4-2-1 以模擬決定aptamer固定化於PM晶片之反應條件 59 4-2-1-1 固定溫度下改變aptamer之固定化Na+濃度 59 4-2-1-2 固定Na+濃度下改變aptamer之固定化反應溫度 79 4-2-2 以模擬決定aptamer-PM複合晶片檢測Hb或HbA1c之反應條件 92 4-3 以實驗決定aptamer固定化於PM晶片之條件與複合晶片檢測Hb或HbA1c條件 (以linker A當架橋) 104 4-4 Hb抗體-PM晶片與Hb aptamer-PM晶片 (以linker A當架橋) 檢測Hb比較 107 4-5 以linker C為架橋固定化aptamer於PM晶片 (實驗室鄭凱如學姊協助) 109 4-5-1 aptamer與linker C鍵結反應溫度探討 109 4-5-2 aptamer spacer碳鏈長度探討 111 4-5-3 aptamer固定化濃度探討 (鄭智文學弟協助先發探討) 112 4-5-4 aptamer-PM複合晶片檢測溶液之探討 115 4-5-5 aptamer-PM複合晶片之專一性探討 119 4-5-6 PEG濃度對aptamer-PM複合晶片之檢測時間影響探討 (鄭智文學弟協助先發探討) 131 4-5-7 拉曼光譜分析 133 4-6 實地樣品檢測 139 第五章 結論 149 第六章 參考文獻 151

    Acikara OB. Ion-exchange chromatography and its applications. In: Martin DF,
    Martin BB (Eds), Column Chromatography. InTech, Croatia, 2013, 33-58.

    Balashov SP. Protonation reactions and their coupling in bacteriorhodopsin. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2000, 1460 (1):75-94.

    Barman I, Dingari NC, Kang JW, Horowitz GL, Dasari RR, Feld MS. Raman
    spectroscopy-based sensitive and specific detection of glycated hemoglobin.
    Analytical Chemistry. 2012, 84 (5):2474-2482.

    Braiman M, Mathies R. Resonance Raman spectra of bacteriorhodopsin's primary
    photoproduct: evidence for a distorted 13-cis retinal chromophore. Proceedings of the
    National Academy of Sciences. 1982, 79 (2):403-407.

    Bunn HF, Haney DN, Gabbay KH, Gallop PM. Further identification of the nature
    and linkage of the carbohydrate in hemoglobin A1c. Biochemical and Biophysical
    Research Communications. 1975, 67 (1):103-109.

    Cagliero E, Levina EV, Nathan DM. Immediate feedback of HbA1c levels improves
    glycemic control in type 1 and insulin-treated type 2 diabetic patients. Diabetes Care.
    1999, 22 (11):1785-1789.

    Chang KW, Li J, Yang CH, Shiesh SC, Lee GB. An integrated microfluidic system
    for measurement of glycated hemoglobin levels by using an aptamer–antibody assay
    on magnetic beads. Biosensors and Bioelectronics. 2015, 68 (1):397-403.

    Chen HM, Lin CJ, Jheng KR, Kosasih A, Chang JY. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids and Surfaces B: Biointerfaces. 2014, 116 (1):482-488.

    Chen H-M, Jheng K-R, Yu A-D. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor. Biosensors and Bioelectronics. 2017, 91 (1):24-31.

    Clinical Laboratory Improvement Amendments. 2014.
    https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/IVDRegulatory
    Assistance/ucm124105.htm.

    English E, John WG, Milosevich ET. In vitro determination of hemoglobin A1c for
    diabetes diagnosis and management: technology update. Pathology and Laboratory
    Medicine International. 2014, 6 (1):21-31.

    FDA strategic priorities: 2014-2018. 2015.
    https://www.fda.gov/AboutFDA/ReportsManualsForms/Reports/ucm227527.htm.

    Glynn J, Belongia B, Arnold R, Ogden K, Baygents J. Capillary electrophoresis measurements of electrophoretic mobility for colloidal particles of biological interest. Applied and Environmental Microbiology. 1998, 64 (7):2572-2577.

    Halámek J, Wollenberger U, Stöcklein W, Scheller F. Development of a biosensor for glycated hemoglobin. Electrochimica Acta. 2007, 53 (3):1127-1133.

    Hampp N. Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chemical Reviews. 2000, 100 (5):1755-1776.

    Jess P, Garcés-Chávez V, Smith D, Mazilu M, Paterson L, Riches A, Herrington C, Sibbett W, Dholakia K. Dual beam fibre trap for Raman microspectroscopy of single cells. Optics Express. 2006, 14 (12):5779-5791.

    Jin Y, Honig T, Ron I, Friedman N, Sheves M, Cahen D. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chemical Society Reviews. 2008, 37 (11):2422-2432.

    Kawamura I, Ohmine M, Tanabe J, Tuzi S, Saitô H, Naito A. Dynamic aspects of extracellular loop region as a proton release pathway of bacteriorhodopsin studied by relaxation time measurements by solid state NMR. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2007, 1768 (12):3090-3097.

    Khorana H. Bacteriorhodopsin, a membrane protein that uses light to translocate protons. Journal of Biological Chemistry. 1988, 263 (16):7439-7442.

    Lin HI, Wu CC, Yang CH, Chang KW, Lee GB, Shiesh SC. Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX. Lab on a Chip. 2015, 15 (2):486-494.

    Little RR, Rohlfing CL, Wiedmeyer HM, Myers GL, Sacks DB, Goldstein DE. The national glycohemoglobin standardization program: a five-year progress report. Clinical Chemistry. 2001, 47 (11):1985-1992.

    Marchetti P. Advanced glycation end products (AGEs) and their receptors (RAGEs) in diabetic vascular disease. Medicographia. 2009, 31 (3):257-265.

    Miyasaka T, Koyama K. Image sensing and processing by a bacteriorhodopsin-based artificial photoreceptor. Applied Optics. 1993, 32 (31):6371-6379.

    Mozzarelli A, Bruno S, Ronda L. Biochemistry of hemoglobin. In: Kim HW, Greenburg AG (Eds), Hemoglobin-Based Oxygen Carriers as Red Cell Substitutes and Oxygen Therapeutics. Springer, New York, 2013, 55-73.

    Nanjo Y, Hayashi R, Yao T. An enzymatic method for the rapid measurement of the hemoglobin A 1c by a flow-injection system comprised of an electrochemical detector with a specific enzyme-reactor and a spectrophotometer. Analytica Chimica Acta. 2007, 583 (1):45-54.

    Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. Translating the A1C assay into estimated average glucose values. Diabetes Care. 2008, 31 (8):1473-1478.

    National Glycohemoglobin Standardization Program (NGSP) . HbA1c methods: Effects of hemoglobin variants (HbC, HbS, HbE and HbD traits) and elevated fetal hemooglobin (HbF). 2016. http://www.ngsp.org/interf.asp.

    Ogawa K, Stöllner D, Scheller F, Warsinke A, Ishimura F, Tsugawa W, Ferri S, Sode K. Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring. Analytical and Bioanalytical Chemistry. 2002, 373 (4-5):211-214.

    Qu L, Xia S, Bian C, Sun J, Han J. A micro-potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole–gold nanoparticles composite. Biosensors and Bioelectronics. 2009, 24 (12):3419-3424.
    Rajkumar R, Katterle M, Warsinke A, Möhwald H, Scheller FW. Thermometric MIP sensor for fructosyl valine. Biosensors and Bioelectronics. 2008, 23 (7):1195-1199.

    Roche Diagnostics Limited. Technology Turbidimetry - Specific proteins. 2017. http://www.cobas.com/home/product/clinical-and-immunochemistry-testing/technology-turbidimetry-specific-proteins.html.

    Sakurabayashi I, Watano T, Yonehara S, Ishimaru K, Hirai K, Komori T, Yagi M. New enzymatic assay for glycohemoglobin. Clinical Chemistry. 2003, 49 (2):269-274.

    Sanavio B, Krol S. On the slow diffusion of point-of-care systems in therapeutic drug monitoring. Frontiers in Bioengineering and Biotechnology. 2015, 3 (20):1-15.

    Schaffert LN, English E, Heneghan C, Price CP, Van den Bruel A, Plüddemann A. Point-of-care HbA1c tests-diagnosis of diabetes. National Institute for Health Research. 2016.

    Sebastian C, William H. Immunochromatography: formats and applications. Indo American Journal of Pharmaceutical Research. 2016, 6 (7): 6400-6417.

    Shapiro R, McManus MJ, Zalut C, Bunn HF. Sites of nonenzymatic glycosylation of human hemoglobin A. Journal of Biological Chemistry. 1980, 255 (7):3120-3127.

    Siva Rama Krishna V, Bhat N, Amrutur BS, Chakrapani K, Sampath S. Detection of glycated hemoglobin using 3-aminophenylboronic acid modified graphene oxide. Life Science Systems and Applications Workshop. 2011.
    http://ieeexplore.ieee.org/document/5754140/.

    Song SY, Yoon HC. Boronic acid-modified thin film interface for specific binding of glycated hemoglobin (HbA1c) and electrochemical biosensing. Sensors and Actuators B: Chemical. 2009, 140 (1):233-239.

    Syamala Kiran M, Itoh T, Yoshida K-i, Kawashima N, Biju V, Ishikawa M. Selective detection of HbA1c using surface enhanced resonance Raman spectroscopy. Analytical Chemistry. 2010, 82 (4):1342-1348.

    U.S. Food and Drug Administration (FDA) . Review criteria for assessment of glycohemoglobin (glycated or glycosylated) hemoglobin in vitro diagnostic devices.1991. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm094266.htm.

    Wang B, Anzai JI. Recent progress in electrochemical HbA1c sensors: a review. Materials. 2015, 8 (3):1187-1203.

    Wang I-S, Lin C-T. Glycated hemoglobin detection in clinical blood samples by using CMOS poly-silicon sub-micron wire biosensor. Procedia Engineering. 2016, 168 (1):121-124.

    Wang J. Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-fourier transform infrared spectroscopy. Thin Solid Films. 2000, 379 (1):224-229.

    Wang JP, Yoo SK, Song L, El-Sayed MA. Molecular mechanism of the differential photoelectric response of bacteriorhodopsin. The Journal of Physical Chemistry B. 1997, 101 (17):3420-3423.

    Weykamp C. HbA1c: a review of analytical and clinical aspects. Annals of Laboratory Medicine. 2013, 33 (6):393-400.

    World Health Organization (WHO). Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. WHO, Geneva, 2011, 1-25.

    吳欣穎. 細菌視紫質泛用型免疫光電晶片製備與原子力顯微鏡分析. 2015. 國立台灣科技大學化學工程研究所碩士論文.

    周文娟, 吳雲翔, 易軍. 糖化血紅蛋白標準化及其檢測技術的發展. 生物化學與生物物理進展. 2015, 42 (5):443-456.

    林其融. AFM探討分別以結合氧化石墨烯之親和吸附與共價鍵結作用固定化之紫膜. 2012. 國立台灣科技大學化學工程研究所碩士論文.

    林承德.氧化石墨烯濃度對以親合吸附作用製備細菌視紫質光電晶片之影響. 2012. 國立台灣科技大學化學工程研究所碩士論文.

    范尹婷. 美國食品藥物管理局 (FDA) 對醣化血色素體外診斷器材之上市審查要
    求. 生技與醫療器材報導. 2004, 61 (1):56-60.

    陳逸航. 定向性細菌視紫質晶片之光電與二倍頻響應探討. 2010. 國立台灣科技大學化學工程研究所碩士論文.

    陳冠辰. 適體-細菌視紫質生物光電感測晶片之探討. 2015. 國立台灣科技大學化學工程研究所碩士論文.

    新竹生醫園區產業資訊電子報 39期 醫療器材Q&A. 2011. http://www.hbmsp.sipa.gov.tw/itri/tw/images/NewsList1001121_07.htm.

    廖信銓. 微流體於細菌視紫質光電晶片製備之應用. 2015. 國立台灣科技大學化學工程研究所碩士論文.

    無法下載圖示 全文公開日期 2022/08/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE