簡易檢索 / 詳目顯示

研究生: Galang Dhaifullah Abdul Aziz
Galang Dhaifullah Abdul Aziz
論文名稱: 利用電漿處理電紡絲氧化錫/二氧化錫奈米複合材料以開發高效能之電化學生物感測器
Development of Highly Performance Electrochemical-based Biosensors Using Plasma-treated Electrospun Sn/SnO2 Nanocomposites
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 徐振哲
Cheng-Che Hsu
陳建彰
Jian-Zhang Chen
劉志宏
Chi-Hung Liu
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 121
中文關鍵詞: 多巴胺抗壞血酸尿酸電化學生物感測器Sn/SnO2奈米複合材料電紡絲電漿處理
外文關鍵詞: Dopamine, Ascorbic acid, Uric acid, Electrochemical biosensor, Sn/SnO2 nanocomposites, Electrospinning, Plasma treatments
相關次數: 點閱:425下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於人體生物代謝的不平衡,對生物分子的分析在當今世界變得至關重要。生物體中存在許多不同類型的生物分子,每種生物分子在各種生物功能中扮演著重要作用。多巴胺(DA)、抗壞血酸(AA)、和尿酸(UA)是重要的小生物分子,在生物系統中相互作用,對於人體代謝過程相關的各種生理功能至關重要。細胞外液、血清、和中樞神經系統中經常含有DA、AA 和UA。人體中異常的DA、AA、和UA 水平與多種疾病密切相關。生物感測器的應用已成為藥物開發、生物醫學、食品安全標準、軍隊安全、和環境監測等領域的重要組成部分,因此,開發高靈敏度生物感測分析方法非常試重要。由於DA、AA 和UA 在電解液中可以經電化學氧化,利用電化學的生物感測器來檢測這些化合物,提供了一種可靠、快速、簡單、敏感和專一的方法。然而,這些生物分子經常共存,並且具有類似的氧化電位,這使得同時進行電化學檢測具有挑戰性。
    本論文開發一種新的 Sn/SnO2 奈米複合材料作為電催化劑,被用於測定人體含有的 DA、AA 和UA 濃度。Sn/SnO2 奈米複合材料是通過對含錫纖維進行電漿處理 (大氣常壓電漿 (APPJ) 和微波電漿) 的不同處理時間製備的。製備得到的 Sn/SnO2 奈米複合材料與石墨結合,以提高材料的導電性,將 Sn/SnO2 奈米複合材料與石墨沉積在金電極上 (graphite_Sn/SnO2@AuE) ,製備電化學的生物感測器以檢測 DA、AA、和 UA。利用掃描式電子顯微鏡 (SEM)、X-ray 繞射分析 (XRD)、拉曼光譜儀和 X-ray 電子能譜儀 (XPS) 分析製備的 Sn/SnO2 奈米複合材料。研究該奈米複合材料的形貌、結晶性、和成分。電漿處理後,纖維表面出現顆粒狀和花狀形態。材料的化學成分中顯示出碳、氧和錫金屬元素。利用循環伏安法 (CV)、計時安培法 (AMP)、和差分脈衝伏安法 (DPV) 測試三電極電化學裝置組成的工作電極的電化學性能。優異的電化學性能可歸因於材料的優異導電性和大的電化學活性表面積 (ECSA)。
    本研究對於 DA、AA、和 UA 等單一活性分子以及三種活性分子的混合物進行檢測,結果顯示,製備的 graphite_Sn/SnO2@AuE 有助於善 DA、AA、和 UA 的電化學檢測性能。最適化後的氬氣微波電漿參數,120 秒的電漿處理樣本,加入 1 wt % 石墨粉末混合。表現最佳的線性範圍為 0.1–400、5–6000和0.1–900 µM,靈敏度分別為485.0、73.5 和177.8 µA/mM.cm2,檢測限為 0.002、0.16 和 0.008 µM,用於單獨檢測 DA、AA 和 UA。此外,電極在存在 AA 濃度時,在 0.1–400 和 0.1–900 µM 範圍內呈現線性,靈敏度分別為 473.7 和 169.3 µA/mM.cm2,檢測限為0.003和0.010 µM,用於在 AA 濃度存在時檢測DA、和UA。此外,本研究製備的 graphite_Sn/SnO2@AuE 可成功地應用於真實樣品 (人體血清),並展現出對 DA、AA、和UA 的高度選擇性。最終,graphite_Sn/SnO2 奈米複合材料可以增強網印式印刷碳電極與自製可撓式電極的電化學感測性能。


    The analysis of biomolecules is crucial in today's world due to an imbalance in the biological metabolism of the human body. There are many distinct types of biomolecules in living organisms, and each biomolecule is required for a range of biological functions. Biomolecules are primary components that serve to regulate regular bodily growth and development in all living creatures. Dopamine (DA), ascorbic acid (AA), and uric acid (UA) are important small biomolecules that interact in biological systems and are crucial to a variety of physiological functions related to the human metabolic process. The extracellular fluid, serum, and central nervous system all frequently include DA, AA, and UA. Several disorders are closely related to abnormal DA, AA, and UA levels in the human body. The application of biosensors has become essential in the sectors of drug development, biomedicine, food safety standards, army, safety, and environmental monitoring. As a result, biosensors based on biological sensing components have been built with precise and strong analytical methodologies. Since DA, AA, and UA are simply electrochemically oxidized in electrolyte solutions, using an electrochemical-based biosensor for identifying these compounds provides a dependable, quick, simple, sensitive, and focused method. However, these biomolecules often coexist together and have similar oxidation potentials, which causes simultaneous electrochemical detection challenging.
    A new construction material of Sn/SnO2 nanocomposites was introduced as an electrocatalysts to determine the concentration of DA, AA, and UA in the human body. The Sn/SnO2 nanocomposites were fabricated by plasma treatments (atmospheric pressure plasma jet (APPJ) and microwave plasma) on electrospun Sn-containing fibers processes with different treatment time. The resultant of Sn/SnO2 nanocomposites were combined with graphite to enhance the electrical conductivity of materials and deposited on a gold electrode (graphite_Sn/SnO2@AuE) to construct an electrochemical-based biosensor to detect DA, AA, and UA. The prepared Sn/SnO2 nanocomposites were examined by scanning electron microscope (SEM), X-ray diffractometer (XRD), Raman spectrometer, and X-ray photoelectron spectroscopy (XPS) to investigate the morphology, crystallinity, and composition of this nanocomposites. A particle-like and flower-like morphology appeared on the surface of the fibers after plasma treatments. The carbon, oxygen, and tin metal elements were revealed in the chemical composition of materials. A three-electrode electrochemical setup was used to test the electrochemical properties of the constructed working electrode using cyclic voltammetry (CV), amperometry (AMP), and differential pulse voltammetry (DPV). The excellent electrochemical behavior can be ascribed to the outstanding conductivity of the materials and large electrochemical active surface area (ECSA).
    The results of individual and simultaneous detection of DA, AA, and UA revealed the Sn/SnO2 nanocomposites and graphite powder improve the electrochemical performance toward DA, AA, and UA detection. The optimized parameter was achieved by applying Ar microwave plasma treatment for 120 s and adding 1 wt% of graphite in Sn/SnO2 dispersion. The best-performed electrode exhibited a linear range of 0.1 – 400, 5 – 6000, and 0.1 - 900 µM, a sensitivity of 485.0, 73.5, and 177.8 µA/mM.cm2, and a LOD of 0.002, 0.16, and 0.008 µM, for individual DA, AA, and UA detection. In addition, the electrode presented linearity within 0.1 – 400 and 0.1 - 900 µM, with a sensitivity of 473.7 and 169.3 µA/mM.cm2, and a LOD of 0.003 and 0.010 µM for DA and UA detection in the presence of AA concentration. Furthermore, the Sn/SnO2 and graphite-modified AuE sensor was successfully applied in a real human fluid matrix and showed highly selective towards the determination of DA, AA, and UA in common interferents in human body fluid. Finally, the dispersion of Sn/SnO2 and graphite enhanced the performance of biosensor detection on the commercial screen-printed carbon electrode (SPCE) and the laboratory-made flexible carbon electrode (C-PP).

    Abstract i 摘要 iii Acknowledgement v Table of Contents vi List of Figures ix List of Tables xx Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Overview of DA, AA, and UA 4 2.2 Electrochemical-based biosensor 6 2.3 Sn and SnO2 based electrode 10 2.4 Electrospinning 15 2.5 Plasma modification 16 2.5.1 RF-generated atmospheric pressure plasma jet system 19 2.5.2 Low-pressure microwave plasma torch enhanced CVD system 20 Chapter 3 Experimental 22 3.1 Chemicals and instruments 22 3.2 Experimental procedure 24 3.2.1 Preparation of PVP/SnCl2 electrospun fiber mats 24 3.2.2 Plasma and heat treatments 25 3.2.3 Preparation of SnO2 or Sn on gold electrode 27 3.2.4 Preparation of flexible carbon electrode 27 3.2.5 Electrochemical measurements 28 3.2.5.1 Cyclic voltammetry (CV) 29 3.2.5.2 Randles-Sevcik equation 30 3.2.5.3 Amperometry (AMP) 31 3.2.5.4 Differential pulse voltammetry (DPV) 31 3.2.5.5 Limit of detection (LOD) 32 3.2.5.6 Real sample and anti-interference test 32 3.3 Principles and methods of analytical instruments 33 3.3.1 Water contacts angle (WCA) 33 3.3.2 Scanning electron microscope (SEM) 34 3.3.3 Energy-dispersive X-ray spectroscopy (EDX) 35 3.3.4 X-ray diffraction (XRD) 36 3.3.5 Raman spectroscopy 37 3.3.6 X-ray photoelectron spectroscopy (XPS) 38 3.3.7 Four-point probe measurement 40 Chapter 4 Results and Discussion 42 4.1 Effects of different plasma treatments 42 4.1.1 APPJ treatment 44 4.1.1.1 Characteristics of electrospun PVP/SnCl2 fibers with APPJ treatment 44 4.1.1.2 Electrochemical performance of electrospun PVP/SnCl2 fibers with APPJ treatment 46 4.1.1.3 DA detection by electrospun PVP/SnCl2 fibers with APPJ treatment 49 4.1.2 Mixed gas (Ar + O2) microwave plasma treatment 51 4.1.2.1 Characteristics of electrospun PVP/SnCl2 fibers with mixed gas (Ar + O2) microwave plasma treatment 51 4.1.2.2 Electrochemical performance of electrospun PVP/SnCl2 fibers with mixed gas (Ar + O2) microwave plasma treatment 53 4.1.2.3 DA detection by electrospun PVP/SnCl2 fibers with mixed gas (Ar + O2) microwave plasma treatment 55 4.2 Effects of different working gas in microwave plasma 57 4.2.1 Individual DA, AA, and UA detection by electrospun PVP/SnCl2 fibers with mixed gas (Ar + O2) microwave plasma treatment 57 4.2.2 Ar gas microwave plasma treatment 61 4.2.1.1 Characteristics of electrospun PVP/SnCl2 fibers with Ar microwave plasma treatment 61 4.2.1.2 Electrochemical performance of electrospun PVP/SnCl2 fibers with Ar microwave plasma treatment 68 4.2.1.3 Individual DA, AA, and UA detection by electrospun PVP/SnCl2 fibers with Ar microwave plasma treatment 69 4.2.1.4 Simultaneous determination of DA, AA, and UA by electrospun PVP/SnCl2 fibers with Ar microwave plasma treatment 74 4.3 Influence of graphite on simultaneous determination of DA, AA, and UA 77 4.4 Determination of DA, AA, and UA on various electrodes 83 4.4.1 Screen-printed carbon electrode (SPCE) 83 4.4.2 Flexible carbon electrode (C-PP) 88 4.4.3 Comparison of determination of DA, AA, and UA on various electrodes 93 4.4.4 Real sample and anti-interference test 96 Chapter 5 Conclusions 99 References 102

    [1] M. Mahanthappa, V. Duraisamy, P. Arumugam, S.M. Senthil Kumar, Simultaneous Determination of Ascorbic Acid, Dopamine, Uric Acid, and Acetaminophen on N, P-Doped Hollow Mesoporous Carbon Nanospheres, ACS Applied Nano Materials 5(12) (2022) 18417-18426.
    [2] H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide, RSC Advances 4(51) (2014).
    [3] S. Meng, Y. Liu, L. Wang, X. Ji, Y. Chen, T. Zheng, J. Yu, H. Feng, Graphene-Based Flexible Sensors for Simultaneous Detection of Ascorbic Acid, Dopamine, and Uric Acid, Front Bioeng Biotechnol 9 (2021) 726071.
    [4] C. Ratlam, S. Phanichphant, S. Sriwichai, Development of dopamine biosensor based on polyaniline/carbon quantum dots composite, Journal of Polymer Research 27(7) (2020).
    [5] X. Liu, J. Liu, Biosensors and sensors for dopamine detection, View 2(1) (2021) 20200102.
    [6] M.A. Hussein, W.A. El-Said, B.M. Abu-Zied, J.-W. Choi, Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy, Nano Convergence 7(1) (2020).
    [7] S.A. Hashemi, S.M. Mousavi, S. Bahrani, S. Ramakrishna, A. Babapoor, W.H. Chiang, Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood, Anal Chim Acta 1107 (2020) 183-192.
    [8] J.H.H. Rossato, M.E. Oliveira, B.V. Lopes, B.B. Gallo, A.B. La Rosa, E. Piva, D. Barba, F. Rosei, N.L.V. Carreño, M.T. Escote, A Flexible Electrochemical Biosensor Based on NdNiO3 Nanotubes for Ascorbic Acid Detection, ACS Applied Nano Materials 5(3) (2022) 3394-3405.
    [9] B. Demirkan, S. Bozkurt, K. Cellat, K. Arıkan, M. Yılmaz, A. Şavk, M.H. Çalımlı, M.S. Nas, M.N. Atalar, M.H. Alma, F. Sen, Palladium supported on polypyrrole/reduced graphene oxide nanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, and uric acid, Scientific Reports 10(1) (2020).
    [10] S. Aafria, P. Kumari, S. Sharma, S. Yadav, B. Batra, J.S. Rana, M. Sharma, Electrochemical biosensing of uric acid: A review, Microchemical Journal 182 (2022).
    [11] M. Faruk Hossain, G. Slaughter, Flexible electrochemical uric acid and glucose biosensor, Bioelectrochemistry 141 (2021) 107870.
    [12] S. Vigneshvar, C.C. Sudhakumari, B. Senthilkumaran, H. Prakash, Recent Advances in Biosensor Technology for Potential Applications - An Overview, Front Bioeng Biotechnol 4 (2016) 11.
    [13] H. Altug, S.-H. Oh, S.A. Maier, J. Homola, Advances and applications of nanophotonic biosensors, Nature Nanotechnology 17(1) (2022) 5-16.
    [14] U. Chadha, P. Bhardwaj, R. Agarwal, P. Rawat, R. Agarwal, I. Gupta, M. Panjwani, S. Singh, C. Ahuja, S.K. Selvaraj, M. Banavoth, P. Sonar, B. Badoni, A. Chakravorty, Recent progress and growth in biosensors technology: A critical review, Journal of Industrial and Engineering Chemistry 109 (2022) 21-51.
    [15] A. Yang, F. Yan, Flexible Electrochemical Biosensors for Health Monitoring, ACS Applied Electronic Materials 3(1) (2021) 53-67.
    [16] J. Wu, H. Liu, W. Chen, B. Ma, H. Ju, Device integration of electrochemical biosensors, Nature Reviews Bioengineering 1(5) (2023) 346-360.
    [17] K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode, Sensors and Actuators B: Chemical 314 (2020).
    [18] G. Maduraiveeran, M. Sasidharan, W. Jin, Earth-abundant transition metal and metal oxide nanomaterials: Synthesis and electrochemical applications, Progress in Materials Science 106 (2019).
    [19] C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed Transition-Metal Oxides: Design, Synthesis, and Energy-Related Applications, Angewandte Chemie International Edition 53(6) (2014) 1488-1504.
    [20] Z.B. Shifrina, V.G. Matveeva, L.M. Bronstein, Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites, Chemical Reviews 120(2) (2020) 1350-1396.
    [21] Y. Qin, C. Hang, L. Huang, H. Cheng, J. Hu, W. Li, J. Wu, An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen, Microchemical Journal 175 (2022).
    [22] S. Madhu, P. Manickam, M. Pierre, S. Bhansali, P. Nagamony, V. Chinnuswamy, Nanostructured SnO2 integrated conductive fabrics as binder-free electrode for neurotransmitter detection, Sensors and Actuators A: Physical 269 (2018) 401-411.
    [23] S. Selvarajan, A. Suganthi, M. Rajarajan, A facile approach to synthesis of mesoporous SnO2/chitosan nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid, Surfaces and Interfaces 7 (2017) 146-156.
    [24] N. Lavanya, S. Radhakrishnan, C. Sekar, Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles, Biosens Bioelectron 36(1) (2012) 41-7.
    [25] H. Yu, X. Tan, S. Sun, L. Zhang, C. Gao, S. Ge, Engineering paper-based visible light-responsive Sn-self doped domed SnO2 nanotubes for ultrasensitive photoelectrochemical sensor, Biosens Bioelectron 185 (2021) 113250.
    [26] W. Matysiak, T. Tański, W. Smok, O. Polishchuk, Synthesis of hybrid amorphous/crystalline SnO2 1D nanostructures: investigation of morphology, structure and optical properties, Scientific Reports 10(1) (2020).
    [27] S. Roy, C.Y. Yue, Surface Modification of COC Microfluidic Devices: A Comparative Study of Nitrogen Plasma Treatment and its Advantages Over Argon and Oxygen Plasma Treatments, Plasma Processes and Polymers 8(5) (2011) 432-443.
    [28] M.O. Klein, D.S. Battagello, A.R. Cardoso, D.N. Hauser, J.C. Bittencourt, R.G. Correa, Dopamine: Functions, Signaling, and Association with Neurological Diseases, Cellular and Molecular Neurobiology 39(1) (2019) 31-59.
    [29] S.H. Snyder, What dopamine does in the brain, Proceedings of the National Academy of Sciences 108(47) (2011) 18869-18871.
    [30] V. Bhatt-Mehta, M.C. Nahata, Dopamine and Dobutamine in Pediatric Therapy, Pharmacotherapy 9(5) (1989).
    [31] D. De Backer, P. Biston, J. Devriendt, C. Madl, D. Chochrad, C. Aldecoa, A. Brasseur, P. Defrance, P. Gottignies, J.-L. Vincent, Comparison of Dopamine and Norepinephrine in the Treatment of Shock, New England Journal of Medicine 362(9) (2010) 779-789.
    [32] O. Hornykiewicz, A brief history of levodopa, Journal of Neurology 257(S2) (2010) 249-252.
    [33] K.M. Moon, E.B. Kwon, B. Lee, C.Y. Kim, Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products, Molecules 25(12) (2020).
    [34] Y. Li, H.E. Schellhorn, New developments and novel therapeutic perspectives for vitamin C, J Nutr 137(10) (2007) 2171-84.
    [35] R.A. Jacob, G. Sotoudeh, Vitamin C function and status in chronic disease, Nutr Clin Care 5(5) (2002) 66-74.
    [36] A.C. Carr, P.C. Rosengrave, S. Bayer, S. Chambers, J. Mehrtens, G.M. Shaw, Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes, Critical Care 21(1) (2017).
    [37] E.J. Liebling, R.W. Sze, E.M. Behrens, Vitamin C deficiency mimicking inflammatory bone disease of the hand, Pediatric Rheumatology 18(1) (2020).
    [38] M. Sabatier, A. Rytz, J. Husny, S. Dubascoux, M. Nicolas, A. Dave, H. Singh, M. Bodis, R.P. Glahn, Impact of Ascorbic Acid on the In Vitro Iron Bioavailability of a Casein-Based Iron Fortificant, Nutrients 12(9) (2020) 2776.
    [39] R. El Ridi, H. Tallima, Physiological functions and pathogenic potential of uric acid: A review, J Adv Res 8(5) (2017) 487-493.
    [40] A.P.M. de Brouwer, J. Christodoulou, Phosphoribosylpyrophosphate Synthetase Superactivity, University of Washington, Seattle, Seattle (WA)1993.
    [41] S. Cheng, M. Khan, F. Yin, W. Wu, T. Sun, Q. Hu, J.M. Lin, X. Wang, Liquid crystal-based sensitive and selective detection of uric acid and uricase in body fluids, Talanta 244 (2022) 123455.
    [42] B.M. Zanghi, C.L. Gardner, Total Water Intake and Urine Measures of Hydration in Adult Dogs Drinking Tap Water or a Nutrient-Enriched Water, Front Vet Sci 5 (2018) 317.
    [43] H. Wan, K. Zhang, Y. Wang, Y. Chen, W. Zhang, F. Xia, Y. Zhang, N. Wang, Y. Lu, The Associations Between Gonadal Hormones and Serum Uric Acid Levels in Men and Postmenopausal Women With Diabetes, Front Endocrinol (Lausanne) 11 (2020) 55.
    [44] Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao, J. Li, J. Liu, G. Li, Q. He, Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite, Journal of Nanobiotechnology 18(1) (2020).
    [45] N. Tukimin, J. Abdullah, Y. Sulaiman, Review—Electrochemical Detection of Uric Acid, Dopamine and Ascorbic Acid, Journal of The Electrochemical Society 165(7) (2018) B258-B267.
    [46] Q. Yan, N. Zhi, L. Yang, G. Xu, Q. Feng, Q. Zhang, S. Sun, A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode, Scientific Reports 10(1) (2020).
    [47] S.M. Matt, P.J. Gaskill, Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease, Journal of Neuroimmune Pharmacology 15(1) (2020) 114-164.
    [48] M.A. LeVatte, M. Lipfert, J. Zheng, D.S. Wishart, A fast, sensitive, single-step colorimetric dipstick assay for quantifying ascorbic acid in urine, Analytical Biochemistry 580 (2019) 1-13.
    [49] A. Katayama, H. Yokokawa, H. Fukuda, Y. Ono, H. Isonuma, T. Hisaoka, T. Naito, Achievement of Target Serum Uric Acid Levels and Factors Associated with Therapeutic Failure among Japanese Men Treated for Hyperuricemia/Gout, Internal Medicine 58(9) (2019) 1225-1231.
    [50] B.J. Neves, R.C. Braga, C.C. Melo-Filho, J.T. Moreira-Filho, E.N. Muratov, C.H. Andrade, QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery, Front Pharmacol 9 (2018) 1275.
    [51] R. Mendes, M. Dantas, A. Nogueira, A. Etchegaray, P. Filgueiras, R. Poppi, Simultaneous Determination of Different Phenolic Compounds Using Electrochemical Biosensor and Multivariate Calibration, Journal of the Brazilian Chemical Society (2017).
    [52] F. Ejeian, P. Etedali, H.A. Mansouri-Tehrani, A. Soozanipour, Z.X. Low, M. Asadnia, A. Taheri-Kafrani, A. Razmjou, Biosensors for wastewater monitoring: A review, Biosens Bioelectron 118 (2018) 66-79.
    [53] E. Martynko, D. Kirsanov, Application of Chemometrics in Biosensing: A Brief Review, Biosensors 10(8) (2020) 100.
    [54] M. Xu, D. Obodo, V.K. Yadavalli, The design, fabrication, and applications of flexible biosensing devices, Biosensors and Bioelectronics 124-125 (2019) 96-114.
    [55] K. Saxena, N. Chauhan, U. Jain, Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices, Anal Biochem 630 (2021) 114325.
    [56] H. Karimi‐Maleh, F. Karimi, M. Alizadeh, A.L. Sanati, Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems, The Chemical Record 20(7) (2020) 682-692.
    [57] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamental and Applications, Second ed., John Wiley & Sons, Inc., New York, 2001.
    [58] S. Damiati, B. Schuster, Electrochemical Biosensors Based on S-Layer Proteins, Sensors 20(6) (2020) 1721.
    [59] M. Yu, E. Budiyanto, H. Tüysüz, Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction, Angewandte Chemie International Edition 61(1) (2022).
    [60] S. Sawan, R. Maalouf, A. Errachid, N. Jaffrezic-Renault, Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals: A review, TrAC Trends in Analytical Chemistry 131 (2020) 116014.
    [61] M.R. Hasan, M.S. Ahommed, M. Daizy, M.S. Bacchu, M.R. Ali, M.R. Al-Mamun, M.A. Saad Aly, M.Z.H. Khan, S.I. Hossain, Recent development in electrochemical biosensors for cancer biomarkers detection, Biosensors and Bioelectronics: X 8 (2021).
    [62] V. Vogiazi, A. De La Cruz, S. Mishra, V. Shanov, W.R. Heineman, D.D. Dionysiou, A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater, ACS Sensors 4(5) (2019) 1151-1173.
    [63] J. Yang, W. Han, J. Ma, C. Wang, K. Shimanoe, S. Zhang, Y. Sun, P. Cheng, Y. Wang, H. Zhang, G. Lu, Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection, Sensors and Actuators B: Chemical 340 (2021).
    [64] Z. Tan, Z. Sun, H. Wang, Q. Guo, D. Su, Fabrication of porous Sn–C composites with high initial coulomb efficiency and good cyclic performance for lithium ion batteries, Journal of Materials Chemistry A 1(33) (2013) 9462.
    [65] Y. Yang, S. Ren, X. Song, Y. Guo, D. Si, H. Jing, S. Ma, C. Hao, M. Ji, Sn@SnO2 attached on carbon spheres as additive-free electrode for high-performance pseudocapacitor, Electrochimica Acta 209 (2016) 350-359.
    [66] S. Zhao, S. Li, T. Guo, S. Zhang, J. Wang, Y. Wu, Y. Chen, Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction, Nano-Micro Letters 11(1) (2019).
    [67] S. Nagarajan, R. Vairamuthu, Electrochemical detection of riboflavin using tin-chitosan modified pencil graphite electrode, Journal of Electroanalytical Chemistry 891 (2021) 115235.
    [68] Y. Li, D. Deng, H. Wang, K. Huan, X. Yan, L. Luo, Controlled synthesis of Cu-Sn alloy nanosheet arrays on carbon fiber paper for self-supported nonenzymatic glucose sensing, Analytica Chimica Acta 1190 (2022) 339249.
    [69] L. Zhang, R. Tong, W. Ge, R. Guo, S.E. Shirsath, J. Zhu, Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor, Journal of Alloys and Compounds 814 (2020) 152266.
    [70] C.A. Amorim, K.C. Blanco, I.M. Costa, E.F. Vicente, J.F. Da S Petruci, J. Contiero, E.R. Leite, A.J. Chiquito, Active-electrode biosensor of SnO2 nanowire for cyclodextrin detection from microbial enzyme, Nanotechnology 31(16) (2020) 165501.
    [71] W. Sun, X. Wang, Y. Wang, X. Ju, L. Xu, G. Li, Z. Sun, Application of graphene–SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine, Electrochimica Acta 87 (2013) 317-322.
    [72] C. Aydın, Synthesis of SnO2:rGO nanocomposites by the microwave-assisted hydrothermal method and change of the morphology, structural, optical and electrical properties, Journal of Alloys and Compounds 771 (2019) 964-972.
    [73] S. Alim, A.K.M. Kafi, J. Rajan, M.M. Yusoff, Application of polymerized multiporous nanofiber of SnO2 for designing a bienzyme glucose biosensor based on HRP/GOx, International Journal of Biological Macromolecules 123 (2019) 1028-1034.
    [74] D. Nathiya, K. Gurunathan, J. Wilson, Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application, Talanta 210 (2020) 120671.
    [75] X. Cui, J. Liu, A. Yang, X. Fang, C. Xiao, H. Zhao, H. Ren, Z. Li, The synthesis of polyamidoamine modified gold nanoparticles/SnO2/graphene sheets nanocomposite and its application in biosensor, Colloids and Surfaces A: Physicochemical and Engineering Aspects 520 (2017) 668-675.
    [76] Y. Yu, C. Jiang, X.T. Zheng, Y. Liu, W.P. Goh, R.H.H. Lim, S.C.L. Tan, L. Yang, Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor, Materials Today Advances 14 (2022) 100238.
    [77] Z. Li, C. Wang, Introduction of Electrospinning, SpringerBriefs in Materials, Springer Berlin Heidelberg2013, pp. 1-13.
    [78] A. Ziabicki, Fundamentals of fibre formation: the science of fibre spinning and drawing, John Wiley and Sons, London, 1976.
    [79] L. Wang, A.J. Ryan, Introduction to electrospinning, in: L.A. Bosworth, S. Downes (Eds.), Electrospinning for Tissue Regeneration, Woodhead Publishing2011, pp. 3-33.
    [80] J. Xue, T. Wu, Y. Dai, Y. Xia, Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications, Chem Rev 119(8) (2019) 5298-5415.
    [81] D. Terada, H. Kobayashi, K. Zhang, A. Tiwari, C. Yoshikawa, N. Hanagata, Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions, Science and Technology of Advanced Materials 13(1) (2012) 015003.
    [82] J.-Y. Zheng, H.-Y. Liu, X. Wang, Y. Zhao, W.-W. Huang, G.-F. Zheng, D.-H. Sun, Electrohydrodynamic Direct-Write Orderly Micro/Nanofibrous Structure on Flexible Insulating Substrate, Journal of Nanomaterials 2014 (2014) 1-7.
    [83] H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. Mcdonough, J. Zhu, Y. Yang, M.D. Mcgehee, Y. Cui, Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode, Nano Letters 10(10) (2010) 4242-4248.
    [84] O. Hardick, B. Stevens, D. Bracewell, Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency, Nature Precedings (2010).
    [85] E. Yiğit, Introduction to Plasma, SpringerBriefs in Earth Sciences, Springer International Publishing2018, pp. 1-19.
    [86] A. Bhattacharjee, D.A. Gurnett, Introduction, Introduction to Plasma Physics: With Space, Laboratory and Astrophysical Applications, Cambridge University Press, Cambridge, 2017, pp. 1-3.
    [87] B. Ouyang, Y. Zhang, X. Xia, R.S. Rawat, H.J. Fan, A brief review on plasma for synthesis and processing of electrode materials, Materials Today Nano 3 (2018) 28-47.
    [88] S. Yoshida, K. Hagiwara, T. Hasebe, A. Hotta, Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release, Surface and Coatings Technology 233 (2013) 99-107.
    [89] M. Garzia Trulli, E. Sardella, F. Palumbo, G. Palazzo, L.C. Giannossa, A. Mangone, R. Comparelli, S. Musso, P. Favia, Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: the effect of oxygen plasma functionalization, Journal of Colloid and Interface Science 491 (2017) 255-264.
    [90] T. Xu, J. Yang, J. Liu, Q. Fu, Surface modification of multi-walled carbon nanotubes by O2 plasma, Applied Surface Science 253(22) (2007) 8945-8951.
    [91] L. Ouyang, Z. Cao, H. Wang, R. Hu, M. Zhu, Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – A review, Journal of Alloys and Compounds 691 (2017) 422-435.
    [92] R. Morent, N. De Geyter, T. Desmet, P. Dubruel, C. Leys, Plasma Surface Modification of Biodegradable Polymers: A Review, Plasma Processes and Polymers 8(3) (2011) 171-190.
    [93] H. Liu, C. Gu, C. Hou, Z. Yin, K. Fan, M. Zhang, Plasma-assisted synthesis of carbon fibers/ZnO core–shell hybrids on carbon fiber templates for detection of ascorbic acid and uric acid, Sensors and Actuators B: Chemical 224 (2016) 857-862.
    [94] C.-L. Sun, C.-T. Chang, H.-H. Lee, J. Zhou, J. Wang, T.-K. Sham, W.-F. Pong, Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid, Dopamine, and Uric Acid, ACS Nano 5(10) (2011) 7788-7795.
    [95] S.G. Ansari, Z.A. Ansari, R. Wahab, Y.-S. Kim, G. Khang, H.-S. Shin, Glucose sensor based on nano-baskets of tin oxide templated in porous alumina by plasma enhanced CVD, Biosensors and Bioelectronics 23(12) (2008) 1838-1842.
    [96] S.H.B. Vinoth Kumar, J. Ibaceta-Jaña, N. Maticuic, K. Kowiorski, M. Zelt, U. Gernert, L. Lipińska, B. Szyszka, R. Schlatmann, U. Hartmann, R. Muydinov, Applicability of Atmospheric Pressure Plasma Jet (APPJ) Discharge for the Reduction in Graphene Oxide Films and Synthesis of Carbon Nanomaterials, Journal of Carbon research 7(4) (2021) 71.
    [97] O.V. Penkov, M. Khadem, W.-S. Lim, D.-E. Kim, A review of recent applications of atmospheric pressure plasma jets for materials processing, Journal of Coatings Technology and Research 12(2) (2015) 225-235.
    [98] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy 61(1) (2006) 2-30.
    [99] X.P. Lu, S. Reuter, M. Laroussi, D.W. Liu, Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications, CRC Press, Virginia, 2019.
    [100] F. Fanelli, F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials, Surface and Coatings Technology 322 (2017) 174-201.
    [101] H. Toyoda, Microwave Plasma, RF Power Semiconductor Generator Application in Heating and Energy Utilization, Springer Singapore, Singapore, 2020, pp. 181-194.
    [102] M. Mehdizadeh, Plasma applicators at RF and microwave frequencies, Microwave/RF Applicators and Probes2015, pp. 335-363.
    [103] S. Tiwari, A. Caiola, X. Bai, A. Lalsare, J. Hu, Microwave Plasma-Enhanced and Microwave Heated Chemical Reactions, Plasma Chemistry and Plasma Processing 40(1) (2020) 1-23.
    [104] W. Ahmed, H. Sein, M. Jackson, C. Rego, I.U. Hassan, K. Subramani, J. Yazdani, Surface Engineering of Dental Tools with Diamond for Improved Life and Performance, Emerging Nanotechnologies in Dentistry 2012, pp. 239-272.
    [105] H. Ma, K. Teng, Y. Fu, Y. Song, Y. Wang, X. Dong, Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction, Energy & Environmental Science 4(8) (2011).
    [106] A.E.F. Oliveira, A.C. Pereira, M.A.C. De Resende, Fabrication of Low‐cost Screen‐printed Electrode in Paper Using Conductive Inks of Graphite and Silver/Silver Chloride, Electroanalysis 35(2) (2023).
    [107] C. Andrade, M. Danielly, T. Faulin, V. Hering, D.S. Parra Abdall, Biosensors for detection of Low-Density Lipoprotein and its modified forms, Biosensors for Health, Environment and Biosecurity, InTech2011.
    [108] N. Elgrishi, K.J. Rountree, B.D. Mccarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, Journal of Chemical Education 95(2) (2018) 197-206.
    [109] T.J. Roussel, D.J. Jackson, R.P. Baldwin, R.S. Keynton, Amperometric Techniques, Encyclopedia of Microfluidics and Nanofluidics2014, pp. 1-11.
    [110] F.R. Simões, M.G. Xavier, Electrochemical Sensors, Nanoscience and its Applications2017, pp. 155-178.
    [111] S. Kurbanoglu, B. Uslu, S.A. Ozkan, Carbon-based nanostructures for electrochemical analysis of oral medicines, Nanostructures for Oral Medicine2017, pp. 885-938.
    [112] A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chronicles of Young Scientists 2(1) (2011).
    [113] M.E. Zorn, R.D. Gibbons, W.C. Sonzogni, Evaluation of Approximate Methods for Calculating the Limit of Detection and Limit of Quantification, Environmental Science & Technology 33(13) (1999) 2291-2295.
    [114] Z. Shi, Y. Zhang, M. Liu, D.A.H. Hanaor, Y. Gan, Dynamic contact angle hysteresis in liquid bridges, Colloids and Surfaces A: Physicochemical and Engineering Aspects 555 (2018) 365-371.
    [115] T. Huhtamäki, X. Tian, J.T. Korhonen, R.H.A. Ras, Surface-wetting characterization using contact-angle measurements, Nature Protocols 13(7) (2018) 1521-1538.
    [116] A. Salman Ali, Application of Nanomaterials in Environmental Improvement, Nanotechnology and the Environment, IntechOpen2020.
    [117] O. Terasaki, Electron Microscopy Studies in Molecular Sieve Science, Molecular Sieves, Springer Berlin Heidelberg1999, pp. 71-112.
    [118] N. Mehrban, J. Bowen, Monitoring biomineralization of biomaterials in vivo, Monitoring and Evaluation of Biomaterials and their Performance In Vivo2017, pp. 81-110.
    [119] Y. Li, Y. Jiang, Y. Song, Y. Li, S. Li, Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres, Microchimica Acta 185(8) (2018).
    [120] J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis, Springer New York, New York, 2018.
    [121] M. Lübke, Nano-sized Transition Metal Oxide Negative Electrode Materials for Lithium-ion Batteries, Department of Chemistry, University College London, London, 2018, p. 201.
    [122] A.A. Bunaciu, E.G. Udristioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Crit Rev Anal Chem 45(4) (2015) 289-99.
    [123] C. Rey, C. Combes, C. Drouet, D. Grossin, G. Bertrand, J. Soulié, Bioactive Calcium Phosphate Compounds: Physical Chemistry, Comprehensive Biomaterials II2017, pp. 244-290.
    [124] G.F. Harrington, J. Santiso, Back-to-Basics tutorial: X-ray diffraction of thin films, Journal of Electroceramics 47(4) (2021) 141-163.
    [125] G.S. Bumbrah, R.M. Sharma, Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse, Egyptian Journal of Forensic Sciences 6(3) (2016) 209-215.
    [126] F. Settle, Handbook of instrumental techniques for analytical chemistry. 1997, National Science Foundation, Arlington.–1997 (1997).
    [127] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers 1(1) (2021).
    [128] D.R. Baer, S. Thevuthasan, Characterization of Thin Films and Coatings, in: P.M. Martin (Ed.), Handbook of Deposition Technologies for Films and Coatings (Third Edition), William Andrew Applied Science Publishers2010, pp. 749-864.
    [129] M.H. Engelhard, T.C. Droubay, Y. Du, X-Ray Photoelectron Spectroscopy Applications, Encyclopedia of Spectroscopy and Spectrometry2017, pp. 716-724.
    [130] J.F. Moulder, W.F. Stickle, W.M. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, 1992.
    [131] J.T. Kloprogge, B.J. Wood, Volume 1: X-ray Photoelectron Spectra, Handbook of Mineral Spectroscopy2021, pp. xiii-xxv.
    [132] Y. Lu, L.M. Santino, S. Acharya, H. Anandarajah, J.M. D’Arcy, Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station, Journal of Chemical Education 94(7) (2017) 950-955.
    [133] C.-W. Wang, K.A. Cook, A.M. Sastry, Conduction in Multiphase Particulate/Fibrous Networks, Journal of The Electrochemical Society 150(3) (2003) A385.
    [134] T.T. Nguyen, M. Sasaki, T. Tsutsumi, K. Ishikawa, M. Hori, Formation of spherical Sn particles by reducing SnO2 film in floating wire-assisted H2/Ar plasma at atmospheric pressure, Sci Rep 10(1) (2020) 17770.
    [135] J.-Y. Lu, Y.-S. Yu, T.-B. Chen, C.-F. Chang, S. Tamulevičius, D. Erts, K.C.-W. Wu, Y. Gu, Fabrication of an Extremely Cheap Poly(3,4-ethylenedioxythiophene) Modified Pencil Lead Electrode for Effective Hydroquinone Sensing, Polymers 13(3) (2021) 343.
    [136] T.-H. Hyun, W.-J. Cho, High-Performance FET-Based Dopamine-Sensitive Biosensor Platform Based on SOI Substrate, Biosensors 13(5) (2023) 516.
    [137] P.S. Heeger, A.J. Heeger, Making sense of polymer-based biosensors, Proceedings of the National Academy of Sciences 96(22) (1999) 12219-12221.
    [138] X. Wang, S. Uchiyam, Polymers for Biosensors Construction, State of the Art in Biosensors - General Aspects, InTech2013.
    [139] C. Scheffler, E. Wölfel, T. Förster, C. Poitzsch, L. Kotte, G. Mäder, Influence of microwave plasma treatment on the surface properties of carbon fibers and their adhesion in a polypropylene matrix, IOP Conference Series: Materials Science and Engineering 139 (2016) 12046.
    [140] P.H. Phuoc, C.M. Hung, N. Van Toan, N. Van Duy, N.D. Hoa, N. Van Hieu, One-step fabrication of SnO2 porous nanofiber gas sensors for sub-ppm H2S detection, Sensors and Actuators A: Physical 303 (2020).
    [141] H. Jung, I.-K. Oh, C.M. Yoon, B.-E. Park, S. Lee, O. Kwon, W.J. Lee, S.-H. Kwon, W.-H. Kim, H. Kim, Effects of Ar Addition to O2 Plasma on Plasma-Enhanced Atomic Layer Deposition of Oxide Thin Films, ACS Applied Materials & Interfaces 10(46) (2018) 40286-40293.
    [142] H.-U. Kim, C. Yi, S.-W. Rhee, The effect of He or Ar/O2 plasma treatment on Si surface prior to chemical vapor deposition of SiO2, Journal of Materials Science: Materials in Electronics 15(1) (2004) 37-41.
    [143] L. Khalafi, A.M. Cunningham, L.E. Hoober-Burkhardt, M. Rafiee, Why Is Voltammetric Current Scan Rate Dependent? Representation of a Mathematically Dense Concept Using Conceptual Thinking, Journal of Chemical Education 98(12) (2021) 3957-3961.
    [144] B.Y. Chang, Analysis of the Singular Point of Cyclic Voltammograms Recorded with Various Scan Rates, Journal of Electrochemical Science and Technology 8(3) (2017) 244-249.
    [145] Y.-L. Xie, J. Yuan, H.-L. Ye, P. Song, S.-Q. Hu, Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the simultaneous electrochemical determination of dopamine, ascorbic acid, and uric acid, Journal of Electroanalytical Chemistry 749 (2015) 26-30.
    [146] A. Baji, Y.-W. Mai, Engineering Ceramic Fiber Nanostructures Through Polymer-Mediated Electrospinning, Polymer-Engineered Nanostructures for Advanced Energy Applications, Springer International Publishing2017, pp. 3-30.
    [147] V. Zólyomi, J. Koltai, J. Kürti, Resonance Raman spectroscopy of graphite and graphene, physica status solidi (b) 248(11) (2011) 2435-2444.
    [148] L. Liu, M. An, P. Yang, J. Zhang, Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries, Scientific Reports 5(1) (2015) 9055.
    [149] K. Thiyagarajan, K. Sivakumar, Oxygen vacancy-induced room temperature ferromagnetism in graphene–SnO2 nanocomposites, Journal of Materials Science 52(13) (2017) 8084-8096.
    [150] R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods, Ceramics International 45(11) (2019) 14439-14448.
    [151] W. Ahmad, D. Liu, W. Ahmad, Y. Wang, P. Zhang, T. Zhang, H. Zheng, Z.D. Chen, S. Li, Physisorption of Oxygen in SnO2 Nanoparticles for Perovskite Solar Cells, IEEE Journal of Photovoltaics 9(1) (2019) 200-206.
    [152] M. Kwoka, M. Krzywiecki, Impact of air exposure and annealing on the chemical and electronic properties of the surface of SnO2 nanolayers deposited by rheotaxial growth and vacuum oxidation, Beilstein Journal of Nanotechnology 8 (2017) 514-521.
    [153] M. Wang, G.-M. Weng, G. Yasin, M. Kumar, W. Zhao, A high-performance tin phosphide/carbon composite anode for lithium-ion batteries, Dalton Transactions 49(46) (2020) 17026-17032.
    [154] J. Su, J. Zhang, Y. Liu, M. Jiang, L. Zhou, Parameter-dependent oxidation of physically sputtered Cu and the related fabrication of Cu-based semiconductor films with metallic resistivity, Science China Materials 59(2) (2016) 144-150.
    [155] X. Wu, P. Li, Y. Zhang, D. Yao, Selective response of dopamine on 3-thienylphosphonic acid modified gold electrode with high antifouling capability and long-term stability, Mater Sci Eng C Mater Biol Appl 94 (2019) 677-683.
    [156] Z. Hsine, S. Blili, R. Milka, H. Dorizon, A.H. Said, H. Korri-Youssoufi, Sensor based on redox conjugated poly(para-phenylene) for the simultaneous detection of dopamine, ascorbic acid, and uric acid in human serum sample, Analytical and Bioanalytical Chemistry 412(18) (2020) 4433-4446.
    [157] J. Huang, Y. Liu, H. Hou, T. You, Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode, Biosensors and Bioelectronics 24(4) (2008) 632-637.
    [158] L.F. Castro, H.A. Silva-Neto, L.R. Sousa, W.R. de Araujo, W.K.T. Coltro, Silicone glue-based graphite ink incorporated on paper platform as an affordable approach to construct stable electrochemical sensors, Talanta 251 (2023) 123812.
    [159] D. Minta, A. Moyseowicz, S. Gryglewicz, G. Gryglewicz, A Promising Electrochemical Platform for Dopamine and Uric Acid Detection Based on a Polyaniline/Iron Oxide-Tin Oxide/Reduced Graphene Oxide Ternary Composite, Molecules 25(24) (2020) 5869.
    [160] X. Cui, X. Fang, H. Zhao, Z. Li, H. Ren, An electrochemical sensor for dopamine based on polydopamine modified reduced graphene oxide anchored with tin dioxide and gold nanoparticles, Analytical Methods 9(36) (2017) 5322-5332.
    [161] R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine, Sensing and Bio-Sensing Research 5 (2015) 42-49.
    [162] D. Sun, Q. Zhao, F. Tan, X. Wang, J. Gao, Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode, Analytical Methods 4(10) (2012) 3283.
    [163] N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S.G. Leonardi, G. Neri, C. Sekar, Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode, Journal of Electroanalytical Chemistry 770 (2016) 23-32.
    [164] M.M. Alam, A.M. Asiri, M.M. Rahman, M.A. Islam, Selective detection of ascorbic acid with wet-chemically prepared CdO/SnO2/V2O5 micro-sheets by electrochemical approach, SN Applied Sciences 2(12) (2020).
    [165] A. Singh, A. Sharma, S. Arya, Electrochemical sensing of ascorbic acid (AA) from human sweat using Ni–SnO2 modified wearable electrode, Inorganic Chemistry Communications 152 (2023) 110718.
    [166] K. Arora, M. Tomar, V. Gupta, Effect of processing parameters for electrocatalytic properties of SnO2 thin film matrix for uric acid biosensor, The Analyst 139(4) (2014) 837.
    [167] X. Zhou, Y. He, S. Tao, J. Wang, F. Li, Q. Guo, Selective and simultaneous sensing of ascorbic acid, dopamine and uric acid based on nitrogen-doped mesoporous carbon, Analytical Methods 12(44) (2020) 5344-5352.
    [168] J.W. Coburn, The Role of Ions in Reactive Ion Etching with Low Density Plasmas, in: P.F. Williams (Ed.), Plasma Processing of Semiconductors, Springer Netherlands, Dordrecht, 1997, pp. 61-71.
    [169] F.D. Auret, S.A. Goodman, Chapter 8 - Radiation and processed induced defects in GaN, in: O. Manasreh (Ed.), III-Nitride Semiconductors: Electrical, Structural and Defects Properties, Elsevier, Amsterdam, 2000, pp. 251-286.

    無法下載圖示 全文公開日期 2025/08/01 (校內網路)
    全文公開日期 2025/08/01 (校外網路)
    全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE