簡易檢索 / 詳目顯示

研究生: 王美心
Mia Rinawati
論文名稱: 發展析氧電催化觸媒於水分解:設計自發轉化法合成雙元金屬有機框架材料衍生鎳鐵層狀雙氫氧化合物
Evolved oxygen evolution electrocatalyst for efficient water splitting: bimetallic MOF-derived NiFe layered double hydroxides via spontaneous transformation design strategies
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
江偉宏
Wei-Hung Chiang
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 157
中文關鍵詞: 鹼性介質水分解石墨烯量子點層狀雙氫氧化物有機金屬框架材料氧氣析出反應
外文關鍵詞: Alkaline media, electrolysis, graphene quantum dots, layered double hydroxide, metal-organic framework, oxygen evolution reaction
相關次數: 點閱:400下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源需求的增加已經導致須通過有效地利用電解水分解的氫燃料的快速發展。然而,考慮到氧析出反應(OER)的緩慢動力學是其電化學活性的瓶頸,希望開發在鹼性條件下運行的氧析出反應之電催化觸媒。雖然貴金屬在電催化劑表現有優異的OER活性,但是其生產的高成本阻礙了其實際應用。為了解決這些局限性,開發出了具有成本效益以及地球富含量高的電催化觸媒。過渡金屬是被考慮的選項之一,由於擁有很好的電催化表現。
    在各種材料中,層狀雙氫氧化物(LDH)由於其強大的電催化活性而表現出了對OER的優越性能,因此有限的活性位點阻礙了更進一步的應用。最近,透過使用具有高表面積和孔隙的前驅物模板(例如金屬有機框架材料(MOF))來製造複雜結構的形態,為了獲得所希望的特性,也提供了更多應用的可能性。最近合成具有多孔壁和大量空洞的複雜結構ZIF衍生的LDH可以通過提供更多的活性位點和模板衍生的可調性之特點來提高反應動力學。
    由於這些優越的性能,ZIF-67衍生的LDH有效地促進了OER表現,但MOF-74的實際應用仍然受到限制。迄今為止,在本文中我們的目的是在鹼性溶液中自發性轉化來設計出一種新的由雙金屬MOF衍生的NiFe-LDH,並利用此方法來進一步提高其性能,因為NiFe-LDH仍然有導電性不佳的問題。
    本論文分為兩部分,設計從雙金屬MOF-74自發衍生的NiFe-LDH用於鹼性溶液中氧析出反應的電催化觸媒(第4章),並通過摻入雜原子摻雜來促進MOF衍生的LDH的氧析出反應。並將其材料與碳材做結合,且進一步導入石墨烯量子點(GQD)來提升電催化的析氧反應(第5章)。
    在本文的第4章中,首次提出了一種涉及雙金屬金屬有機骨架(MOF)的NiFe-LDH的簡單轉化方法,且無需施加任何額外的方法即可在鹼性電解液中通過自發衍生製備NiFe層狀雙氫氧化物(LDH)。由於雙金屬MOF-74的NiFe LDH為在鹼性溶液中電催化OER提供了理想的活性的位點,並促進了電解液在有組織的奈米結構中均勻通道內的滲透,從而進一步增加了活性物質與電解質之間的接觸面積。對於OER,在10 mA / cm2的電流密度下,從MOF-74衍生的NiFe-LDH電催化觸媒得到299 mV的過電位,低於商業化RuO2。 MOF衍生的NiFe-LDH在電流密度為10 mA / cm2時也具有24小時以上的長期穩定性。
    在第5章中,我們通過摻雜的GQD摻入MOF衍生的NiFe-LDH中來開發新型催化材料,該物質可促進活性位點的暴露和足夠的活性位點來進行OER反應。 GQD具有許多邊緣和缺陷部位,在這些部位有利於進行催化反應。一些理論上創新的策略(例如雜原子摻雜)會破壞GQD的電中性,從而產生重新分佈的電荷區,為催化反應提供活性位點。摻雜GQD / MOF-74衍生的NiFe-LDH在100 mA / cm2的電流密度下得到251 mV的超低過電壓,較低的Tafel斜率34.9 mV dec-1,並且在高電流密度100 mA cm-2下,內具有24小時以上出色的穩定性。


    The increase of high energy resource demand has led to the rapid development of clean fuel of hydrogen by efficiently electrolytic water splitting. However, considering the sluggish kinetics of the oxygen evolution reaction (OER) as the bottleneck in its electrochemical activity, it is desirable to develop water oxidation electrocatalysts operating under alkaline conditions. While the noble metal- based electrocatalysts exhibited superior OER activity, the scarcity and high cost hinder its practical application. To address these limitations, the development of cost-effective, earth-abundant electrocatalysts such as transition metal-based electrocatalysts have gained consideration due to their promising electrocatalytic performance. Among various materials, layered double hydroxide (LDH), had demonstrated superior performance towards OER because of their robust electroactivity, hence the limited active sites hinders its further applications. Recently, the fabrication of complex-structured morphologies by using precursor templates with high surface area and porosity, such as metal-organic framework (MOFs), let it obtained the desired properties which open more opportunities for further applications. Recent fabrication of complex-structure ZIF-derived LDH with porous walls and massive cavities favoring reaction kinetics by exposing more active sites and flexible composition feature derived from the templates. Considering these superior properties, ZIF-67 derived LDH had effectively promoted the OER activity, yet the practical application of MOF-74 are still limited. Heretofore, in this thesis, we aimed to design an evolved novel bimetallic MOF-derived-NiFe-LDH by spontaneous transformation in alkaline solution and a strategy design to further boost up its performance, as the NiFe-LDH still suffers from the lack of electronic conductivity. There are two parts of this thesis, designing a spontaneously deriving NiFe-LDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution (Chapter 4) and boosting oxygen evolution of MOF- derived-LDH by incorporation of heteroatom-doped graphene quantum dots (GQD). and integrating it with carbon-based materials, in which herein we used graphene quantum dots (GQD) for electrocatalytic oxygen evolution reaction (Chapter 5).
    4
    In the Chapter 4, herein, a facile transformation of NiFe-LDH involving bimetallic metal-organic framework (MOF) is proposed for the first time for fabricating the NiFe layered double hydroxide (LDH) via spontaneously deriving process in the alkaline electrolyte without any additional treatments. The bimetallic MOF-74-derived NiFe LDH provided desirable hot spots for electrocatalizing OER in alkaline solution and facilitated electrolyte penetration within the uniform channel in an organized nanostructure to further increase the contact area between the active material and electrolyte. The as- obtained electrocatalyst of MOF-74-derived NiFe-LDH exhibited a low overpotential of 299 mV at 10 mA/cm2 current density for OER, lower than commercial RuO2. MOF-derived-NiFe-LDH also possessed long-term stability over 24 hours at a current density of 10 mA/cm2.
    In the Chapter 5, we developed novel catalytic materials by incorporation of heteroatom-doped
    GQD into MOF-derived-NiFe-LDH that promotes active sites exposure, suitable spots and sufficient
    active sites for hosting OER reactions. GQD has featured with numerous edge and defect sites in which
    beneficial for hosting the catalytic reactions. Some theoretical innovative strategies, such as heteroatom
    doping would shatter the GQD’s electroneutrality, thus creating re-distributed charge areas that provide
    active sites for catalytic reactions. The as-designed heteroatom-doped GQD/MOF-74-derived NiFe-
    LDH exhibited a ultralow overpotential of 251 mV at current density of 100 mA/cm2, lower Tafel slope
    of 34.9 mV dec-1, and possessed excellent durability over 24 hours in high current density, 100 mA cm- 2.

    Table of contents Acknowledgements.................................................................................................................................................I Abstract...................................................................................................................................................................V Table of contents.....................................................................................................................................................VII List of tables............................................................................................................................................................X List of figures...........................................................................................................................................................XI Nomenclatures.........................................................................................................................................................XIV Chapter 1 Introduction..............................................................................................................................................1 1.1 Oxygen evolution reaction...................................................................................................................................1 1.2 Noble metal electrocatalyst................................................................................................................................2 1.3 Transition metal-based electrocatalysts.............................................................................................................4 1.4 Metal-organic frameworks (MOFs).....................................................................................................................6 1.5 Optimization strategy..........................................................................................................................................6 Chapter 2 Literature Reviews and Research Scope..................................................................................................9 2.1 Overview of Metal-organic framework (MOFs)...................................................................................................9 2.2 Overview of graphene and graphene quantum dots (GQD)...............................................................................13 2.3 Overview of OER electrocatalysts......................................................................................................................18 2.3.1 Metal oxides as OER electrocatalyst................................................................................................................18 2.3.2 Metal hydroxides as OER electrocatalyst........................................................................................................20 2.3.3 Layered-double-hydroxides for OER electrocatalysts.....................................................................................22 2.3.3 Metal-organic frameworks (MOFs) and MOFs-derived electrocatalyst...........................................................23 2.3.4 Oxygen evolution reaction evaluating parameters...........................................................................................25 2.3.5 Motivation and scope of this thesis..................................................................................................................26 Chapter 3 Experimental Procedure...........................................................................................................................30 3.1 Experimental Chemicals and Instrument..............................................................................................................30 3.1.1 Experimental and analytical instruments...........................................................................................................30 3.1.2 Electrochemical Analysis...................................................................................................................................31 3.1.3 Ultraviolet – Visible Spectroscopy.....................................................................................................................34 3.1.4 Raman Spectroscopy.........................................................................................................................................35 3.1.5 X-Ray Diffractometer (XRD)..............................................................................................................................36 3.1.6 Field Emission - Scanning Electron Microscopy (FE-SEM)................................................................................37 3.1.7 Energy-dispersive X-ray spectroscopy (EDX)...................................................................................................38 3.1.8 X-ray photoelectron spectroscopy (XPS)..........................................................................................................39 3.2 Experimental Materials.........................................................................................................................................41 3.2 Experimental Procedure.......................................................................................................................................41 3.2.1 Designing Spontaneously Deriving MOF-derived-NiFe-LDH from Bimetallic NiFe-MOF-74.............................41 3.2.2 Boosting Oxygen Evolution of MOF-derived-LDH by Incorporation of Heteroatom-Doped Graphene Quantum Dots (GQD).................................................................................................................................................................44 Chapter 4 Designing a Spontaneously Deriving NiFe-LDH from Bimetallic MOF-74 as an Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solution.......................................................................................................................49 4.1 Motivation and Conceptual Design.......................................................................................................................49 4.2 Results and discussion.........................................................................................................................................50 4.2.1 Characterization of NiFe-MOF-74......................................................................................................................50 4.2.2 Characterization and electrochemical performance of MOF-derived electrocatalysts with various reaction temperature................................................................................................................................................................52 4.2.3 Characterization of MOF-derived electrocatalysts with various reaction time..................................................56 4.2.4 Electrochemical performance of MOF-derived electrocatalysts with various reaction time.............................65 4.2.5 Comparison of MOF-74 derived NiFe LDH with pristine NiFe-LDH and RuO2...................................................69 4.3 Conclusions..........................................................................................................................................................75 Chapter 5 Boosting Oxygen Evolution of MOF-derived-LDH by Incorporation of Heteroatom-Doped Graphene Quantum Dots (GQD)..................................................................................................................................................77 5.1 Motivation and Conceptual Design........................................................................................................................77 5.2 Results and discussion..........................................................................................................................................78 5.2.1 Characterization of heteroatom-doped GQD......................................................................................................78 5.2.2 Characterization of heteroatom-doped GQD/NiFe-MOF-74 electrocatalysts....................................................81 5.2.3 Characterization of heteroatom-doped GQD/MOF-derived-NiFe-LDH..............................................................84 5.2.5 Electrocatalytic activity of heteroatom-doped GQD/MOF-derived-NiFe-LDH...................................................90 5.2.3 Role of single and dual-doped GQD/NiFe-MOF-74 to electrocatalytic performance.........................................94 5.2.6 Comparison of dual-doped B,N-GQD/MOF-derived-NiFe-LDH with pristine NiFe-LDH and IrO2.....................101 5.3 Conclusions...........................................................................................................................................................106 Chapter 6 Conclusion and Suggestion........................................................................................................................107 6.1 Conclusion..............................................................................................................................................................107 6.2 Suggestions...........................................................................................................................................................109 References Appendix A 

    References
    [1] Khoo, H. H.; Tan, R. B. H. Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration. Energy & Fuels, 2006, 20, 1914.
    [2] Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chemical Reviews, 2010, 110, 6446.
    [3] Kamegawa, T.; Morishima, J.; Matsuoka, M.; Thomas, J. M.; Anpo, M. Eliminating Traces of Carbon Monoxide Photocatalytically from Hydrogen with a Single-Site, Non-noble Metal Catalyst. The Journal of Physical Chemistry C, 2007, 111, 1076.
    [4] Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie International Edition, 2014, 53, 102.
    [5] Song, J.; Wei, C.; Huang, Z.-F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews 2020, 49 (7), 2196.
    [6] Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.; Teschner, D.; Selve, S.; Bergmann, A.; Nong, H. N.; Schlögl, R.et al. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir–Ni Oxide Catalysts for Electrochemical Water Splitting (OER). Journal of the American Chemical Society, 2015, 137, 13031.
    [7] Man, I. C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011, 3, 1159.
    [8] Wannakao, S.; Maihom, T.; Kongpatpanich, K.; Limtrakul, J.; Promarak, V. Halogen substitutions leading to enhanced oxygen evolution and oxygen reduction reactions in metalloporphyrin frameworks. Physical Chemistry Chemical Physics, 2017, 19, 29540.
    [9] De Pauli, C. P.; Trasatti, S. Composite materials for electrocatalysis of O2 evolution: IrO2+SnO2 in acid solution. Journal of Electroanalytical Chemistry, 2002, 538-539, 145.
    [10] Tsuji, E.; Imanishi, A.; Fukui, K.-i.; Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochimica Acta, 2011, 56, 2009.
    [11] Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46, 337.
    [12] Rossmeisl, J.; Qu, Z. W.; Zhu, H.; Kroes, G. J.; Nørskov, J. K. Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607, 83.
    [13] Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y. Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. ACS Applied Materials & Interfaces, 2016, 8, 10826.
    [14] Tang, C.; Zhang, R.; Lu, W.; He, L.; Jiang, X.; Asiri, A. M.; Sun, X. Fe-Doped CoP Nanoarray: A Monolithic Multifunctional Catalyst for Highly Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1602441.
    [15] Li, D.; Baydoun, H.; Verani, C. N.; Brock, S. L. Efficient Water Oxidation Using CoMnP Nanoparticles. Journal of the American Chemical Society, 2016, 138, 4006.
    [16] Zhao, W.; Wang, S.; Feng, C.; Wu, H.; Zhang, L.; Zhang, J. Novel Cobalt-Doped Ni0.85Se Chalcogenides (CoxNi0.85–xSe) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 40491.
    [17] Chen, J. S.; Ren, J.; Shalom, M.; Fellinger, T.; Antonietti, M. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 5509.
    [18] Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy & Environmental Science, 2016, 9, 1771.
    [19] Chi, J.; Yu, H.; Qin, B.; Fu, L.; Jia, J.; Yi, B.; Shao, Z. Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 464.
    [20] Feng, J.-X.; Xu, H.; Dong, Y.-T.; Ye, S.-H.; Tong, Y.-X.; Li, G.-R. FeOOH/Co/FeOOH Hybrid Nanotube Arrays as High-Performance Electrocatalysts for the Oxygen Evolution Reaction. Angewandte Chemie International Edition, 2016, 55, 3694.
    [21] Laskowski, F. A. L.; Nellist, M. R.; Qiu, J.; Boettcher, S. W. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. Journal of the American Chemical Society, 2019, 141, 1394.
    [22] Wang, H.; Lee, H.-W.; Deng, Y.; Lu, Z.; Hsu, P.-C.; Liu, Y.; Lin, D.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 2015, 6, 7261.
    [23] Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society, 2018, 140, 7748.
    [24] Wu, Z.-P.; Shan, S.; Xie, Z.-H.; Kang, N.; Park, K.; Hopkins, E.; Yan, S.; Sharma, A.; Luo, J.; Wang, J.et al. Revealing the Role of Phase Structures of Bimetallic Nanocatalysts in the Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 11302.
    [25] Zhang, H.; Liu, Y.; Chen, T.; Zhang, J.; Zhang, J.; Lou, X. W. Unveiling the Activity Origin of Electrocatalytic Oxygen Evolution over Isolated Ni Atoms Supported on a N-Doped Carbon Matrix. Advanced Materials, 2019, 31, 1904548.
    [26] Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,N-Decorated Graphene. Angewandte Chemie International Edition, 2017, 56, 7121.
    [27] Liao, C.; Yang, B.; Zhang, N.; Liu, M.; Chen, G.; Jiang, X.; Chen, G.; Yang, J.; Liu, X.; Chan, T.-S.et al. Constructing Conductive Interfaces between Nickel Oxide Nanocrystals and Polymer Carbon Nitride for Efficient Electrocatalytic Oxygen Evolution Reaction. Advanced Functional Materials, 2019, 29, 1904020.
    [28] McAteer, D.; Godwin, I. J.; Ling, Z.; Harvey, A.; He, L.; Boland, C. S.; Vega-Mayoral, V.; Szydłowska, B.; Rovetta, A. A.; Backes, C.et al. Liquid Exfoliated Co(OH)2 Nanosheets as Low-Cost, Yet High-Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.
    [29] Xuan, C.; Lei, W.; Wang, J.; Zhao, T.; Lai, C.; Zhu, Y.; Sun, Y.; Wang, D. Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12350.
    [30] Yu, X.-Y.; Feng, Y.; Guan, B.; Lou, X. W.; Paik, U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9, 1246.
    [31] Yu, L.; Zhou, H.; Sun, J.; Qin, F.; Luo, D.; Xie, L.; Yu, F.; Bao, J.; Li, Y.; Yu, Y.et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41, 327.
    [32] Gunjakar, J. L.; Kim, T. W.; Kim, H. N.; Kim, I. Y.; Hwang, S.-J. Mesoporous Layer-by-Layer Ordered Nanohybrids of Layered Double Hydroxide and Layered Metal Oxide: Highly Active Visible Light Photocatalysts with Improved Chemical Stability. Journal of the American Chemical Society, 2011, 133, 14998.
    [33] Wang, Q.; O’Hare, D. Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets. Chemical Reviews, 2012, 112, 4124.
    [34] Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452.
    [35] Abellán, G.; Coronado, E.; Martí-Gastaldo, C.; Pinilla-Cienfuegos, E.; Ribera, A. Hexagonal nanosheets from the exfoliation of Ni2+-Fe3+ LDHs: a route towards layered multifunctional materials. Journal of Materials Chemistry 2010, 20 (35), 7451.
    [36] Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy 2016, 1 (1), 15006.
    [37] Yu, Z.-Y.; Duan, Y.; Liu, J.-D.; Chen, Y.; Liu, X.-K.; Liu, W.; Ma, T.; Li, Y.; Zheng, X.-S.; Yao, T.et al. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications 2019, 10 (1), 2799.
    [38] Liu, J.; Zhu, D.; Guo, C.; Vasileff, A.; Qiao, S.-Z. Design Strategies toward Advanced MOF-Derived Electrocatalysts for Energy-Conversion Reactions. Advanced Energy Materials 2017, 7 (23), 1700518.
    [39] Bai, X.; Liu, Q.; Lu, Z.; Liu, J.; Chen, R.; Li, R.; Song, D.; Jing, X.; Liu, P.; Wang, J. Rational Design of Sandwiched Ni–Co Layered Double Hydroxides Hollow Nanocages/Graphene Derived from Metal–Organic Framework for Sustainable Energy Storage. ACS Sustainable Chemistry & Engineering 2017, 5 (11), 9923.
    [40] Li, J.-G.; Sun, H.; Lv, L.; Li, Z.; Ao, X.; Xu, C.; Li, Y.; Wang, C. Metal–Organic Framework-Derived Hierarchical (Co,Ni)Se2@NiFe LDH Hollow Nanocages for Enhanced Oxygen Evolution. ACS Applied Materials & Interfaces 2019, 11 (8), 8106.
    [41] Park, S.-K.; Kim, J. K.; Chan Kang, Y. Metal–organic framework-derived CoSe2/(NiCo)Se2 box-in-box hollow nanocubes with enhanced electrochemical properties for sodium-ion storage and hydrogen evolution. Journal of Materials Chemistry A 2017, 5 (35), 18823.
    [42] Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy & Environmental Science 2012, 5 (11), 9269.
    [43] Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy 2016, 1 (12), 16184.
    [44] Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.; Li, G.-R.; Chen, X.-M. An Alkaline-Stable, Metal Hydroxide Mimicking Metal–Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society 2016, 138 (27), 8336.
    [45] Liu, Y.; Xiao, C.; Huang, P.; Cheng, M.; Xie, Y. Regulating the Charge and Spin Ordering of Two-Dimensional Ultrathin Solids for Electrocatalytic Water Splitting. Chem 2018, 4 (6), 1263.
    [46] Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F.-X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal–organic frameworks. Chemical Society Reviews 2019, 48 (9), 2535.
    [47] Ma, W.; Ma, R.; Wang, C.; Liang, J.; Liu, X.; Zhou, K.; Sasaki, T. A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. ACS Nano 2015, 9 (2), 1977.
    [48] Song, F.; Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications 2014, 5 (1), 4477.
    [49] Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. Nano Letters 2015, 15 (2), 1421.
    [50] Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M. Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science 2016, 9 (5), 1734.
    [51] Dang, L.; Liang, H.; Zhuo, J.; Lamb, B. K.; Sheng, H.; Yang, Y.; Jin, S. Direct Synthesis and Anion Exchange of Noncarbonate-Intercalated NiFe-Layered Double Hydroxides and the Influence on Electrocatalysis. Chemistry of Materials 2018, 30 (13), 4321.
    [52] Wang, Y.; Yan, D.; El Hankari, S.; Zou, Y.; Wang, S. Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting. Advanced Science 2018, 5 (8), 1800064.
    [53] Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions. Advanced Materials 2017, 29 (48), 1606459.
    [54] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.et al. Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials 2018, 30 (37), 1704303.
    [55] Chen, G.; Wang, T.; Zhang, J.; Liu, P.; Sun, H.; Zhuang, X.; Chen, M.; Feng, X. Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites. Advanced Materials 2018, 30 (10), 1706279.
    [56] Wang, Y.; Xie, C.; Zhang, Z.; Liu, D.; Chen, R.; Wang, S. In Situ Exfoliated, N-Doped, and Edge-Rich Ultrathin Layered Double Hydroxides Nanosheets for Oxygen Evolution Reaction. Advanced Functional Materials 2018, 28 (4), 1703363.
    [57] Zhou, D.; Cai, Z.; Lei, X.; Tian, W.; Bi, Y.; Jia, Y.; Han, N.; Gao, T.; Zhang, Q.; Kuang, Y.et al. NiCoFe-Layered Double Hydroxides/N-Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials 2018, 8 (9), 1701905.
    [58] Yu, M.; Zhou, S.; Wang, Z.; Zhao, J.; Qiu, J. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181.
    [59] Li, Y.; Gong, M.; Liang, Y.; Feng, J.; Kim, J.-E.; Wang, H.; Hong, G.; Zhang, B.; Dai, H. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications 2013, 4 (1), 1805.
    [60] Xu, H.; Wang, B.; Shan, C.; Xi, P.; Liu, W.; Tang, Y. Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst. ACS Applied Materials & Interfaces 2018, 10 (7), 6336.
    [61] Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H<sub>2</sub> Production and Uptake. Science 2009, 326 (5958), 1384.
    [62] Fukushima, T.; Drisdell, W.; Yano, J.; Surendranath, Y. Graphite-Conjugated Pyrazines as Molecularly Tunable Heterogeneous Electrocatalysts. Journal of the American Chemical Society 2015, 137 (34), 10926.
    [63] Pinson, J.; Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chemical Society Reviews 2005, 34 (5), 429.
    [64] Patolsky, F.; Weizmann, Y.; Willner, I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angewandte Chemie International Edition 2004, 43 (16), 2113.
    [65] Yu, D.; Nagelli, E.; Du, F.; Dai, L. Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. The Journal of Physical Chemistry Letters 2010, 1 (14), 2165.
    [66] Steenackers, M.; Gigler, A. M.; Zhang, N.; Deubel, F.; Seifert, M.; Hess, L. H.; Lim, C. H. Y. X.; Loh, K. P.; Garrido, J. A.; Jordan, R.et al. Polymer Brushes on Graphene. Journal of the American Chemical Society 2011, 133 (27), 10490.
    [67] Kang, S. M.; Park, S.; Kim, D.; Park, S. Y.; Ruoff, R. S.; Lee, H. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry. Advanced Functional Materials 2011, 21 (1), 108.
    [68] Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Three-Dimensional Porous Composites as High-Performance Oxygen Evolution Electrocatalysts. Angewandte Chemie International Edition 2014, 53 (28), 7281.
    [69] Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology 2010, 5 (5), 321.
    [70] Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nature Nanotechnology 2014, 9 (7), 555.
    [71] Ci, L.; Song, L.; Jariwala, D.; Elías, A. L.; Gao, W.; Terrones, M.; Ajayan, P. M. Graphene Shape Control by Multistage Cutting and Transfer. Advanced Materials 2009, 21 (44), 4487.
    [72] Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science 2013, 6 (10), 2839.
    [73] Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis 2015, 5 (9), 5207.
    [74] Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science 2009, 324 (5928), 768.
    [75] Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews 2014, 43 (20), 7067.
    [76] Winther-Jensen, B.; MacFarlane, D. R. New generation, metal-free electrocatalysts for fuel cells, solar cells and water splitting. Energy & Environmental Science 2011, 4 (8), 2790.
    [77] Zhang, M.; Dai, L. Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy 2012, 1 (4), 514.
    [78] Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S. Z. Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. Angewandte Chemie International Edition 2013, 52 (11), 3110.
    [79] Jeon, I.-Y.; Zhang, S.; Zhang, L.; Choi, H.-J.; Seo, J.-M.; Xia, Z.; Dai, L.; Baek, J.-B. Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials 2013, 25 (42), 6138.
    [80] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 2013, 5 (10), 4015.
    [81] Tam, T. V.; Kang, S. G.; Kim, M. H.; Lee, S. G.; Hur, S. H.; Chung, J. S.; Choi, W. M. Novel Graphene Hydrogel/B-Doped Graphene Quantum Dots Composites as Trifunctional Electrocatalysts for Zn−Air Batteries and Overall Water Splitting. Advanced Energy Materials 2019, 9 (26), 1900945.
    [82] Lv, J.-J.; Zhao, J.; Fang, H.; Jiang, L.-P.; Li, L.-L.; Ma, J.; Zhu, J.-J. Incorporating Nitrogen-Doped Graphene Quantum Dots and Ni3S2 Nanosheets: A Synergistic Electrocatalyst with Highly Enhanced Activity for Overall Water Splitting. Small 2017, 13 (24), 1700264.
    [83] Tian, J.; Chen, J.; Liu, J.; Tian, Q.; Chen, P. Graphene quantum dot engineered nickel-cobalt phosphide as highly efficient bifunctional catalyst for overall water splitting. Nano Energy 2018, 48, 284.
    [84] Fei, H.; Ye, R.; Ye, G.; Gong, Y.; Peng, Z.; Fan, X.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano 2014, 8 (10), 10837.
    [85] Wang, Q.; Ji, Y.; Lei, Y.; Wang, Y.; Wang, Y.; Li, Y.; Wang, S. Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters 2018, 3 (5), 1183.
    [86] Ito, Y.; Cong, W.; Fujita, T.; Tang, Z.; Chen, M. High Catalytic Activity of Nitrogen and Sulfur Co-Doped Nanoporous Graphene in the Hydrogen Evolution Reaction. Angewandte Chemie International Edition 2015, 54 (7), 2131.
    [87] Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705.
    [88] Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477.
    [89] Salunkhe, R. R.; Tang, J.; Kamachi, Y.; Nakato, T.; Kim, J. H.; Yamauchi, Y. Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano 2015, 9 (6), 6288.
    [90] Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; Keeffe, M.; Yaghi, O. M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300 (5622), 1127.
    [91] Xu, G.-W.; Wu, Y.-P.; Dong, W.-W.; Zhao, J.; Wu, X.-Q.; Li, D.-S.; Zhang, Q. A Multifunctional Tb-MOF for Highly Discriminative Sensing of Eu3+/Dy3+ and as a Catalyst Support of Ag Nanoparticles. Small 2017, 13 (22), 1602996.
    [92] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chemical Society Reviews 2009, 38 (5), 1450.
    [93] Pascanu, V.; González Miera, G.; Inge, A. K.; Martín-Matute, B. Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. Journal of the American Chemical Society 2019, 141 (18), 7223.
    [94] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295 (5554), 469.
    [95] Wang, Z.; Cohen, S. M. Postsynthetic Covalent Modification of a Neutral Metal−Organic Framework. Journal of the American Chemical Society 2007, 129 (41), 12368.
    [96] Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327 (5967), 846.
    [97] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
    [98] Li, H.; Eddaoudi, M.; Groy, T. L.; Yaghi, O. M. Establishing Microporosity in Open Metal−Organic Frameworks:  Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society 1998, 120 (33), 8571.
    [99] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A Chemically Functionalizable Nanoporous Material [Cu<sub>3</sub>(TMA)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub><em>n</em></sub>. Science 1999, 283 (5405), 1148.
    [100] Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O'Keeffe, M.; Yaghi, O. M. Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society 2005, 127 (5), 1504.
    [101] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276.
    [102] Millward, A. R.; Yaghi, O. M. Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society 2005, 127 (51), 17998.
    [103] Wang, Q.; Astruc, D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews 2020, 120 (2), 1438.
    [104] Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. Journal of the American Chemical Society 1995, 117 (41), 10401.
    [105] Férey, G. Hybrid porous solids: past, present, future. Chemical Society Reviews 2008, 37 (1), 191.
    [106] Cohen, S. M. Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 970.
    [107] Song, Y.; Li, X.; Sun, L.; Wang, L. Metal/metal oxide nanostructures derived from metal–organic frameworks. RSC Advances 2015, 5 (10), 7267.
    [108] Zhang, W.-D.; Yan, X.; Li, T.; Liu, Y.; Fu, Q.-T.; Gu, Z.-G. Metal–organic layer derived metal hydroxide nanosheets for highly efficient oxygen evolution. Chemical Communications 2019, 55 (38), 5467.
    [109] Wang, K.; Wang, Y.; Zhang, Y.; Liu, F.; Shi, J.; Liu, S.; Xie, X.; Cao, G.; Pan, A. Bimetallic organic framework derivation of three-dimensional and heterogeneous metal selenides/carbon composites as advanced anodes for lithium-ion batteries. Nanoscale 2020, 12 (23), 12623.
    [110] Liang, X.; Zheng, B.; Chen, L.; Zhang, J.; Zhuang, Z.; Chen, B. MOF-Derived Formation of Ni2P–CoP Bimetallic Phosphides with Strong Interfacial Effect toward Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces 2017, 9 (27), 23222.
    [111] McCreery, R. L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical Reviews 2008, 108 (7), 2646.
    [112] Chen, D.; Tang, L.; Li, J. Graphene-based materials in electrochemistry. Chemical Society Reviews 2010, 39 (8), 3157.
    [113] Amatore, C.; Arbault, S.; Guille, M.; Lemaître, F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chemical Reviews 2008, 108 (7), 2585.
    [114] Yu, P.; He, X.; Mao, L. Tuning interionic interaction for highly selective in vivo analysis. Chemical Society Reviews 2015, 44 (17), 5959.
    [115] Brownson, D. A. C.; Foster, C. W.; Banks, C. E. The electrochemical performance of graphene modified electrodes: An analytical perspective. Analyst 2012, 137 (8), 1815.
    [116] Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347 (6217), 1246501.
    [117] Wang, Y.; Lin, H.-X.; Chen, L.; Ding, S.-Y.; Lei, Z.-C.; Liu, D.-Y.; Cao, X.-Y.; Liang, H.-J.; Jiang, Y.-B.; Tian, Z.-Q. What molecular assembly can learn from catalytic chemistry. Chemical Society Reviews 2014, 43 (1), 399.
    [118] Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nature Communications 2015, 6 (1), 7992.
    [119] Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews 2015, 44 (8), 2060.
    [120] Lim, S. Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chemical Society Reviews 2015, 44 (1), 362.
    [121] Sgobba, V.; Guldi, D. M. Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chemical Society Reviews 2009, 38 (1), 165.
    [122] Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109.
    [123] Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chemical Reviews 2010, 110 (1), 132.
    [124] Geim, A. K.; Novoselov, K. S. The rise of graphene. Nature Materials 2007, 6 (3), 183.
    [125] Zhang, W.; Zhu, S.; Luque, R.; Han, S.; Hu, L.; Xu, G. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews 2016, 45 (3), 715.
    [126] Pumera, M. Electrochemistry of graphene: new horizons for sensing and energy storage. The Chemical Record 2009, 9 (4), 211.
    [127] Zhu, C.; Guo, S.; Fang, Y.; Dong, S. Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets. ACS Nano 2010, 4 (4), 2429.
    [128] Guo, S.; Dong, S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews 2011, 40 (5), 2644.
    [129] Reuter, C.; Huy, P.; Neudörfl, J.-M.; Kühne, R.; Schmalz, H.-G. Exercises in Pyrrolidine Chemistry: Gram Scale Synthesis of a Pro–Pro Dipeptide Mimetic with a Polyproline Type II Helix Conformation. Chemistry-A European Journal 2011, 17 (43), 12037.
    [130] Liu, W.; Li, M.; Jiang, G.; Li, G.; Zhu, J.; Xiao, M.; Zhu, Y.; Gao, R.; Yu, A.; Feng, M.et al. Graphene Quantum Dots-Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials 2020, 10 (29), 2001275.
    [131] Li, M.; Chen, T.; Gooding, J. J.; Liu, J. Review of Carbon and Graphene Quantum Dots for Sensing. ACS Sensors 2019, 4 (7), 1732.
    [132] Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the Electronic Structure of Bilayer Graphene. Science 2006, 313 (5789), 951.
    [133] Valencia, A. M.; Caldas, M. J. Single vacancy defect in graphene: Insights into its magnetic properties from theoretical modeling. Physical Review B 2017, 96 (12), 125431.
    [134] Lee, M. W.; Kim, J.; Suh, J. S. Characteristics of graphene quantum dots determined by edge structures: three kinds of dots fabricated using thermal plasma jet. RSC Advances 2015, 5 (83), 67669.
    [135] Facure, M. H. M.; Schneider, R.; Mercante, L. A.; Correa, D. S. A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano 2020, 7 (12), 3710.
    [136] Tang, C.; Wang, B.; Wang, H.-F.; Zhang, Q. Defect Engineering toward Atomic Co–Nx–C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries. Advanced Materials 2017, 29 (37), 1703185.
    [137] Park, M.; Jeon, I.-Y.; Ryu, J.; Baek, J.-B.; Cho, J. Exploration of the Effective Location of Surface Oxygen Defects in Graphene-Based Electrocatalysts for All-Vanadium Redox-Flow Batteries. Advanced Energy Materials 2015, 5 (5), 1401550.
    [138] Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R. A. Nanoporous Nitrogen-Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metal-Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials 2017, 27 (33), 1700451.
    [139] Yuan, Z.; Li, J.; Yang, M.; Fang, Z.; Jian, J.; Yu, D.; Chen, X.; Dai, L. Ultrathin Black Phosphorus-on-Nitrogen Doped Graphene for Efficient Overall Water Splitting: Dual Modulation Roles of Directional Interfacial Charge Transfer. Journal of the American Chemical Society 2019, 141 (12), 4972.
    [140] Wu, J.; Ren, Z.; Du, S.; Kong, L.; Liu, B.; Xi, W.; Zhu, J.; Fu, H. A highly active oxygen evolution electrocatalyst: Ultrathin CoNi double hydroxide/CoO nanosheets synthesized via interface-directed assembly. Nano Research 2016, 9 (3), 713.
    [141] Li, Y.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y.-Q.; Gao, D.; Cheng, F.; Xi, P. FeS2/CoS2 Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14 (26), 1801070.
    [142] Jia, Y.; Zhang, L.; Gao, G.; Chen, H.; Wang, B.; Zhou, J.; Soo, M. T.; Hong, M.; Yan, X.; Qian, G.et al. A Heterostructure Coupling of Exfoliated Ni–Fe Hydroxide Nanosheet and Defective Graphene as a Bifunctional Electrocatalyst for Overall Water Splitting. Advanced Materials 2017, 29 (17), 1700017.
    [143] Zhao, H.; Sun, C.; Jin, Z.; Wang, D.-W.; Yan, X.; Chen, Z.; Zhu, G.; Yao, X. Carbon for the oxygen reduction reaction: a defect mechanism. Journal of Materials Chemistry A 2015, 3 (22), 11736.
    [144] Ni, S.; Li, Z.; Yang, J. Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping. Nanoscale 2012, 4 (4), 1184.
    [145] Zhu, J.; Childress, A. S.; Karakaya, M.; Dandeliya, S.; Srivastava, A.; Lin, Y.; Rao, A. M.; Podila, R. Defect-Engineered Graphene for High-Energy- and High-Power-Density Supercapacitor Devices. Advanced Materials 2016, 28 (33), 7185.
    [146] Zhao, X.; Zou, X.; Yan, X.; Brown, C. L.; Chen, Z.; Zhu, G.; Yao, X. Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorganic Chemistry Frontiers 2016, 3 (3), 417.
    [147] Zhang, Z.; Yi, Z.; Wang, J.; Tian, X.; Xu, P.; Shi, G.; Wang, S. Nitrogen-enriched polydopamine analogue-derived defect-rich porous carbon as a bifunctional metal-free electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A 2017, 5 (32), 17064.
    [148] Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W.-G.; Yoon, T.; Kim, K. S. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catalysis 2017, 7 (10), 7196.
    [149] Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321).
    [150] Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. The Journal of Physical Chemistry Letters 2014, 5 (10), 1636.
    [151] Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society 2012, 134 (41), 17253.
    [152] Ng, J. W. D.; García-Melchor, M.; Bajdich, M.; Chakthranont, P.; Kirk, C.; Vojvodic, A.; Jaramillo, T. F. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nature Energy 2016, 1 (5), 16053.
    [153] Hunter, B. M.; Blakemore, J. D.; Deimund, M.; Gray, H. B.; Winkler, J. R.; Müller, A. M. Highly Active Mixed-Metal Nanosheet Water Oxidation Catalysts Made by Pulsed-Laser Ablation in Liquids. Journal of the American Chemical Society 2014, 136 (38), 13118.
    [154] Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials 2011, 10 (10), 780.
    [155] Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society 2013, 135 (36), 13521.
    [156] Gorlin, Y.; Jaramillo, T. F. A Bifunctional Nonprecious Metal Catalyst for Oxygen Reduction and Water Oxidation. Journal of the American Chemical Society 2010, 132 (39), 13612.
    [157] Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chemistry 2011, 3 (7), 546.
    [158] Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334 (6061), 1383.
    [159] Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18), 6744.
    [160] Corrigan, D. A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society 1987, 134 (2), 377.
    [161] Louie, M. W.; Bell, A. T. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society 2013, 135 (33), 12329.
    [162] Farhat, R.; Dhainy, J.; Halaoui, L. I. OER Catalysis at Activated and Codeposited NiFe-Oxo/Hydroxide Thin Films Is Due to Postdeposition Surface-Fe and Is Not Sustainable without Fe in Solution. ACS Catalysis 2020, 10 (1), 20.
    [163] Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt–Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. Journal of the American Chemical Society 2015, 137 (10), 3638.
    [164] Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593.
    [165] Gerken, J. B.; McAlpin, J. G.; Chen, J. Y. C.; Rigsby, M. L.; Casey, W. H.; Britt, R. D.; Stahl, S. S. Electrochemical Water Oxidation with Cobalt-Based Electrocatalysts from pH 0–14: The Thermodynamic Basis for Catalyst Structure, Stability, and Activity. Journal of the American Chemical Society 2011, 133 (36), 14431.
    [166] Xu, K.; Chen, P.; Li, X.; Tong, Y.; Ding, H.; Wu, X.; Chu, W.; Peng, Z.; Wu, C.; Xie, Y. Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation. Journal of the American Chemical Society 2015, 137 (12), 4119.
    [167] Zhou, Q.; Chen, Y.; Zhao, G.; Lin, Y.; Yu, Z.; Xu, X.; Wang, X.; Liu, H. K.; Sun, W.; Dou, S. X. Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (6), 5382.
    [168] Candelaria, S. L.; Bedford, N. M.; Woehl, T. J.; Rentz, N. S.; Showalter, A. R.; Pylypenko, S.; Bunker, B. A.; Lee, S.; Reinhart, B.; Ren, Y.et al. Multi-Component Fe–Ni Hydroxide Nanocatalyst for Oxygen Evolution and Methanol Oxidation Reactions under Alkaline Conditions. ACS Catalysis 2017, 7 (1), 365.
    [169] Cao, L.-M.; Lu, D.; Zhong, D.-C.; Lu, T.-B. Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting. Coordination Chemistry Reviews 2020, 407, 213156.
    [170] Yilmaz, G.; Yam, K. M.; Zhang, C.; Fan, H. J.; Ho, G. W. In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance. Advanced Materials 2017, 29 (26), 1606814.
    [171] Xu, H.; Cao, J.; Shan, C.; Wang, B.; Xi, P.; Liu, W.; Tang, Y. MOF-Derived Hollow CoS Decorated with CeOx Nanoparticles for Boosting Oxygen Evolution Reaction Electrocatalysis. Angewandte Chemie International Edition 2018, 57 (28), 8654.
    [172] Hu, H.; Han, L.; Yu, M.; Wang, Z.; Lou, X. W. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy & Environmental Science 2016, 9 (1), 107.
    [173] Zeng, K.; Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 2010, 36 (3), 307.
    [174] Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12), 8069.
    [175] Silva, V. D.; Simões, T. A.; Grilo, J. P. F.; Medeiros, E. S.; Macedo, D. A. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. Journal of Materials Science 2020, 55 (15), 6648.
    [176] Bard, A. L. Electrochemical methods fundamentals and applications; John Wiley & Sons: New York, 2001.
    [177] Colomer-Farrarons, J.; Miribel-Catal‡, P.; RodrÌguez-Villarreal, A. I.; Samitier, J., 2011.
    [178] Lasia, A. Electrochemical impedance spectroscopy and its applications; Springer: New York [etc.], 2014.
    [179] Bunaciu, A. A.; Udriştioiu, E. g.; Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry 2015, 45 (4), 289.
    [180] Jusman, Y.; Ng, S. C.; Abu Osman, N. A. Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX. The Scientific World Journal 2014, 2014, 289817.
    [181] Tam, T. V.; Trung, N. B.; Kim, H. R.; Chung, J. S.; Choi, W. M. One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection. Sensors and Actuators B: Chemical 2014, 202, 568.
    [182] Van Tam, T.; Kang, S. G.; Babu, K. F.; Oh, E.-S.; Lee, S. G.; Choi, W. M. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A 2017, 5 (21), 10537.
    [183] Surendranath, Y.; Kanan, M. W.; Nocera, D. G. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH. Journal of the American Chemical Society 2010, 132 (46), 16501.
    [184] Li, C.; Baek, J.-B. Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega 2020, 5 (1), 31.
    [185] Kanan, M. W.; Nocera, D. G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co<sup>2+</sup>. Science 2008, 321 (5892), 1072.
    [186] Tahir, M.; Pan, L.; Idrees, F.; Zhang, X.; Wang, L.; Zou, J.-J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136.
    [187] Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C.-S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3), 558.
    [188] Rubio-Giménez, V.; Waerenborgh, J. C.; Clemente-Juan, J. M.; Martí-Gastaldo, C. Spontaneous Magnetization in Heterometallic NiFe-MOF-74 Microporous Magnets by Controlled Iron Doping. Chemistry of Materials 2017, 29 (15), 6181.
    [189] Liu, X.; Wang, X.; Yuan, X.; Dong, W.; Huang, F. Rational composition and structural design of in situ grown nickel-based electrocatalysts for efficient water electrolysis. Journal of Materials Chemistry A 2016, 4 (1), 167.
    [190] Kuang, D.-B.; Lei, B.-X.; Pan, Y.-P.; Yu, X.-Y.; Su, C.-Y. Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process. The Journal of Physical Chemistry C 2009, 113 (14), 5508.
    [191] Wu, Z.; Zou, Z.; Huang, J.; Gao, F. NiFe2O4 Nanoparticles/NiFe Layered Double-Hydroxide Nanosheet Heterostructure Array for Efficient Overall Water Splitting at Large Current Densities. ACS Applied Materials & Interfaces 2018, 10 (31), 26283.
    [192] Wang, X.; Xiao, H.; Li, A.; Li, Z.; Liu, S.; Zhang, Q.; Gong, Y.; Zheng, L.; Zhu, Y.; Chen, C.et al. Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. Journal of the American Chemical Society 2018, 140 (45), 15336.
    [193] Yan, J.; Kong, L.; Ji, Y.; White, J.; Li, Y.; Zhang, J.; An, P.; Liu, S.; Lee, S.-T.; Ma, T. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nature Communications 2019, 10 (1), 2149.
    [194] Villajos, J. A.; Orcajo, G.; Martos, C.; Botas, J. Á.; Villacañas, J.; Calleja, G. Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. International Journal of Hydrogen Energy 2015, 40 (15), 5346.
    [195] Qu, C.; Zhao, B.; Jiao, Y.; Chen, D.; Dai, S.; deglee, B. M.; Chen, Y.; Walton, K. S.; Zou, R.; Liu, M. Functionalized Bimetallic Hydroxides Derived from Metal–Organic Frameworks for High-Performance Hybrid Supercapacitor with Exceptional Cycling Stability. ACS Energy Letters 2017, 2 (6), 1263.
    [196] Xing, J.; Guo, K.; Zou, Z.; Cai, M.; Du, J.; Xu, C. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation. Chemical Communications 2018, 54 (51), 7046.
    [197] Chemelewski, W. D.; Lee, H.-C.; Lin, J.-F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting. Journal of the American Chemical Society 2014, 136 (7), 2843.
    [198] Corrigan, D. A.; Conell, R. S.; Fierro, C. A.; Scherson, D. A. In-situ Moessbauer study of redox processes in a composite hydroxide of iron and nickel. The Journal of Physical Chemistry 1987, 91 (19), 5009.
    [199] Dionigi, F.; Strasser, P. NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Advanced Energy Materials 2016, 6 (23), 1600621.
    [200] Elbaz, Y.; Caspary Toroker, M. Dual Mechanisms: Hydrogen Transfer during Water Oxidation Catalysis of Pure and Fe-Doped Nickel Oxyhydroxide. The Journal of Physical Chemistry C 2017, 121 (31), 16819.
    [201] Yue, D.; Yan, X.; Guo, C.; Qian, X.; Zhao, Y. NiFe Layered Double Hydroxide (LDH) Nanosheet Catalysts with Fe as Electron Transfer Mediator for Enhanced Persulfate Activation. The Journal of Physical Chemistry Letters 2020, 11 (3), 968.
    [202] Li, Y.; Li, F.-M.; Meng, X.-Y.; Li, S.-N.; Zeng, J.-H.; Chen, Y. Ultrathin Co3O4 Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (3), 1913.
    [203] Wu, L.; Yu, L.; Xiao, X.; Zhang, F.; Song, S.; Chen, S.; Ren, Z. Recent Advances in Self-Supported Layered Double Hydroxides for Oxygen Evolution Reaction. Research 2020, 2020, 3976278.
    [204] Shin, H.; Xiao, H.; Goddard, W. A. In Silico Discovery of New Dopants for Fe-Doped Ni Oxyhydroxide (Ni1–xFexOOH) Catalysts for Oxygen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (22), 6745.
    [205] Wei, G.; Zhou, Z.; Zhao, X.; Zhang, W.; An, C. Ultrathin Metal–Organic Framework Nanosheet-Derived Ultrathin Co3O4 Nanomeshes with Robust Oxygen-Evolving Performance and Asymmetric Supercapacitors. ACS Applied Materials & Interfaces 2018, 10 (28), 23721.
    [206] Ahirwar, S.; Mallick, S.; Bahadur, D. Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots. ACS Omega 2017, 2 (11), 8343.
    [207] Xia, K.; Huang, Z.; Zheng, L.; Han, B.; Gao, Q.; Zhou, C.; Wang, H.; Wu, J. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors. Journal of Power Sources 2017, 365, 380.
    [208] Lu, X.; Yim, W.-L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic Oxygen Evolution at Surface-Oxidized Multiwall Carbon Nanotubes. Journal of the American Chemical Society 2015, 137 (8), 2901.
    [209] Holder, C. F.; Schaak, R. E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13 (7), 7359.
    [210] Nazim, M.; Kim, J. H. Fluorescent N-Doped Graphene Quantum Dots Embedded in Transparent Polymer Films for Photon-Downconversion Applications. ACS Applied Nano Materials 2020, 3 (3), 2322.
    [211] Wang, Z.; Huang, J.; Mao, J.; Guo, Q.; Chen, Z.; Lai, Y. Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A 2020, 8 (6), 2934.
    [212] Attfield, M. P.; Cubillas, P. Crystal growth of nanoporous metal organic frameworks. Dalton Transactions 2012, 41 (14), 3869.
    [213] Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters 2008, 8 (1), 36.
    [214] LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society 1950, 72 (11), 4847.
    [215] Albuquerque, G. H.; Fitzmorris, R. C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P. K.; McGrail, B. P.; Herman, G. S. Gas–liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015, 17 (29), 5502.
    [216] Tan, K.; Zuluaga, S.; Gong, Q.; Canepa, P.; Wang, H.; Li, J.; Chabal, Y. J.; Thonhauser, T. Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74. Chemistry of Materials 2014, 26 (23), 6886.
    [217] Li, R.; Wei, Z.; Gou, X. Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis 2015, 5 (7), 4133.
    [218] Li, Y.; Zhao, Y.; Cheng, H.; Hu, Y.; Shi, G.; Dai, L.; Qu, L. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups. Journal of the American Chemical Society 2012, 134 (1), 15.
    [219] Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammynaiken, R.; Sham, T. K.; Pong, W. F. Nano-scale chemical imaging of a single sheet of reduced graphene oxide. Journal of Materials Chemistry 2011, 21 (38), 14622.
    [220] Minasian, S. G.; Keith, J. M.; Batista, E. R.; Boland, K. S.; Kozimor, S. A.; Martin, R. L.; Shuh, D. K.; Tyliszczak, T.; Vernon, L. J. Carbon K-Edge X-ray Absorption Spectroscopy and Time-Dependent Density Functional Theory Examination of Metal–Carbon Bonding in Metallocene Dichlorides. Journal of the American Chemical Society 2013, 135 (39), 14731.
    [221] Lee, V.; Whittaker, L.; Jaye, C.; Baroudi, K. M.; Fischer, D. A.; Banerjee, S. Large-Area Chemically Modified Graphene Films: Electrophoretic Deposition and Characterization by Soft X-ray Absorption Spectroscopy. Chemistry of Materials 2009, 21 (16), 3905.
    [222] Ao, Z. M.; Peeters, F. M. High-capacity hydrogen storage in Al-adsorbed graphene. Physical Review B 2010, 81 (20), 205406.
    [223] Zhou, C.; Wang, J.; Szpunar, J. A. X-ray chemical imaging and the electronic structure of a single nanoplatelet Ni/graphene composite. Chemical Communications 2014, 50 (18), 2282.
    [224] Ahuja, R.; Brühwiler, P. A.; Wills, J. M.; Johansson, B.; Mårtensson, N.; Eriksson, O. Theoretical and experimental study of the graphite 1s x-ray absorption edges. Physical Review B 1996, 54 (20), 14396.
    [225] Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. The Journal of Physical Chemistry C 2011, 115 (34), 17009.
    [226] Gandhiraman, R. P.; Nordlund, D.; Javier, C.; Koehne, J. E.; Chen, B.; Meyyappan, M. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites. The Journal of Physical Chemistry C 2014, 118 (32), 18706.
    [227] Dong, Q.; Shuai, C.; Mo, Z.; Liu, Z.; Liu, G.; Wang, J.; Chen, Y.; Liu, W.; Liu, N.; Guo, R. Nitrogen-doped graphene quantum dots anchored on NiFe layered double-hydroxide nanosheets catalyze the oxygen evolution reaction. New Journal of Chemistry 2020, 44 (41), 17744.
    [228] Zhu, X.; Tang, C.; Wang, H.-F.; Zhang, Q.; Yang, C.; Wei, F. Dual-sized NiFe layered double hydroxides in situ grown on oxygen-decorated self-dispersal nanocarbon as enhanced water oxidation catalysts. Journal of Materials Chemistry A 2015, 3 (48), 24540.
    [229] Wang, W.; Liu, Y.; Li, J.; Luo, J.; Fu, L.; Chen, S. NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. Journal of Materials Chemistry A 2018, 6 (29), 14299.
    [230] Cheng, W.; Liu, X.; Li, N.; Han, J.; Li, S.; Yu, S. Boron-doped graphene as a metal-free catalyst for gas-phase oxidation of benzyl alcohol to benzaldehyde. RSC Advances 2018, 8 (20), 11222.
    [231] Stadie, N. P.; Billeter, E.; Piveteau, L.; Kravchyk, K. V.; Döbeli, M.; Kovalenko, M. V. Direct Synthesis of Bulk Boron-Doped Graphitic Carbon. Chemistry of Materials 2017, 29 (7), 3211.
    [232] Zuo, Z.; Jiang, Z.; Manthiram, A. Porous B-doped graphene inspired by Fried-Ice for supercapacitors and metal-free catalysts. Journal of Materials Chemistry A 2013, 1 (43), 13476.
    [233] Jin, J.; Pan, F.; Jiang, L.; Fu, X.; Liang, A.; Wei, Z.; Zhang, J.; Sun, G. Catalyst-Free Synthesis of Crumpled Boron and Nitrogen Co-Doped Graphite Layers with Tunable Bond Structure for Oxygen Reduction Reaction. ACS Nano 2014, 8 (4), 3313.
    [234] Kesavan, D.; Mariappan, V. K.; Krishnamoorthy, K.; Kim, S.-J. Carbothermal conversion of boric acid into boron-oxy-carbide nanostructures for high-power supercapacitors. Journal of Materials Chemistry A 2021, DOI:10.1039/D0TA09154E 10.1039/D0TA09154E.
    [235] Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum. Nature Communications 2017, 8 (1), 15802.
    [236] Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes? Journal of the American Chemical Society 2013, 135 (4), 1201.
    [237] Wang, H.; Maiyalagan, T.; Wang, X. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis 2012, 2 (5), 781.
    [238] Choi, C. H.; Park, S. H.; Woo, S. I. Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano 2012, 6 (8), 7084.
    [239] Jia, J.; Liu, Z.; Han, F.; Kang, G.-J.; Liu, L.; Liu, J.; Wang, Q.-D. The identification of active N species in N-doped carbon carriers that improve the activity of Fe electrocatalysts towards the oxygen evolution reaction. RSC Advances 2019, 9 (9), 4806.
    [240] Wang , S.; Iyyamperumal , E.; Roy, A.; Xue, Y.; Yu, D.; Dai, L. Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen. Angewandte Chemie International Edition 2011, 50 (49), 11756.
    [241] Ma, R.; Lin, G.; Zhou, Y.; Liu, Q.; Zhang, T.; Shan, G.; Yang, M.; Wang, J. A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts. npj Computational Materials 2019, 5 (1), 78.
    [242] Faccio, R.; Fernández-Werner, L.; Pardo, H.; Goyenola, C.; Ventura, O. N.; Mombrú, Á. W. Electronic and Structural Distortions in Graphene Induced by Carbon Vacancies and Boron Doping. The Journal of Physical Chemistry C 2010, 114 (44), 18961.
    [243] Yang, S.; Feng, X.; Wang, X.; Müllen, K. Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions. Angewandte Chemie International Edition 2011, 50 (23), 5339.
    [244] Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; Philippe, B.; Rensmo, H.; Li, F.; Luo, Y.et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications 2016, 7 (1), 11981.
    [245] Yin, S.; Tu, W.; Sheng, Y.; Du, Y.; Kraft, M.; Borgna, A.; Xu, R. A Highly Efficient Oxygen Evolution Catalyst Consisting of Interconnected Nickel–Iron-Layered Double Hydroxide and Carbon Nanodomains. Advanced Materials 2018, 30 (5), 1705106.
    [246] Tang, C.; Wang, H.-F.; Zhu, X.-L.; Li, B.-Q.; Zhang, Q. Advances in Hybrid Electrocatalysts for Oxygen Evolution Reactions: Rational Integration of NiFe Layered Double Hydroxides and Nanocarbon. Particle & Particle Systems Characterization 2016, 33 (8), 473.
    [247] Guzmán-Vargas, A.; Vazquez-Samperio, J.; Oliver-Tolentino, M. A.; Nava, N.; Castillo, N.; Macías-Hernández, M. J.; Reguera, E. Influence of cobalt on electrocatalytic water splitting in NiCoFe layered double hydroxides. Journal of Materials Science 2018, 53 (6), 4515.
    [248] Han, X.; Yu, C.; Yang, J.; Zhao, C.; Huang, H.; Liu, Z.; Ajayan, P. M.; Qiu, J. Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces 2016, 3 (7), 1500782.
    [249] Liu, T.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Research 2020, 13 (12), 3299.
    [250] Liu, W.-J.; Hu, X.; Li, H.-C.; Yu, H.-Q. Pseudocapacitive Ni-Co-Fe Hydroxides/N-Doped Carbon Nanoplates-Based Electrocatalyst for Efficient Oxygen Evolution. Small 2018, 14 (34), 1801878.
    [251] Qian, L.; Lu, Z.; Xu, T.; Wu, X.; Tian, Y.; Li, Y.; Huo, Z.; Sun, X.; Duan, X. Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials 2015, 5 (13), 1500245.
    [252] Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.et al. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350.
    [253] Zhou, P.; Wang, Y.; Xie, C.; Chen, C.; Liu, H.; Chen, R.; Huo, J.; Wang, S. Acid-etched layered double hydroxides with rich defects for enhancing the oxygen evolution reaction. Chemical Communications 2017, 53 (86), 11778.
    [254] Tang, D.; Liu, J.; Wu, X.; Liu, R.; Han, X.; Han, Y.; Huang, H.; Liu, Y.; Kang, Z. Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces 2014, 6 (10), 7918.
    [255] Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications 2016, 52 (5), 908.
    [256] Tang, C.; Wang, H.-S.; Wang, H.-F.; Zhang, Q.; Tian, G.-L.; Nie, J.-Q.; Wei, F. Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. Advanced Materials 2015, 27 (30), 4516.
    [257] Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. Advanced Energy Materials 2017, 7 (21), 1700467.
    [258] Babar, P. T.; Pawar, B. S.; Lokhande, A. C.; Gang, M. G.; Jang, J. S.; Suryawanshi, M. P.; Pawar, S. M.; Kim, J. H. Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films. Journal of Energy Chemistry 2017, 26 (4), 757.
    [259] Lee, J.; Lee, H.; Lim, B. Chemical transformation of iron alkoxide nanosheets to FeOOH nanoparticles for highly active and stable oxygen evolution electrocatalysts. Journal of Industrial and Engineering Chemistry 2018, 58, 100.
    [260] Zou, S.; Burke, M. S.; Kast, M. G.; Fan, J.; Danilovic, N.; Boettcher, S. W. Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials 2015, 27 (23), 8011.
    [261] Li, L.; Yang, H.; Miao, J.; Zhang, L.; Wang, H.-Y.; Zeng, Z.; Huang, W.; Dong, X.; Liu, B. Unraveling Oxygen Evolution Reaction on Carbon-Based Electrocatalysts: Effect of Oxygen Doping on Adsorption of Oxygenated Intermediates. ACS Energy Letters, 2017, 2, 294.
    [262] Guo, Y.; Wang, T.; Chen, J.; Zheng, J.; Li, X.; Ostrikov, K. Air Plasma Activation of Catalytic Sites in a Metal-Cyanide Framework for Efficient Oxygen Evolution Reaction. Advanced Energy Materials 2018, 8, 1800085.
    [263] Lin, Y.-C.; Chuang, C.-H.; Hsiao, L.-Y.; Yeh, M.-H.; Ho, K.-C. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2020, 12, 42634.

    QR CODE