簡易檢索 / 詳目顯示

研究生: 陳奎元
Kuei-Yuan Chen
論文名稱: 設計具雙功能可調性之ZIF-67衍生電催化觸媒及其應用於可充電鋅-空氣電池之研究
Designing ZIF-67 derived electrocatalysts with bifunctional tailorability for rechargeable Zn-air battery
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 黃炳照
Bing-Joe Hwang
王丞浩
Chen-Hao Wang
林律吟
Lu-Yin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 148
中文關鍵詞: 可充電鋅空氣電池氧氣析出反應氧氣還原反應雙功能電催化觸媒ZIF-67層狀雙氫氧化物氫氧化鈷奈米碳管氮摻雜奈米碳管雙功能可調性
外文關鍵詞: Rechargeable zinc-air battery, oxygen evolution reaction, oxygen reduction reaction, bifunction electrocatalyst, ZIF-67, layered double hydroxide, cobalt hydroxide, carbon nanotube, nitrogen-doped carbon nanotube, bifunction adjustability
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具高能量密度與成本低廉的可充電鋅-空氣電池(Rechargeable Zn-air battery)是近期極具潛力取代鋰離子電池的儲能系統;然而,在實現商品化之前仍有許多嚴峻的挑戰需要解決,其中一項最具挑戰性的課題是如何設計具有雙功能特性的電催化觸媒於電池空氣端,在充放電操作下能分別有效催化氧氣析出反應 (oxygen evolution reaction, OER)與氧氣還原反應 (oxygen reduction reaction, ORR)。為了要實現兼具OER與ORR雙功能特性,一般所使用的方法是將分別具有ORR良好特性的Pt/C與具有OER良好特性的RuOx以物理混合方式將其塗佈在工作電極表面。然而,成本高昂的貴金屬以及長期穩定性不佳等問題皆讓Pt/C+RuOx雙功能觸媒限制了可充電鋅-空氣電池的發展,造成實際應用上的瓶頸。
    有鑑於此,本研究開發以類沸石咪唑框架(Zeolitic imidazolate frameworks, ZIF)材料ZIF-67作為雙功能電催化觸媒的反應前驅物,並首度提出雙功能可調性的概念來有效控制單一粒子上ORR與OER活性面積比例,藉由ZIF-67衍生成具有雙功能特性的電催化觸媒,並進一步應用在可充電鋅-空氣電池的空氣電極端。在第四章中,以ZIF-67作為反應前驅物,將其轉換成NiCo層狀氫氧化物(Layered double hydroxide, LDH)與Co(OH)2的特性,透過轉化順序與反應時間來有效控制其部分轉換比例,來實現雙功能電催化能力進而最適化其OER以及ORR性能。從實驗結果得知ZIF-67衍生的Co(OH)2,因其導電性不足進而影響到ORR的性能,因此本研究導入奈米碳管於ZIF-67結構中來提高其衍生物導電性。本研究透過控制轉化順序以及轉化時間來控制ZIF-67內外層的NiCo LDH與Co(OH)2比例,進而最適化其OER以及ORR性能。為了進一步證明此NiCo LDH/Co(OH)2/CNT雙功能電催化觸媒的實用性,將其實際應用在可充電鋅空氣電池的空氣電極上來進行電池輸出分析。從結果可以發現NiCo LDH/Co(OH)2/CNT在各方面仍然展現了優異的性能,除了具有587 mAh g-1的比電容量之外,功率密度也達到了44 mW cm-2,展現了接近於利用物理混合Pt/C+RuOx商業化觸媒的電池效能並且可以穩定的連續充放電55個小時。
    然而,從第四章結果可歸納出NiCo LDH/Co(OH)2/CNT的ORR效能仍然遜色於Pt/C一大截進而造成整體電池性能不足;因此,如何增加雙功能電催化觸媒的ORR活性來進一步提升電池效能為本研究下一個目標。根據第四章的研究經驗,ZIF-67衍生物必須導入CNT增加其整體導電性才能有效提升ORR能力,因此第五章將以同時具有良好ORR特性與優異導電性的氮摻雜奈米碳管 (N-doped carbon nanotube, NCNT)作為電催化觸媒主體並透過ZIF-67衍生物修飾來實現雙功能電催化特性。導入N原子摻雜於CNT表面所形成的NCNT能有效提供更多電催化活性位點來提升ORR效能,使其ORR起始電位能提升至0.85 V (vs. RHE)。為了更進一步提升NCNT的ORR活性以及實現其雙功能電催化特性,本研究以NCNT作為擔體並進一步合成出ZIF-67/NCNT,作為反應前驅物來合成NiCo LDH/Co3O4/NCNT。透過具雙功能可調性的ZIF-67衍生物所製備而成的NiCo LDH/Co3O4/NCNT,除了可以藉由部分ZIF-67衍生NiCo LDH來做為OER活性材料,也可透過部分ZIF-67衍生Co3O4來進一步提升其原有ORR效能,使其電催化能力接近Pt/C商業觸媒。本研究透過ZIF-67/NCNT比例與轉化時間來最適化ORR以及OER性能。最後將其實際應用在可充電鋅空氣電池的空氣電極上來進行電池輸出分析。從結果可以發現NiCo LDH/Co3O4/NCNT在各方面仍然展現了優異的性能,除了具有617 mAh g-1的比電容量之外,功率密度也達到了46 mW cm-2,展現了接近於利用物理混合Pt/C+RuOx商業化觸媒的電池效能並且可以穩定的連續充放電55個小時。


    Rechargeable Zn-air battery with high energy density and low cost is an energy storage system that has the potential to replace lithium-ion batteries in the future. One of the most challenging topics is how to design an bifunctional electrocatalyst on the air electrode of the battery, which can effectively catalyze the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) under charge and discharge. In order to achieve the bifunction, the generally used method is to physically mix Pt/C with good ORR performance and RuOx with good OER performance to coat on the surface of the working electrode. However, high cost precious metals and poor long-term stability have caused Pt/C+RuOx bifunctional electrocatalyst to limit the development of rechargeable zinc-air batteries, causing bottlenecks in practical applications.
    In view of this, this research has developed the zeolitic imidazolate frameworks (ZIF) material ZIF-67 as the reaction precursor of the bifunction electrocatalyst and proposed for the concept of bifunctional tunability to effectively control the active area ratio of ORR to OER on the single particles. In Chapter 4, ZIF-67 is used as the reaction precursor, and it can be converted into NiCo layered double hydroxide (LDH) and Co(OH)2, through the conversion sequence and reaction time to effectively control its partial conversion ratio to achieve bifunction capability and optimize its OER and ORR performance. From the experimental results, it is known that the conductivity of Co(OH)2 derived from ZIF-67 is insufficient, which affects the performance of ORR. Therefore, this study introduced carbon nanotubes into the structure of ZIF-67 to improve the conductivity of its derivatives. In this study, the ratio of NiCo LDH to Co(OH)2 in the inner and outer layers of ZIF-67 was controlled by controlling the conversion sequence and conversion time to optimize its OER and ORR performance. In order to further prove the practicability of the NiCo LDH/Co(OH)2/CNT, it was applied to the air electrode of a rechargeable zinc-air battery for battery output analysis. From the results, it can be found that NiCo LDH/Co(OH)2/CNT still exhibits excellent performance in all aspects. In addition to the specific capacitance of 587 mAh g-1, the power density has also reached 44 mW cm-2, charged and discharged continuously for 55 hours.
    However, from the results in Chapter 4, it can be concluded that the ORR performance of NiCo LDH/Co(OH)2/CNT is still inferior to that of Pt/C by a large amount, which causes the overall battery performance to be insufficient. Therefore, how to improve ORR activity of bifunctional electrocatalyst to further increase battery performance is the next goal of this research. Therefore, Chapter 5 will use nitrogen-doped carbon nanotubes (NCNT) that have both good ORR performance and excellent conductivity. NCNT as the main body of the electrocatalyst and modified by ZIF-67 derivatives to achieve bifunctional electrocatalytic properties. In order to further enhance the ORR activity of NCNT and realize its bifunctional electrocatalytic properties, this study uses NCNT as a support and further synthesizes ZIF-67/NCNTs as reaction precursors to synthesize NiCo LDH/Co3O4/NCNT. NiCo LDH/Co3O4/NCNT prepared by ZIF-67 derivatives with bifunction tunability can be used as OER active material by partially deriving NiCo LDH from ZIF-67, but also part of ZIF-67 derives Co3O4 to further enhance its original ORR performance, making its electrocatalytic capacity close to Pt/C commercial catalysts. In addition to the specific capacitance of 617 mAh g-1, the power density has also reached 46 mW cm-2, charged and discharged continuously for 55 hours.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號說明 XVIII 第1章 序論 1 1.1 前言 1 1.2 電池簡介 2 1.2.1 一次電池 3 1.2.2 二次電池 4 1.3 可充電式金屬空氣電池之簡介 4 1.4 可充電式鋅空氣電池之簡介 6 1.4.1 鋅空氣電池優缺點 10 1.4.2 可充電式鋅空氣電池之構成 10 1.4.2.1 鋅電極 11 1.4.2.2 空氣電極 11 1.4.2.3 電解液 14 1.4.2.4 隔離膜 15 第2章 文獻回顧與研究目的 16 2.1 有機金屬框架(MOF)之簡介 16 2.2 OER與ORR電催化觸媒 21 2.2.1 過渡金屬氧化物電催化觸媒 21 2.2.2 MOF衍生物電催化觸媒 24 2.2.3 碳材料電催化觸媒 28 2.2.4 複合式電催化觸媒 30 2.3 研究動機與架構 32 第3章 實驗儀器藥品與實驗步驟 35 3.1 實驗儀器 35 3.1.1 電化學恆電位分析儀 35 3.1.2 旋轉電極 (Rotating Disk Electrode, RDE) 38 3.1.3 高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 40 3.1.4 X光能量色散圖譜分析(Energy-dispersive X-ray spectroscopy, EDX) 41 3.1.5 X-射線繞射分析儀 (X-ray Diffractometer, XRD) 41 3.1.6 X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 42 3.1.7 表面積及孔徑分析儀 (Brunauer–Emmett–Teller, BET) 43 3.1.8 拉曼散射光譜分析儀 (Raman) 43 3.1.9 感應耦合電漿原子發射光譜儀 (Inductively Coupled Plasma Optical Emission Spectrometry, ICP-OES) 45 3.2 藥品 47 3.3 實驗步驟 48 3.3.1 ZIF-67導入奈米碳管之衍生雙功能電催化觸媒 48 3.3.1.1 反應前驅物ZIF-67合成 48 3.3.1.2 OER材料NiCo LDH合成 48 3.3.1.3 ORR材料Co(OH)2合成 49 3.3.1.4 奈米碳管官能基化(酸洗) 49 3.3.1.5 反應前驅物ZIF-67/CNTs合成 50 3.3.1.6 氧氣析出反應材料NiCo LDH/CNTs合成 51 3.3.1.7 氧氣還原反應材料Co(OH)2/CNTs合成 51 3.3.1.8 雙功能電催化觸媒材料NiCo LDH/Co(OH)2/CNTs合成 51 3.3.2 ZIF-67導入氮摻雜奈米碳管之衍生雙功能電催化觸媒 52 3.3.2.1氮摻雜的奈米碳管合成 52 3.3.2.2 反應前驅物ZIF-67/NCNTs合成 52 3.3.2.3 氧氣析出反應材料NiCo LDH/NCNTs合成 53 3.3.2.4 氧氣還原反應材料Co3O4/NCNTs合成 53 3.3.2.5 雙功能電催化觸媒材料NiCo LDH/Co3O4/NCNTs合成 53 第4章 ZIF-67導入奈米碳管衍生NiCo LDH/Co(OH)2雙功能電催化觸媒應用於可充電式鋅空氣電池 55 4.1 研究動機與設計概念 55 4.2 結果與討論 56 4.2.1 ZIF-67合成之結構特性分析 56 4.2.2 由ZIF-67衍生NiCo LDH之結構特性分析 58 4.2.3 由ZIF-67衍生Co(OH)2之結構與電化學特性分析 61 4.2.4 由ZIF-67/CNTs生成Co(OH)2/CNTs之結構與電化學特性分析 63 4.2.5 探討不同ZIF-67轉化順序對於結構與組成之影響 67 4.2.6 NiCo LDH/Co(OH)2/CNTs結構與電化學特性分析 68 4.2.7 NiCo LDH/Co(OH)2/CNTs電化學測試 74 4.2.8 NiCo LDH/Co(OH)2/CNTs應用在鋅空氣電池測試 81 4.3 小結 85 第5章 雙功能可調性之ZIF-67衍生電催化觸媒導入氮摻雜奈米碳管作為OER與ORR雙功能電催化觸媒之結果與討論 87 5.1 研究動機與設計概念 87 5.2 結果與討論 88 5.2.1 氮摻雜奈米碳管之結構與特性分析 88 5.2.2 Co3O4/NCNTs之結構與電化學特性分析 91 5.2.3 NiCo LDH/NCNTs之結構與電化學特性分析 93 5.2.4 NiCo LDH/ Co3O4/NCNTs之結構與電化學特性分析 96 5.2.5 NiCo LDH/Co3O4/NCNTs應用在鋅空氣電池測試 103 5.3 小結 106 第6章 結論與建議 107 6.1 結論 107 6.2 建議 111 第7章 參考文獻 112 附錄 125

    [1] J.S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K.T. Lee, and J. Cho, Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 2011. 1, 34-50.
    [2] Y.C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, and Y. Shao-Horn, Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy & Environmental Science, 2013. 6. 750
    [3] https://reurl.cc/k0VzR3
    [4] https://www.chengseng.com/products-view.php?id=763.
    [5] 孫清華, “最新可充電電池技術大全”, 全華科技圖書股份有限公司, 2001.
    [6] https://www.doitpoms.ac.uk/tlplib/batteries/batteries_zn_c.php.
    [7] https://reurl.cc/6ll5Dr.
    [8] J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler, and Z. Chen, Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 2017. 29, 1604685.
    [9] Y. Li, M. Gong, Y. Liang, J. Feng, J.E. Kim, H. Wang, G. Hong, B. Zhang, and H. Dai, Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013. 4, 1805.
    [10] Zhang, J. et al., Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015. 1, e1500564.
    [11] E. Lam and J.H.T. Luong, Carbon Materials as Catalyst Supports and Catalysts in the Transformation of Biomass to Fuels and Chemicals. ACS Catalysis, 2014. 4, 3393-3410.
    [12] Z.L. Wang, D. Xu, J.J. Xu, and X.B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014. 43, 7746-7786.
    [13] H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, L. Dai, and B. Liu, Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016. 2.
    [14] P. Gu, M. Zheng, Q. Zhao, X. Xiao, H. Xue, and H. Pang, Rechargeable zinc–air batteries: a promising way to green energy. Journal of Materials Chemistry A, 2017. 5, 7651-7666.
    [15] J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, and Z. Chen, Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Advanced Materials, 2019. 31, e1805230.
    [16] https://www.sems.qmul.ac.uk/research/projects/?rid=1360.
    [17] A. R. Mainar, O. Leonet, M. Bengoechea, I. Boyano, I. de Meatza, A. Kvasha, A. Guerfi, and J. Alberto Blázquez, Alkaline aqueous electrolytes for secondary zinc-air batteries: an overview. International Journal of Energy Research, 2016. 40, 1032-1049.
    [18] J. Rossmeisl, A. Logadottir, and J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005. 319, 178-184.
    [19] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46, 337-365.
    [20] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, and Z. Liu, Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015. 5, 4643-4667.
    [21] K.Kinoshita, Electrochemical Oxygen Technology. Interscience, New York, 1992.
    [22] Igor V. Barsukov CSJ, Joseph E. Doninger and Vyacheslav Z. Barsukov. New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells: Springer Netherlands 2006.
    [23] F. Cheng and J. Chen, Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012. 41, 2172-2192.
    [24] O. Yaghi and H. Li, Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. Journal of the American Chemical Society, 1995. 117, 10401-10402.
    [25] Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2016. 2, 35-62.
    [26] Q. Lu, J.G. Chen, and J.Q. Xiao, Nanostructured electrodes for high-performance pseudocapacitors. Angewandte Chemie International Edition, 2013. 52, 1882-1889.
    [27] H. Furukawa, K.E. Cordova, M. O'Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science, 2013. 341, 1230444.
    [28] C. Dey, T. Kundu, B.P. Biswal, A. Mallick, and R. Banerjee, Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2014. 70, 3-10.
    [29] D. Yuan, J. Chen, S. Tan, N. Xia, and Y. Liu, Worm-like mesoporous carbon synthesized from metal–organic coordination polymers for supercapacitors. Electrochemistry Communications, 2009. 11, 1191-1194.
    [30] J. Hu, H. Wang, Q. Gao, and H. Guo, Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 2010. 48, 3599-3606.
    [31] H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu, From metal-organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. Journal of the American Chemical Society, 2011. 133, 11854-11857.
    [32] B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, and Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. Journal of Power Sources, 2010. 195, 857-861.
    [33] X. Xu, R. Cao, S. Jeong, and J. Cho, Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Letters, 2012. 12, 4988-4991.
    [34] L. Zhang, H.B. Wu, S. Madhavi, H.H. Hng, and X.W. Lou, Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. Journal of the American Chemical Society, 2012. 134, 17388-17391.
    [35] L. Hu, Y. Huang, F. Zhang, and Q. Chen, CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale, 2013. 5, 4186-4190.
    [36] S.J. Yang, S. Nam, T. Kim, J.H. Im, H. Jung, J.H. Kang, S. Wi, B. Park, and C.R. Park, Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. Journal of the American Chemical Society, 2013. 135, 7394-7397.
    [37] J. Qian, F. Sun, and L. Qin, Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters, 2012. 82, 220-223.
    [38] D.Z. Shen, T.T. Cai, X.L. Zhu, X.L. Ma, L.Q. Kong, and Q. Kang, Monitoring iodine adsorption onto zeolitic-imidazolate framework-8 film using a separated-electrode piezoelectric sensor. Chinese Chemical Letters, 2015. 26, 1022-1025.
    [39] G. Zhong, D. Liu, and J. Zhang, The application of ZIF-67 and its derivatives: adsorption, separation, electrochemistry and catalysts. Journal of Materials Chemistry A, 2018. 6, 1887-1899.
    [40] S.L. Jian, L.Y. Hsiao, M.H. Yeh, and K.C. Ho, Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors. Journal of Materials Chemistry A, 2019. 7, 1479-1490.
    [41] R. Díaz, M.G. Orcajo, J.A. Botas, G. Calleja, and J. Palma, Co8-MOF-5 as electrode for supercapacitors. Materials Letters, 2012. 68, 126-128.
    [42] X.F. Lu, L.F. Gu, J.W. Wang, J.X. Wu, P.Q. Liao, and G.R. Li, Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Advanced Materials, 2017. 29.
    [43] M.A. Nasalevich, M. van der Veen, F. Kapteijn, and J. Gascon, Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014. 16, 4919-4926.
    [44] N. Yao, L. Li, and Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015. 44, 2168-2201.
    [45] A. Sumboja, J. Chen, Y. Zong, P.S. Lee, and Z. Liu, NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries. Nanoscale, 2017. 9, 774-780.
    [46] H. Yin and Z. Tang, Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 2016. 45, 4873-4891.
    [47] K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, and L. Sun, Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016. 7, 11981.
    [48] J. Jiang, A. Zhang, L. Li, and L. Ai, Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015. 278, 445-451.
    [49] X. Han, C. Yu, J. Yang, C. Zhao, H. Huang, Z. Liu, P.M. Ajayan, and J. Qiu, Mass and Charge Transfer Coenhanced Oxygen Evolution Behaviors in CoFe-Layered Double Hydroxide Assembled on Graphene. Advanced Materials Interfaces, 2016. 3. 1500782
    [50] Y.Y. Liang, Y.G. Li, H.L. Wang, J.G. Zhou, J. Wang, T. Regier, and H.J. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011. 10, 780-786.
    [51] C. Wang, Facile Synthesis of Ni-Co LDH Nanocages with Improved Electrocatalytic Activity for Water Oxidation Reaction. International Journal of Electrochemical Science, 2017, 10003-10014.
    [52] T.Y. Ma, S. Dai, M. Jaroniec, and S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. Journal of the American Chemical Society, 2014. 136, 13925-13931.
    [53] H. Hu, L. Han, M. Yu, Z. Wang, and X.W. Lou, Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy & Environmental Science, 2016. 9, 107-111.
    [54] J. Shen, J. Gao, L. Ji, X. Chen, and C. Wu, Three-dimensional interlinked Co3O4-CNTs hybrids as novel oxygen electrocatalyst. Applied Surface Science, 2019. 497. 143818
    [55] Z. Lin, G.H. Waller, Y. Liu, M. Liu, and C.P. Wong, 3D Nitrogen-doped graphene prepared by pyrolysis of graphene oxide with polypyrrole for electrocatalysis of oxygen reduction reaction. Nano Energy, 2013. 2, 241-248.
    [56] H.B. Yang, J. Miao, S.F. Hung, J. Chen, H.B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H.M. Chen, L. Dai, and B. Liu, Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016. 2, e1501122.
    [57] Gong L., Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 2009. 323, 760-764.
    [58] S. Ci, S. Mao, Y. Hou, S. Cui, H. Kim, R. Ren, Z. Wen, and J. Chen, Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015. 3, 7986-7993.
    [59] Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu, Z. Liu, and J.Y. Lee, Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces, 2015. 7, 12930-12936.
    [60] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, and J.T. Hupp, Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009. 38, 1450-1459.
    [61] F. Zhang, Y. Wei, X. Wu, H. Jiang, W. Wang, and H. Li, Hollow zeolitic imidazolate framework nanospheres as highly efficient cooperative catalysts for [3+3] cycloaddition reactions. Journal of the American Chemical Society, 2014. 136, 13963-13966.
    [62] C. Dey and R. Banerjee, Controlled synthesis of a catalytically active hybrid metal-oxide incorporated zeolitic imidazolate framework (MOZIF). Chemical Communications, 2013. 49, 6617-6619.
    [63] X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding, X. Liu, J. Wang, W. Hu, and C. Zhong, Bimetallic Metal-Organic-Framework/Reduced Graphene Oxide Composites as Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. ACS Applied Materials & Interfaces, 2019. 11, 15662-15669.
    [64] T. Wang, Z. Kou, S. Mu, J. Liu, D. He, I.S. Amiinu, W. Meng, K. Zhou, Z. Luo, S. Chaemchuen, and F. Verpoort, 2D Dual-Metal Zeolitic-Imidazolate-Framework-(ZIF)-Derived Bifunctional Air Electrodes with Ultrahigh Electrochemical Properties for Rechargeable Zinc-Air Batteries. Advanced Functional Materials, 2018. 28. 1705048
    [65] Y. Li, B. Jia, Y. Fan, K. Zhu, G. Li, and C.Y. Su, Bimetallic Zeolitic Imidazolite Framework Derived Carbon Nanotubes Embedded with Co Nanoparticles for Efficient Bifunctional Oxygen Electrocatalyst. Advanced Energy Materials, 2018. 8. 1702048
    [66] D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du, and S.Z. Qiao, Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem Chemical Communications, 2017. 53, 10906-10909.
    [67] L. Trotochaud, S.L. Young, J.K. Ranney, and S.W. Boettcher, Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014. 136, 6744-6753.
    [68] P. He, X.Y. Yu, and X.W. Lou, Carbon-Incorporated Nickel-Cobalt Mixed Metal Phosphide Nanoboxes with Enhanced Electrocatalytic Activity for Oxygen Evolution. Angewandte Chemie International Edition, 2017. 56, 3897-3900.
    [69] Y. Guo, J. Tang, H. Qian, Z. Wang, and Y. Yamauchi, One-Pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co3S4@MoS2 Heterostructures as Efficient Bifunctional Catalysts. Chemistry of Materials, 2017. 29, 5566-5573.
    [70] X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, and Z. Lin, Hierarchical NiCo2O4 Hollow Microcuboids as Bifunctional Electrocatalysts for Overall Water-Splitting. Angewandte Chemie International Edition, 2016. 55, 6290-6294.
    [71] C. Yu, Z. Liu, X. Han, H. Huang, C. Zhao, J. Yang, and J. Qiu, NiCo-layered double hydroxides vertically assembled on carbon fiber papers as binder-free high-active electrocatalysts for water oxidation. Carbon, 2016. 110, 1-7.
    [72] H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, and S. Jin, Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Letters, 2015. 15, 1421-1427.
    [73] 林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, 化學工程學系, 國立臺灣大學,. 2002.
    [74] Bard et al., Electrochemical Methods: Fundamentals and Applications; wiley New York, 1980; Vol. 2.
    [75] 黃昱維, 以合成新型聚醯亞胺-氯離子液體/聚丙烯腈黏著劑抑制鋰硫電池穿梭效應提升電化學穩定度之研究, 化學工程學系, 國立臺灣科技大學,. 2017.
    [76] 王儀婷, 還原石墨烯氧化物和鉬酸銀修飾電極的製備及其應用於電化學感測器、生物感測器和光催化反應, 化學工程與生物科技系, 國立臺北科技大學, 2016.
    [77] https://reurl.cc/VXERXR
    [78] M. Ammar, S. Jiang, and S. Ji, Heteropoly acid encapsulated into zeolite imidazolate framework (ZIF-67) cage as an efficient heterogeneous catalyst for Friedel-Crafts acylation. Journal of Solid State Chemistry, 2016. 233, 303-310.
    [79] Y. Li, J. Liu, C. Chen, X. Zhang, and J. Chen, Preparation of NiCoP Hollow Quasi-Polyhedra and Their Electrocatalytic Properties for Hydrogen Evolution in Alkaline Solution. ACS Applied Materials & Interfaces, 2017. 9, 5982-5991.
    [80] Y. Si, C. Guo, C. Xie, and Z. Xiong, An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials (Basel), 2018. 11.
    [81] A. Roy, H.S. Jadhav, G.M. Thorat, and J.G. Seo, Electrochemical growth of Co(OH)2 nanoflakes on Ni foam for methanol electro-oxidation. New Journal of Chemistry, 2017. 41, 9546-9553.
    [82] D.U. Lee, M.G. Park, H.W. Park, M.H. Seo, X. Wang, and Z. Chen, Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. ChemSusChem, 2015. 8, 3129-3138.
    [83] J. Li, S. Lu, H. Huang, D. Liu, Z. Zhuang, and C. Zhong, ZIF-67 as Continuous Self-Sacrifice Template Derived NiCo2O4/Co,N-CNTs Nanocages as Efficient Bifunctional Electrocatalysts for Rechargeable Zn-Air Batteries. ACS Sustainable Chemistry & Engineering, 2018. 6, 10021-10029.
    [84] X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, and W. Hu, NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017. 31, 541-550.
    [85] T. Ozkaya, A. Baykal, M.S. Toprak, Y. Koseoğlu, and Z. Durmuş, Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization. Journal of Magnetism and Magnetic Materials, 2009. 321, 2145-2149.
    [86] Q. Liu, J. Jin, and J. Zhang, NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. ACS Applied Materials & Interfaces, 2013. 5, 5002-5008.
    [87] M. Wang, Y. Lai, J. Fang, F. Qin, Z. Zhang, J. Li, and K. Zhang, Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catalysis Science & Technology., 2016. 6, 434-437.
    [88] S. Dou, L. Tao, J. Huo, S. Wang, and L. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy & Environmental Science, 2016. 9, 1320-1326.
    [89] B. Chen, R. Li, G. Ma, X. Gou, Y. Zhu, and Y. Xia, Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale, 2015. 7, 20674-20684.
    [90] H.F. Wang, C. Tang, X. Zhu, and Q. Zhang, A ‘point-line-point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016. 4, 3379-3385.
    [91] L. Qian, Z. Lu, T. Xu, X. Wu, Y. Tian, Y. Li, Z. Huo, X. Sun, and X. Duan, Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015. 5. 1500245
    [92] W. Bian, Z. Yang, P. Strasser, and R. Yang, A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. Journal of Power Sources, 2014. 250, 196-203.
    [93] E. Fabbri, M. Nachtegaal, X. Cheng, and T.J. Schmidt, Superior Bifunctional Electrocatalytic Activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ/Carbon Composite Electrodes: Insight into the Local Electronic Structure. Advanced Energy Materials, 2015. 5. 1402033
    [94] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, and Z. Chen, Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochimica Acta, 2012. 69, 295-300.
    [95] G. Du, X. Liu, Y. Zong, T.S. Hor, A. Yu, and Z. Liu, Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries. Nanoscale, 2013. 5, 4657-4661.
    [96] M. Prabu, P. Ramakrishnan, and S. Shanmugam, CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery. Electrochemistry Communications, 2014. 41, 59-63.
    [97] M. Prabu, K. Ketpang, and S. Shanmugam, Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Nanoscale, 2014. 6, 3173-3181.
    [98] Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application. Nano Letters, 2012. 12, 1946-1952.
    [99] K.N. Jung, J.H. Jung, W.B. Im, S. Yoon, K.H. Shin, and J.W. Lee, Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. ACS Applied Materials & Interfaces, 2013. 5, 9902-9907.
    [100] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, F. Fourgeot, Development of a rechargeable zinc-air battery. ECS Transactions., 2010. 28, 25-34
    [101] S.A. Chala, M.C. Tsai, W.N. Su, K.B. Ibrahim, B. Thirumalraj, T.S. Chan, J.F. Lee, H. Dai, and B.J. Hwang, Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Nano, 2020. 14, 1770-1782.
    [102] Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, and B.Y. Xia, 2D Nitrogen‐Doped. Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long‐Life Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2019. 30. 1906081

    無法下載圖示 全文公開日期 2025/08/31 (校內網路)
    全文公開日期 2025/08/31 (校外網路)
    全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE