簡易檢索 / 詳目顯示

研究生: 朱晨維
Chen-Weu Chu
論文名稱: 探討多孔陽極氧化鋁薄膜應用於分離溶液回收之研究
Study on the filter effect of porous AAO film for separate and recycle
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
曾堯宣
Yao-Hsuan Tseng
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 陽極氧化鋁通孔阻障層薄化處理滲透氣化薄膜分離銀奈米線
外文關鍵詞: anodic aluminum oxide, through-hole, barrier layer thinning process, Pervaporation, thin membrane separation, silver nanowires
相關次數: 點閱:198下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討陽極氧化鋁(Anodic Aluminum Oxide, AAO)對於分離方面的研究,在本研究中將分為兩個部分,其一是將阻障層利用蝕刻進行通孔處理,把AAO作為篩網,利用孔徑大小的不同,來分離不同粒徑大小之顆粒,其二是利用薄膜的技術概念,讓AAO作為薄膜,使混合溶液透過未通孔的阻障層,實行擴散作用,利用薄膜兩側壓力差,並進行分離。
    首先進行混合溶液之分離實驗,調配異丙醇與水的比例為7:3作為模擬工業廢水,透過氣相層析儀(Gas chromatography,GC)進行濃度檢測後,將AAO作為分離薄膜,另外研究不同製備參數使阻障層厚度產生變化,浸泡磷酸進行阻障層蝕刻與實施降電壓處理(Barrier layer thinning,BLT),都能使阻障層變薄,讓擴散時間縮短,預期透過阻障層變薄而增加通量,在進行滲透汽化(Pervaporation)實驗,須蒐集容器浸泡至液態氮中,由於分離出來的溶液是呈現氣體狀,因此利用液態氮強制凝結,將分離出來的溶液進行GC檢測濃度,將蒐集容器比較前後重量差異,即可得出薄膜分離的兩大重要數據通量與選擇性。
    陽極氧化鋁(Anodic Aluminum Oxide, AAO)作為過濾薄膜(Filter membrane)的應用,利用不同電解液所製備出AAO,其中含有草酸與磷酸作為電解液,並實行通孔處理,孔洞可以調整100至450nm之間,利用孔洞與顆粒大小差異,來達到快速分離的目的。首先要使用SEM觀測溶液中銀奈米顆粒的粒徑大小,並進行EDS成分分析,才能選擇使用適當的陽極參數來製備過濾膜,分離完的溶液,使用粒徑分析儀來分析溶液過濾前後粒徑大小分布,並使用紫外光 -可見光譜儀 (UV- Visible Spectrometry)分析 ,來討論銀奈米顆粒分離後,銀奈米線對於光吸收度的效果。


    In this study, we investigate the separation of Anodic Aluminum Oxide (AAO), which is divided into two parts. First, the barrier layer is etched with through-hole process, and AAO is used as a filter to separate particles of different sizes by using the difference of pore size. The second is to make use of the film technology concept, so that the mixed solution can be diffused through the barrier layer without through-hole, and the pressure difference between the two sides of the film can be used to separate the particles.
    Firstly, the separation experiment of the mixed solution was carried out by mixing isopropyl alcohol to water in the ratio of 7:3 to simulate industrial wastewater, and the concentration of AAO was measured by gas chromatography (GC), and then the separation film was used. In addition, the barrier layer thickness was changed by different preparation parameters, and the barrier layer etching by dipping in phosphoric acid and the barrier layer thinning (BLT) treatment could make the barrier layer thinner and shorten the diffusion time. Since the separated solution is in the form of a gas, liquid nitrogen is used to force condensation, and the separated solution is tested for concentration by GC, and the two important data of flux and selectivity of thin film separation can be obtained by comparing the weight difference between the collected containers.
    Anodic Aluminum Oxide (AAO) is used as a filter membrane. AAO is prepared by using different electrolytic solutions, which contain oxalic acid and phosphoric acid as the electrolyte, and through-hole treatment is performed. to achieve the purpose of rapid separation. Firstly, the size of silver nanoparticles in the solution should be observed by SEM and analyzed by EDS composition before selecting the appropriate anode parameters for the preparation of the filter membrane. The effect of silver nanoparticles on light absorption after separation of silver nanoparticles was discussed by UV-visible spectrometry.

    目錄 致謝 I 中文摘要 II Abstract III 目錄 V 表目錄 XI 第一章 前言 1 第二章 文獻回顧 3 2.1 陽極氧化鋁 3 2.1.1 陽極氧化鋁之發展 3 2.1.2 電解拋光機制 3 2.1.3 陽極氧化鋁生長機制 6 2.1.4陽極氧化參數 9 2.1.5通孔與擴孔處理 15 2.2過濾應用 17 2.2.1 空氣中懸浮微粒 18 2.2.2 滲透氣化 18 2.3 銀奈米線 20 2.4 文獻總結回顧 22 VI 第三章 第三章 實驗工作實驗工作 ...................................................................................................................................................................................................................... 23 3.1 實驗流程實驗流程 .................................................................................................................................................................................................................... 23 3.1.1 陽極氧化鋁薄膜之製備陽極氧化鋁薄膜之製備 ................................................................................................................................................ 23 3.1.2進行混合溶液分離過程進行混合溶液分離過程 .................................................................................................................................................. 30 3.1.3 進行顆粒分離過程進行顆粒分離過程 ................................................................................................................................................................ 33 3.1.4 實驗設備實驗設備 .............................................................................................................................................................................................. 35 3.2 分析儀器分析儀器 .................................................................................................................................................................................................................... 36 3.2.1 場發射掃描式電子顯微鏡場發射掃描式電子顯微鏡 ........................................................................................................................................ 36 3.2.2 能量色散能量色散X射線光譜射線光譜 ...................................................................................................................................................... 37 3.2.3 紫外光紫外光-可見光譜儀可見光譜儀 .............................................................................................................................................................. 38 3.2.4 雷射界面電位分析儀暨粒徑雷射界面電位分析儀暨粒徑分析儀分析儀 ............................................................................................ 39 第四章 第四章 成果與結論成果與結論................................................................................................................................................................................................................ 40 4.1陽極氧化鋁膜微結構陽極氧化鋁膜微結構 ................................................................................................................................................................................ 40 4.2 混合溶液分離混合溶液分離 ...................................................................................................................................................................................................... 44 4.3 銀奈米線初始溶液銀奈米線初始溶液 ...................................................................................................................................................................................... 46 4.4 溶液分離分析結果溶液分離分析結果 ...................................................................................................................................................................................... 47 4.4.1 成分分析成分分析 .............................................................................................................................................................................................. 49 4.4.2 光學特性分析光學特性分析 ................................................................................................................................................................................ 49 4.4.3 粒徑分析粒徑分析 .............................................................................................................................................................................................. 51 VII 第五章 第五章 未來展望未來展望 ...................................................................................................................................................................................................................... 53 5.1 結論結論 .................................................................................................................................................................................................................................... 53 5.2 未來展望未來展望 ............................................................................................................................................................................................................ 53 第六章 第六章 參考文獻參考文獻 ...................................................................................................................................................................................................................... 54

    第六章
    參考文獻
    [1] Kuo. C.Y,Liu. H.H "Natural Nanoporous Filter Material as a New High-Efficiency Natural Adsorbent to Remove Textile Dyes" Proceedings of Engineering and Technology Innovation, vol. 15, 2020, pp. 16 - 23
    [2] Kragović M, Daković A, Sekulić Ž, Trgo M, Ugrina M, Perić J, et al., "Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite," Applied Surface Science, V. 258, No. 8. 2012, pp. 3667-73.
    [3] Tahir SS, Rauf N, "Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay," Chemosphere, V. 63, No. 11, Jun. 2006, pp. 1842-8.
    [4] Mishra M, Arukha AP, Bashir T, Yadav D, Prasad G, "All New Faces of Diatoms: Potential Source of Nanomaterials and Beyond," Front Microbiol, V. 8. 2017, pp. 1239.
    [5] Raval NP, Shah PU, Shah NK, "Adsorptive removal of nickel(II) ions from aqueous environment: A review," J Environ Manage, V. 179, Sep 1. 2016, pp. 1-20.
    [6] Akpomie KG, Dawodu FA, "Acid-modified montmorillonite for sorption of heavy metals from automobile effluent," Beni-Suef University Journal of Basic and Applied Sciences, V. 5, No. 1. 2016, pp. 1-12.
    [7] Lv D, Liu Y, Zhou J, Yang K, Lou Z, Baig SA, et al., "Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions," Applied Surface Science, V. 428. 2018, pp. 648-58.
    [8] F.Li, L. Zhang, R.M. Metzger"On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide"Chem. Mater. 1998, 10, 2470-2480
    [9] Lee T, "Removal of Heavy Metals in Storm Water Runoff Using Porous Vermiculite Expanded by Microwave Preparation," Water, Air, & Soil Pollution, V. 223, No. 6. 2012, pp. 3399-408.
    55
    [10] M.NIWA, H.OHYA, Y.TANAKA, N.YOSHIKAWA, K.MATSUMOTO , Y.NEGISHI"SEPARATION OF GASEOUS MIXTURES OF CO2 AND CH4 USING A COMPOSITE MICROPOROUS GLASS MEMBRANE ON CERAMIC TUBING"Journal of Membrane Science, 39 (1988) 301-314
    [11] Ateş S, Baran E, Yazıcı B, "The nanoporous anodic alumina oxide formed by two-step anodization," Thin Solid Films, V. 648. 2018, pp. 94-102.
    [12] Jana NR, Gearheart L, Murphy CJ, "Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio," Chemical Communications, No. 7. 2001, pp. 617-8.
    [13] Jiang X, Xie Y, Lu J, Zhu L, He W, Qian Y, "Oleate vesicle template route to silver nanowires," Journal of Materials Chemistry, V. 11, No. 7. 2001, pp. 1775-7.
    [14] Zheng X-J, Jiang Z-Y, Xie Z-X, Zhang S-H, Mao B-W, Zheng L-S, "Growth of silver nanowires by an unconventional electrodeposition without template," Electrochemistry Communications, V. 9, No. 4. 2007, pp. 629-32.
    [15] Liu W, Wang K, Zhou Y, Guan X, Che P, Han Y, "Rational synthesis of silver nanowires at an electrode interface by diffusion limitation," CrystEngComm, V. 21, No. 9. 2019, pp. 1466-73.
    [16] Ćwik M, Buczyńska D, Sulowska K, Roźniecka E, Mackowski S, Niedziółka-Jönsson J, "Optical Properties of Submillimeter Silver Nanowires Synthesized Using the Hydrothermal Method," Materials, V. 12, No. 5. 2019.
    [17] Tetsumoto T, Gotoh Y, Ishiwatari T, "Mechanistic studies on the formation of silver nanowires by a hydrothermal method," J Colloid Interface Sci, V. 362, No. 2, Oct 15. 2011, pp. 267-73.
    [18] Liu L, He C, Li J, Guo J, Yang D, Wei J, "Green synthesis of silver nanowires via ultraviolet irradiation catalyzed by phosphomolybdic acid and their antibacterial
    56
    properties," New Journal of Chemistry, V. 37, No. 7. 2013.
    [19] Zhou. B.Y ,Yu .S.H, Wang .C.Y, Xiao G. L, Zhu. Y.R, Chen.Z.Y"A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites" Adv. Mater. 1999, 11, No. 10
    [20] Zhao C, Deng B, Chen G, Lei B, Hua H, Peng H, et al. "Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating," Nano Research, V. 9, No. 4. 2016, pp. 963-73.
    [21] Choi. J, Sauer. G, Nielsch. K, Ralf B. Wehrspohn, Go¨sele.U "Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio"Chem. Mater. 2003, 15, 776-779
    [22] Riveros G, Green S, Cortes A, Gómez H, Marotti RE, Dalchiele EA, "Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates," Nanotechnology, V. 17, No. 2. 2006, pp. 561-70.
    [23] Coskun S, Aksoy B, Unalan HE "Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study," Crystal Growth & Design, V. 11, No. 11. 2011, pp. 4963-9.
    [24] Singh GK, Golovin AA, Aranson IS, "Formation of self-organized nanoscale porous structures in anodic aluminum oxide," Physical Review B, V. 73, No. 20. 2006.
    [25] Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T, "Highly ordered nanochannel-array architecture in anodic alumina," Applied Physics Letters, V. 71, No. 19. 1997, pp. 2770-2.
    [26] H. Adelkhani, S. Nasoodi, A. H. Jafari"A study of the Morphology and Optical Properties of Electropolished Aluminum in the Vis-IR region" Int. J. Electrochem. Sci., 4 (2009) 238 - 246
    [27] T. S. HAHN , A. R. MARDER "Effect of Electropolishing Variables on the Current Density-Voltage Relationship" METALLOGRAPH Y 21: 365 -375 (1988)
    57
    [28] M. H. RAHIMI, S. H. TABAIAN, S. P. HOVEYDA MARASHI , M. AMIRI , M. M. DALALY "THE EFFECT OF ALUMINUM ELECTROPOLISHING ON NANO-PORES ARRANGEMENT IN ANODIC ALUMINA MEMBRANES"International Journal of Modern Physics B Vol. 22, Nos. 18 & 19 (2008) 3267-3277
    [29] K.ITAYA, S.SUGAWARA, K.ARAI, S.SAITO "PROPERTIES OF POROUS ANODIC ALUMINUM OXIDE FILMS AS MEMBRANES" JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, VOL. 17 NO. 5 1984 ,pp. 514-520
    [30] Liao J, Ling Z, Li Y, Hu X, "The Role of Stress in the Self-Organized Growth of Porous Anodic Alumina," ACS Appl Mater Interfaces, V. 8, No. 12, Mar. 2016, pp. 8017-23.
    [31] Poinern GEJ, Ali N, Fawcett D, "Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development," Materials (Basel), V. 4, No. 3, Feb 25. 2011, pp. 487-526.
    [32] Michalska-Domańska M, Norek M, Stępniowski WJ, Budner B, "Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum—A comparative study with the AAO produced on high purity aluminum," Electrochimica Acta, V. 105. 2013, pp. 424-32.
    [33] Li AP, Müller F, Birner A, Nielsch K, Gösele U, "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics, V. 84, No. 11. 1998, pp. 6023-6.
    [34] Chung C-K, Liu TY, Chang WT, "Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature," Microsystem Technologies, V. 16, No. 8-9. 2009, pp. 1451-6.
    [35] Kashi MA, Ramazani A, "The effect of temperature and concentration on the self-organized pore formation in anodic alumina" Journal of Physics D: Applied Physics, V. 38, No. 14. 2005, pp. 2396-9.
    [36] Marcus P and Oudar J 1995 Corrosion Mechanism in Theory and Practice (New York:
    58
    Dekker) p 125
    [37] S.Shingubara, O.Okino, Y.Sayama, H.S.H.Sakaue and T.T.T.Takahagi "Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum" The Japan Society of Applied Physics Japanese Journal of Applied Physics, Volume 36, Number 12S
    [38] Cui J, Wu Y, Wang Y, Zheng H, Xu G, Zhang X, "A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes," Applied Surface Science, V. 258, No. 14. 2012, pp. 5305-11.
    [39] Zhang S, Wang Y, Tan Y, Zhu J, Liu K, Zhu J, "Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering," Materials Research Express, V. 3, No. 7. 2016.
    [40] Xianshe Feng , Robert Y. M. Huang"Liquid Separation by Membrane Pervaporation: A Review" Ind. Eng. Chem. Res. 1997, 36, 1048-1066
    [41] Lecaros RLG, Chua KY, Tayo LL, Hung W-S, Hu C-C, An Q-F, et al., "The fine-structure characteristics and isopropanol/water dehydration through pervaporation composite membranes improved with graphene quantum dots," Separation and Purification Technology, V. 247. 2020.
    [42] Saedi A, Ghorbani M, "Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template," Materials Chemistry and Physics, V. 91, No. 2-3. 2005, pp. 417-23.

    QR CODE