簡易檢索 / 詳目顯示

研究生: 王瑋婷
Wei-Ting Wang
論文名稱: 混成薄膜太陽能電池之電極緩衝層及主動層研究
Investigation of the Electrode Buffer Layers and Active Layers of Hybrid Solar Cells
指導教授: 戴龑
Yian Tai
口試委員: 吳春桂
Chun-Guey Wu
郭宗枋
Tzung-Fang Guo
陳家浩
Chia-Hao Chen
黃柏仁
Bohr-Ran Huang
何國川
Kuo-Chuan Ho
楊重光
Chung-Kuang Yang
王立義
Lee-Yih Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 165
中文關鍵詞: 有機太陽能電池鈣鈦礦太陽能電池高分子結構及形態溶劑工程成分工程
外文關鍵詞: Organic solar cells, Perovskite solar cells, Polymer structure and configuration, Solvent engineering, Composition engineering
相關次數: 點閱:246下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發新型有機半導體材料及元件製程方法,以擴展混成薄膜太陽能電池緩衝層的通用性及提升大氣製程下鈣鈦礦元件的光電轉換效率與再現性。
    首先,研究一種奈米技術以調整水/醇可溶的共軛高分子自組裝形態,並鑒定了該高分子自組裝形態及量測其電性,主要包括:利用高解析穿透式電子顯微鏡(HRTEM)證明自組裝奈米球的形成、透過水接觸角(Water Contact Angle)證明奈米球具有兩種完全不同的親疏水組成、利用紫外光能譜儀(UPS)推論奈米球可透過奈米技術配置以調整電極功函數及使用空間電荷限制電流(SCLC)量測奈米球的載子傳輸特性。依據奈米球的電性表徵結果,分別將其應用於有機太陽能電池、有機發光二級體及鈣鈦礦太陽能電池的陰陽極緩衝層。其元件數據結果與傳統電極緩衝層相似甚至有更高的光電轉換效率,進而證明該材料具有廣泛應用性。
    基於上述太陽能元件研究結果,光電轉換效率除了受到電極緩衝層影響外,主動層材料的種類也是至關重要的。對於以鈣鈦礦材料為主動層的太陽能元件,其製程易受環境(濕氣)影響,進而造成元件效率及再現性不佳。因此本論文亦針對碘化鉛及鈣鈦礦薄膜在大氣環境下塗佈的形成機制、薄膜形態以及結晶性質進行深入研究與探討,並成功開發了新型溶劑工程與成分工程方法以提升碘化鉛及鈣鈦礦薄膜的品質。具體地,在溶劑工程中,乾燥的異丙醇溶劑塗佈於碘化鉛薄膜表面,可提升其表面平整性、降低其結晶度;另一方面,利用成分工程方法,將氧化鋅奈米粒子摻雜於碘化鉛前驅溶液中,可得到無孔洞的薄膜。結果顯示,兩種新型方法均利於高品質鈣鈦礦薄膜的轉化,大幅提升鈣鈦礦太陽能元件效率。為了驗證這兩種方法的通用性,本論文進一步將其應用於不同基材及元件結構上,結果顯示元件效率得到大幅提升,最高達到18 %以上。
    上述所提及之研究內容,已完成並發表於Energy Environ. Sci. 11 (2018) 682-691; Nano Energy 49 (2018) 109-116; ACS Appl. Mater. Interfaces 9 (2017) 10743-10751.


    The present thesis aims to develop novel organic semiconductors and processes of device fabrication for extending the universality of electrode buffer layers in hybrid solar cells and enhancing the photon-to-electron conversion efficiency of fully ambient-processed perovskite solar cells with high reproducibility.
    First, we utilized a nanotechnology to adjust the self-assemblies of the water/alcohol-soluble conjugated polymers, and characterized their morphologies and electronic properties, including i) high-resolution transmission electron microscopy (HRTEM) to prove the self-assemblies of nanospheres, ii) water contact angle (CA) to illustrate the surface hydrophilicities of nanospheres, iii) ultraviolet photoelectron spectrometer (UPS) to demonstrate the tunability of electrode work function and iv) space-charge-limited current (SCLC) to measure the charge carrier mobilities of nanospheres. According to the electronic properties of nanospheres, we used them as both cathode and anode buffer layers of organic solar cells, organic light-emitting diodes and perovskite solar cells, which exhibited comparable and even exceeding performance to the devices using traditional buffer layers, indicative of their universality.
    In terms of these organic and perovskite solar cells, we find that not only the electrode buffer layers strongly influence the device performance, but also the active layer materials are crucial to enhance the power conversion efficiency (PCE). For instance, the fabrication processes of perovskite solar cells are vulnerable to humidity and consequently their performance and reproducibility are not controllable. Therefore, in the present thesis, we further investigated the formation mechanism, film morphology and crystallinity of fully ambient-processed lead iodide and perovskite films. Afterward, we successfully developed promising solvent and composition engineering techniques to enhance the qualities of lead iodide and perovskite films. In particular, the solvent engineering technique treated lead iodide film surface with dry isopropanol, which increased its flatness and reduced its crystallinity; on the other hand, the composition engineering technique doped zinc oxide nanoparticles into the lead iodide precursor and obtained a pinhole-free film. The results indicate that both of the techniques are benefit for the transformation of perovskite and remarkably enhance the solar cell performance. Moreover, the versatility of two techniques was illustrated by fabricating various devices with different substrates and architectures. And the significantly improved device performance revealed a best PCE over 18%.
    The above mentioned studies have been finished and published in Energy Environ. Sci. 11 (2018) 682-691; Nano Energy 49 (2018) 109-116; ACS Appl. Mater. Interfaces 9 (2017) 10743-10751.

    中文摘要 IV Abstract VI Acknowledgement VIII Table of Contents IX List of Abbreviations XII List of Figures XV List of Tables XXI Chapter 1 Introduction and Literature Review 1 1.1 Global Energy Demend and Solar Energy 1 1.2 Air Mass and Solar Energy Distribution 3 1.2.1 Air Mass 3 1.2.2 Solar Energy Distribution 6 1.3 Potentiality of Photovoltaic Cells 6 1.4 Properties and Process in Organic and Organic-Inorganic Hybrid Photovaltaic Cells 8 1.4.1 n-Type and p-Type Organic Materials 8 1.4.1.1 Fermi-Level 9 1.4.1.2 Polymer Blending 10 1.4.1.3 Conjugated Polymers 12 1.4.1.4 Fullerene and Non-Fullerene Acceptors 13 1.4.1.5 Exciton Creation and Transport in Polymer 14 1.4.1.6 Transport of Charge and Hopping in Polymer 16 1.4.1.7 Free Charge Carrier Collection 16 1.4.2 Charge Generation and Transport in Organic and Orgniac-Inorganic Hybrid Photovoltaic Cells 18 1.4.2.1 Absoption of Photons 20 1.4.2.2 Exciton Diffusion 20 1.4.2.3 Charge Seperation 21 1.4.2.4 Charge Transport 22 1.4.2.5 Charge Collection 22 1.4.2.6 The Donor/Acceptor Interface 23 1.4.2.7 Schottky Barrier 24 1.4.2.8 Ohmic Contact 27 1.5 Determination of Photovoltaic Cell and Organic Light-Emitting Diode Efficiencies 28 1.5.1 Determination of Photovoltaic Cell 28 1.5.2 Determination of Organic Light-Emitting Diode Effieiencies 32 Chapter 2 Motivations for the Research 33 2.1 Current Trends of Photovoltaic Cells 33 2.1.1 Organic Photovoltaic Cells 34 2.1.2 Organic-Inorganic Hybrid Photovoltaic Cells 34 2.2 Motivation 35 Chapter 3 Experimental Section 38 3.1 Materials 38 3.2 Electrode Buffer Layers: Solution-Processed Organic and Perovskite Photovoltaic Cells 39 3.2.1 Synthesis and Characterization of Polymer 39 3.2.2 Preparation of A- and C-PDTON Solution 40 3.2.3 Device Fabrication 41 3.2.4 Film and Device Characterization 44 3.3 Active Layer: Fully Ambient-Processed Perovskite Photovoltaic Cells 46 3.3.1 Synthesis of CH3NH3I 46 3.3.2 Preparation of Sol-Gel ZnO and SnO2 Precursor Solutions 46 3.3.3 Synthesis of ZnO Nanoparticles 47 3.3.4 Device Fabrication for Solvent Engineering of Lead Iodide Thin Film— Fully Ambient-Processed Perovskite Film for Perovskite Solar Cells: Effect of Solvent Polarity on Lead Iodide 47 3.3.5 Device Fabrication for Composition Engineering of Lead Iodide Thin Film— Nanoparticle-Induced Fast Nucleation of Pinhole-Free PbI2 Film for Ambient-Processed Highly-Efficient Perovskite Solar Cell 48 3.3.6 Zinc Oxide Nanoparticle Characterization 49 3.3.7 Thin Film Characterization 49 3.3.8 Device Characterization 50 Chapter 4 Results and Discussion 52 4.1 Electrode Buffer Layers: Solution-Processed Organic and Perovskite Photovoltaic Cells 53 4.1.1 Solution-Processed Cathode Buffer Layers 53 4.1.1.1 Work Functions of PTFCN, PTFNN and PDTON Modified ITO 54 4.1.1.2 Organic Solar Cells Based on PTFCN, PTFNN and PDTON 55 4.1.2 Universal Electrode Buffer Layer Materials 56 4.1.2.1 PDTON Self-Assembly: A- and C-PDTON Nanospheres 59 4.1.2.2 Hole and Electron Mobility of PDTON 61 4.1.2.3 Organic Solar Cells Based on A- and C-PDTON 63 4.1.2.4 Organic Light-Emitting Diodes Based on A- and C-PDTON 65 4.1.2.5 Work Functions of PDTON Modified ITO for Perovskite Solar Cells 67 4.1.2.6 Mechanism 73 4.2 Active Layer: Fully Ambient-Processed Perovskite Photovoltaic Cells 75 4.2.1 Solvent Engineering of Lead Iodide Thin Film— Fully Ambient-Processed Perovskite Film for Perovskite Solar Cells: Effect of Solvent Polarity on Lead Iodide 77 4.2.1.1 Solvent Effect Based on Polarity Derivation 77 4.2.1.2 Significance of Utilizing Extra Dry IPA 83 4.2.1.3 Device Performance and Process Stability Analysis 85 4.2.1.4 Versatility of IPA100 Treatment for Inverted and Flexible Device Structures 89 4.2.1.5 Mechanism of Solvent-Engineering 95 4.2.2 Composition Engineering of Lead Iodide Thin Film— Nanoparticle-Induced Fast Nucleation of Pinhole-Free PbI2 Film for Ambient-Processed Highly-Efficient Perovskite Solar Cell 99 4.2.2.1 The Characteristics of Zinc Oxide Nanoparticles 99 4.2.2.2 The Morphology of PbI2 Thin Films 105 4.2.2.3 Morphology, Crystallinity and Electronic Properties of Perovskite Films 108 4.2.2.4 Nucleation Mechanism 115 4.2.2.5 Versatility of NIFN Approach in Fully Ambient-Processed Perovskite Solar Cells 119 4.2.2.6 Deep Insights into the Mechanism behind the Phenomena 123 Chapter 5 Conclusions and Outlook 127 References 129

    1. S. B. Darling, F. You, The case for organic photovoltaics, RSC Adv. 3 (2013) 17633-17648.
    2. Fossil fuels. https://www.lenntech.com/greenhouse-effect/fossil-fuels.htm, 2018.
    3. U.S. Energy Information Administration, Monthly Energy Review, March 2015. https://www.eia.gov/totalenergy/data/monthly/archive/00351503.pdf.
    4. W. Shockley, H. J. Quelsser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (1961) 510.
    5. C. Brabec, U. Scherf, V. Dyakonov, Organic photovoltaics: materials, device physics, and manufacturing technologies, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2014.
    6. N. S. Sariciftci, L. Smllowltz, A. J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science 258 (1992) 1474-1476.
    7. N. Camamaioni, G. Gldolfi, G. C. Micell, G. Possamai, The effect of a mild thermal treatment on the performance of poly(3-alkylthiophene)/fullerene solar cells, Adv. Mater. 14 (2002) 1735-1738.
    8. J. Du, L. Huang, Q. Min, L. Zhu, The influence of water vapor absorption in the 290-350 nm region on solar radiance: Laboratory studies and model simulation, Geophys. Res. Lett. 40 (2013) 4788-4792.
    9. J. C. Gautier, P. Ricchiazzi, Y. Fouquart, Longwave scattering effects of mineral aerosols, J. Atmos. Sci. 59 (2002) 1959-1966.
    10. T. K. Ghosh, M. A. Prelas, Energy resources and systems, Springer, New York, 2011.
    11. G. Wang, Technology, Manufacturing and grid connection of photovoltaic solar cells. John Wiley & Sons, 2018.
    12. A. T. Mecherikunnel, J. A. Gatlin, J. C. Richmond, Data on total and spectral solar irradiance, Appl. Opt. 22 (1983) 1354.
    13. C. A. Gueymard, D. Myers, K. Emery, Proposed reference irradiance spectra for solar energy systems testing, Sol. Energy 73 (2002) 443-467.
    14. E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, K.-H. Kime, Solar energy: potential and future prospects, Renew Sust. Energ. Rev. 82 (2018) 894-900.
    15. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies, Renew Sust. Energ. Rev. 15 (2011) 1625-1636.
    16. X. Che, Y. Li, Y. Qu and S. R. Forrest, High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15% efficiency, Nat. Energy 3 (2018) 422-427.
    17. T. R. Andersen, T. T. Larsen-Olsen, B. Andreasen, A. P. L. Böttiger, J. E. Carlé, M. Helgesen, E. Bundgaard, K. Norrman, J. W. Andreasen, M. Jørgensen, F. C. Krebs, Aqueous processing of low-band-gap polymer solar cells using roll-to-roll methods, ACS Nano 5 (2011) 4188-4196.
    18. S. Lu, J. Lin, K. Liu, S. Yue, K. Ren, F. Tan, Z. Wang, P. Jin, S. Qu, Z. Wang, Large area flexible polymer solar cells with high efficiency enabled by imprinted Ag grid and modified buffer layer, Acta Mater. 130 (2017) 208-214.
    19. C. Ballif, L.-E. Perret-Aebi, S. Lufkin, E. Rey, Integrated thinking for photovoltaics in buildings, Nat. Energy 3 (2018) 438-442.
    20. BIPV Technologies and Markets: 2017-2026 (n-tech Research, 2017) https://www.ntechresearch.com/market-reports/buildingintegrated-photovoltaics-reports-2017-2024/, 2017.
    21. W. C. H. Choy, Organic solar cells: materials and device physics, Springer-Verlag, London, 2013.
    22. N. K. Pathak, A. Ji, R. P. Sharma, Study of efficiency enhancement in layered geometry of excitonic-plasmonic solar cell, Appl. Phys. A 115 (2014) 1445-1450.
    23. S.-S. Sun, N. S. Sariciftci, Organic photovoltaics: mechanisms, materials, and devices, CRC Press, 2005.
    24. Y. Tamai, H. Ohkita, H. Benten, S. Ito, Exciton diffusion in conjugated polymers: from fundamental understanding to improvement in photovoltaic conversion efficiency, J. Phys. Chem. Lett. 6 (2015) 3417-3428.
    25. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, Molecular optimization enables over 13% efficiency in organic solar cells, J. Am. Chem. Soc. 139 (2017) 7148-7151.
    26. D. I. Klaus Petritsch, Organic solar cells architectures, PhD Thesis, Technisch-Naturwissenschaftliche Fakultät der Technische Universität Graz , Austria, 2000.
    27. H. J. Lewerenz, H. Jungblut, Photovoltaic-grundlagen und anwendungen. Springer-Verlag, Berlin Heidelberg, 1995.
    28. M. A. Green, Silicon solar cells: advanced principles and practice, University of New South Wales, Sydney, 1995.
    29. S. Günes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107 (2007) 1324-1338.
    30. G, Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science 270 (1995) 1789-1791.
    31. X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, Y. Li, High efficiency polymer solar cells based on poly(3-hexylthiophene)/ indene-C70 bisadduct with solvent additive, Energy Environ. Sci. 5 (2012) 7943-7949.
    32. G. Dennler, M. C. Scharber, C. J. Brabec, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater. 21 (2009) 1323-1338.
    33. Q. T. Zhang, J. M. Tour, Alternating donor/acceptor repeat units in polythiophenes. intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers, J. Am. Chem. Soc. 120 (1998) 5355-5362.
    34. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure, Nat. Photon. 6 (2012) 591-595.
    35. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, Y. Cao, Single-junction polymer solar cells with high efficiency and photovoltage, Nat. Photon. 9 (2015) 174-179.
    36. B. Carsten, J. M. Szarko, H. J. Son, W. Wang, L. Lu, F. He, B. S. Rolczynski, S. J. Lou, L. X. Chen, L. Yu, Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications, J. Am. Chem. Soc. 133 (2011) 20468-20475.
    37. Y.-X. Xu, C.-C. Chueh, H.-L. Yip, F.-Z. Ding, Y.-X. Li, C.-Z. Li, X. Li, W.-C. Chen, A. K. Y. Jen, Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells, Adv. Mater. 24 (2012) 6356-6361.
    38. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nat. Commun. 5 (2014) 5293.
    39. D. Meng, D. Sun, C. Zhong, T. Liu, B. Fan, L. Huo, Y. Li, W. Jiang, H. Choi, T. Kim, J. Y. Kim, Y. Sun, Z. Wang, A. J. Heeger, High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor, J. Am. Chem. Soc. 138 (2016) 375-380.
    40. J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, H. Yan, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy 1 (2016) 16089.
    41. B. Fan, L. Ying, Z. Wang, B. He, X.-F. Jiang, F. Huang, Y. Cao, Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9%, Energy Environ. Sci. 10 (2017) 1243-1251.
    42. W. Wang, C. Yan, T.‐K. Lau, J. Wang, K. Liu, Y. Fan, X. Lu, X. Zhan, Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency, Adv. Mater. 29 (2017) 1701308.
    43. H. Bin, L. Gao, Z.-G. Zhang, Y. Yang, Y. Zhang, C. Zhang, S. Chen, L. Xue, C. Yang, M. Xiao, Y. Li, 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7 (2016) 13651.
    44. F. Liu, Z. Zhou, C. Zhang, T. Vergote, H. Fan, F. Liu, X. Zhu, A thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J. Am. Chem. Soc. 138 (2016) 15523-15526.
    45. S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Energy-level modulation of small‐molecule electron acceptors to achieve over 12% efficiency in polymer solar cells, Adv. Mater. 28 (2016) 9423-9429.
    46. H. Bässler, A. Köhler, Charge transport in organic semiconductors, Top. Curr. Chem. 312 (2012) 1-65.
    47. J. Zhang, H. S. Tan, X. Guo, A. Facchetti, H. Yan, Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors, Nat. Energy 2018 DOI: 10.1038/s41560-018-0181-5.
    48. H. Movla, A. M. Rafi, N. M. Rafi, A Model for Studying the Performance of P3HT:PCBM Organic Bulk Heterojunction Solar Cells. Optik 126 (2015) 1429–1432.
    49. M. Stephen, K. Genevicius, G. Juška, K. Arlauskas, R. C. Hiorns, Charge transport and its characterization using photo‐CELIV in bulk heterojunction solar cells, Polym. Int. 66 (2017) 13-25.
    50. K.-S. Liao, S. D. Yambem, A. Haldar, N. J. Alley, S. A. Curran, Designs and architectures for the next generation of organic solar cells, Energies 3 (2010) 1212-1250.
    51. T. Kirchartz, J. Nelson, Device Modelling of Organic Bulk Heterojunction Solar Cells. Top. Curr. Chem. Springer Heidelberg 2013.
    52. F. Laquai, D. Andrienko, C. Deibel, D. Neher, Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells. Springer Switzerland 2017.
    53. Q. Zhang, W.-T. Wang, C.-Y. Chi, T. Wächter, J.-W. Chen, C.-Y. Tsai, Y.-C. Huang, M. Zharnikov, Y. Tai, D.-J. Liaw, Toward a universal polymeric material for electrode buffer layers in organic and perovskite solar cells and organic light-emitting diodes. Energy Environ. Sci. 11 (2018) 682-691.
    54. C. G. Tang, M. C. Y. Ang, K.-K. Choo, V. Keerthi, J.-K. Tan, M. N. Syafiqah, T. Kugler, J. H. Burroughes, R.-Q. Png, L.-L. Chua, P. K. H. Ho, Doped polymer semiconductors with ultrahigh and ultralow work functions for ohmic contacts, Nature 539 (2016) 536-540.
    55. S. Tiwari, T. Tiwari, S. A. Carter, J. C. Scott, J. V. Yakhmi, Advances in polymer-based photovoltaic cells: review of pioneering materials, design, and device physics. Springer International Publishing, 2018.
    56. N. Bansal, L. X. Reynolds, A. MacLachlan, T. Lutz, R. S. Ashraf, W. Zhang, C. B. Nielsen, I. McCulloch, D. G. Rebois, T. Kirchartz, M. S. Hill, K. C. Molloy, J. Nelson, S. A. Haque, Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci. Rep. 3 (2013) 1531.
    57. J.-C. Blancon, W. Nie, A. J. Neukirch, G. Gupta, S. Tretiak, L. Cognet, A. D. Mohite, J. J. Crochet, The effects of electronic impurities and electron-hole recombination dynamics on large‐grain organic-inorganic perovskite photovoltaic efficiencies, Adv. Funct. Mater. 26 (2016) 4283-4292.
    58. M. Zhang, H. Yu, M. Lyu, Q. Wang, J.-H. Yun, L. Wang, Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3-xClx films, Chem. Commun. 50 (2014) 11727-11730.
    59. V. Roiati, S. Colella, G. Lerario, L. D. Marco, A. Rizzo, A. Listorti, G. Gigliade, Tuning the light emission properties by band gap Engineering in hybrid lead halide perovskite, Energy Environ. Sci. 7 (2014) 1889-1894.
    60. J. Bisquert, G. Garcia-Belmonte, A. Munar, M. Sessolo, A. Soriano, H. J. Bolink. Band unpinning and photovoltaic model for P3HT:PCBM organic bulk heterojunctions under illumination, Chem. Phys. Lett. 465 (2008) 57-62.
    61. Z. Tang, W. Tress, O. Inganäs, Light trapping in thin film organic solar cells, Mater. Today 17 (2014) 389-396.
    62. O. V. Mikhnenko, P. W. M. Blom, T.-Q. Nguyen, Exciton diffusion in organic semiconductors, Energy Environ. Sci. 8 (2015) 1867-1888.
    63. V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Muellen, B. R. Hsieh, C. W. Tang, Dramatic PL quenching of PPV oligomer thin films upon submono- layer Ca deposition, Appl. Phys. Lett. 69 (1996) 1492-1494.
    64. A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49 (1978) 5982-5989.
    65. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, A. B. Holmes, Exciton diffusion and dissociation in a PPV/C60 heterojunction photovoltaic cell, Appl. Phys. Lett. 68 (1996) 3120-3122.
    66. J. J. M. Halls, R. H. Friend, The photovoltaic effect in a PPV/perylene heterojunction, Synth. Met. 85 (1996) 1307-1308.
    67. K. Y. Law, Organic photoconductive materials: recent trends and developments, Chem. Rev. 93 (1993) 449-486.
    68. G. W. P. Adhyaksa, L. W. Veldhuizen, Y. Kuang, S. Brittman, R. E. I. Schropp, E. C. Garnett, Carrier diffusion lengths in hybrid perovskites: processing, composition, aging, and surface passivation effects, Chem. Mater. 28 (2016) 5259-5263.
    69. C. Tanase, E. J. Meijer, P.W. M. Blom, D. M. de Leeuw, Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes, Phys. Rev. Lett. 91 (2003) 216601.
    70. C. Tanase, P. W. M. Blom, D. M. de Leeuw, Origin of the enhanced space-charge-limited current in poly(p-phenylene vinylene), Phys. Rev. B 70 (2004) 193202.
    71. C. Zhan, X. Zhang, J. Yao, New advances in non-fullerene acceptor based organic solar cells, RSC Adv. 5 (2015) 93002.
    72. N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review, Adv. Mater. 21 (2009) 2741-2761.
    73. W. Tress, Modelling organic solar cells: theory, experiment, and device simulation, Springer International Publishing AG, 2015.
    74. L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Recent advances in bulk heterojunction polymer solar cells, Chem. Rev. 115 (2015) 12666-12731.
    75. N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Efficient light emitting diodes based on polymers with high electron affinities, Nature 365 (1993) 628.
    76. J. B. Whitlock, P. Panayotatos, G. D. Sharma, Investigations of materials and device structures for organic semiconductor solar cells, Opt. Eng. 32 (1993) 1921-1934.
    77. B. V. Zeghbroeck, Principles of semiconductor devices, University of Colorado, 2007.
    78. Ohmic contact (Department of Physics, WARWICK). https://warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpagswarwick/ex5/devices/hetrojunction/ohmic/, 2011.
    79. R. C. Chiechi, R. W. A. Havenith, J. C. Hummelen, L. J. A. Koster, M. A. Loi, Modern plastic solar cells: materials, mechanisms and modeling, Mater. Today 16 (2013) 28-289.
    80. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, On the origin of the open-circuit voltage of polymer-fullerene solar cells, Nat. Mater. 8 (2009) 904-909.
    81. W. Tress, Organic solar cells-theory, experiment, and device simulation, Springer International Publishing, 2014.
    82. C. F. Lin, M. Zhang, S. W. Liu, T. L. Chiu, J. H. Lee, High photoelectric conversion efficiency of metal phthalocyanine/fullerene heterojunction photovoltaic device, Int. J. Mol. Sci. 12 (2011) 476-505.
    83. T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Mater. 2 (2010) 96-102.
    84. Photovoltaic research (National Renewable Energy Laboratory, NREL). https://www.nrel.gov/pv/assets/images/efficiency-chart.png, 2018.
    85. S. I. Seok, M. Grätzel. N.-G. Park, Methodologies toward highly efficient perovskite solar cells, Small 14 (2018) 1704177.
    86. P. Cheng, G. Li, X. Zhan, Y. Yang, Next-generation organic photovoltaics based on non-fullerene acceptors, Nat. Photon. 12 (2018) 131-142.
    87. Y. Chen, X. Wan, G. Long, High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46 (2013) 2645-2655.
    88. H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, J. Hou, Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116 (2016) 7397-7457.
    89. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon. 3 (2009) 649-653.
    90. Y. Liang, Z. Xu, J. Xia, S.‐T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Mater. 22 (2010) 135-138.
    91. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency, Angew. Chem. Int. Ed. 50 (2011) 2995-2998.
    92. J. Zhou, X. Wan, Y. Liu, Y. Zuo, Z. Li, G. He, G. Long, W. Ni, C. Li, X. Su, Y. Chen, Small molecules based on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solution processed organic solar cells, J. Am. Chem. Soc. 134 (2012) 16345-16351.
    93. Y. J. He, H. Y. Chen, J. H. Hou, Y. F. Li, Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells, J. Am. Chem. Soc. 132 (2010) 1377-1382.
    94. W. Chen, Q. Zhang, Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs), J. Mater. Chem. C 5 (2017) 1275-1302.
    95. P. P. Khlyabich, B. Burkhart, B. C. Tompson, Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage, J. Am. Chem. Soc. 133 (2011) 14534-14537.
    96. L. Yang, H. Zhou, S. C. Price, W. You, Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 134 (2012) 5432-5435.
    97. Y. Yang, W. Chen, L. Dou, W.-H. Chang, H.-S. Duan, B. Bob, G. Li, Y. Yang, High-performance multiple-donor bulk heterojunction solar cells, Nat. Photon. 9 (2015) 190-198.
    98. L. Lu, M. A. Kelly, W. You, L. Yu, Status and prospects for ternary organic photovoltaics, Nat. Photon. 9 (2015) 491-500.
    99. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617-1622 (2005).
    100. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat. Mater. 4 (2005) 864-868.
    101. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nat. Mater. 6 (2007) 497-500.
    102. F. Huang, H. B. Wu, Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices, Chem. Soc. Rev. 39 (2010) 2500-2521.
    103. G. Li, C. W. Chu, V. Shrotriya, J. Huang, Y. Yang, Efficient inverted polymer solar cells. Appl. Phys. Lett. 88 (2006) 253503.
    104. K. Wang, C. Liu, T. Meng, C. Yi, X. Gong, Inverted organic photovoltaic cells, Chem. Soc. Rev. 45 (2016) 2937-2975.
    105. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, A. J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317 (2007) 222-225.
    106. J. B. You, L. T. Dou, Z. R. Hong, G. Li, Y. Yang, Recent trends in polymer tandem solar cells research, Prog. Polym. Sci. 38 (2013) 1909-1928.
    107. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
    108. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science 356 (2017) 1376-1379.
    109. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (2015) 1234-1237.
    110. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354 (2016) 1234-1237.
    111. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science 338 (2012) 643-647.
    112. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316-319.
    113. M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend, S. D. Stranks, Maximizing and stabilizing luminescence from halide perovskites with potassium passivation, Nature 555 (2018) 497-501.
    114. G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, T. C. Sum, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science 342 (2013) 344-347.
    115. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals, Science 347 (2015) 967-970.
    116. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science 342 (2013) 341-344.
    117. D. W. de Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, D. S. Ginger, Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells, Science 348 (2015) 683-686.
    118. C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites, Adv. Mater. 26 (2014) 1584-1589.
    119. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-optics of perovskite solar cells, Nat. Photon. 9 (2015) 106-112.
    120. V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5 (2014) 3586.
    121. Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang, Stability of perovskite solar cells: a prospective on the substitution of the a cation and x anion, Angew. Chem., Int. Ed. 56 (2016) 1190-1212.
    122. F. Giustino, H. J. Snaith, Toward lead-free perovskite solar cells, ACS Energy Lett. 1 (2016) 1233-1240.
    123. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, B.-J. Hwang, Organometal halide perovskite solar cells: degradation and stability, Energy Environ. Sci. 9 (2016) 323-356.
    124. Y. Hou, X. Du, S. Scheiner, D. P. McMeekin, Z. Wang, N. Li, M. S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N. A. Luechinger, A. Hirsch, P.Schmuki, H.-P. Steinrück, R. H. Fink, M. Halik, H. J. Snaith, C. J. Brabec, A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells, Science 358 (2017) 1192-1197.
    125. W. Ke, C. C. Stoumpos , I. Spanopoulos, L. Mao , M. Chen, M. R. Wasielewski, M. G. Kanatzidis, Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites, J. Am. Chem. Soc. 139 (2017) 14800-14806.
    126. K. H. Ok, J. Kim, S. R. Park, Y. Kim, C. J. Lee, S. J. Hong, M. G. Kwak, N. Kim, C. J. Han, J. W. Kim, Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes, Sci. Rep. 5 (2015) 9464.
    127. E. S. R. Bovill, J. Griffin, T. Wang, J. W. Kingsley, H. Yi, A. Iraqi, A. R. Buckley, D. G. Lidzey, Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer, Appl. Phys. Lett. 102 (2013) 183303.
    128. C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells, Nat. Photon. 6 (2012) 115-120.
    129. D. Liu, T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat. Photon. 8 (2014) 133-138.
    130. Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, F. Yan, Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity, Nat. Commun. 7 (2016) 11105.
    131. Y. Cheng, X. Xu, Y. Xie, H. W. Li, J. Qing, C. Ma, C. S. Lee, F. So, S. W. Tsang 18% high-efficiency air-processed perovskite solar cells made in a humid atmosphere of 70% RH Sol. RRL 00 (2017) 1700097.
    132. W. Shi, S. Fan, F. Huang, W. Yang, R. Liu, Y. Cao, Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes, J. Mater. Chem. 16 (2016) 2387-2394.
    133. R. Fornasier, P. Scrimin, P. Tecilla, U. Tonellato, Bolaform and classical cationic metallomicelles as catalysts of the cleavage of p-nitrophenyl picolinate, J. Am. Chem. Soc. 111 (1989) 224-229.
    134. H. Seyler, D. J. Jones, A. B. Holmesa, W. W. H. Wong, Continuous flow synthesis of conjugated polymers, Chem. Commun. 48 (2012) 1598-1600.
    135. C. -H. Chou, W. L. Kwan, Z. Hong, L. -M. Chen, Y. Yang, A metal‐oxide interconnection layer for polymer tandem solar cells with an inverted architecture, Adv. Mater. 23 (2011) 1282-1286.
    136. S. H. Kim, J. Yoon, S. O. Yun, Y. Hwang, H. S. Jang, H. C. Ko, Molecular stacking induced by intermolecular C-H•••N hydrogen bonds leading to high carrier mobility in vacuum‐deposited organic films, Adv. Funct. Mater. 23 (2013) 1375-1382.
    137. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells, J. Am. Chem. Soc. 137 (2015) 6730-6733.
    138. A. Guerrero, J. You, C. Aranda, Y. S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, Y. Yang, Interfacial degradation of planar lead halide perovskite solar cells, ACS Nano 10 (2016) 218-224.
    139. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel, N. G. Park, Lead iodide perovskite sensitized all solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 591.
    140. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale 3 (2011) 4088-4093.
    141. C. H. Chou, W. L. Kwan, Z. Hong, L. M. Chen, Y. Yang, A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture, Adv. Mater. 23 (2011) 1282-1286.
    142. C. Pacholski, A. Kornowski, H. Weller, Self-assembly of ZnO: from nanodots tonanorods, Angew. Chem. Int. Ed. 41 (2002) 1188-1191.
    143. W. T. Wang, S. K. Das, Y. Tai, Fully ambient-processed perovskite film for perovskite solar cells: effect of solvent polarity on lead iodide, ACS Appl. Mater. Interfaces 9 (2017) 10743-10751.
    144. C. C. Yu, H. J. Wu, P. Y. Deng, M. T. Agne, G. J. Snyder, J. P. Chu, Thin-film metallicglass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules, Sci. Rep. 7 (2017) 45177.
    145. F. Liu, D. Chen, C. Wang, K. Luo, W. Gu, A. L. Briseno, J. W. P. Hsu, T. P. Russell, Molecular weight dependence of the morphology in P3HT:PCBM solar cells, ACS Appl. Mater. Interfaces 4 (2014) 19876-19887.
    146. Y. Shirota. Organic materials for electronic and optoelectronic devices, J. Mater. Chem. 10 (2000) 1-25.
    147. J. N. Israelachvili, Intermolecular and surface forces, Academic Press, Boston, 1992.
    148. D. Beattie, K. H. Wong, C. Williams, L. A. P. Warren, T. P. Davis, C. B. Kowollik, M. H. Stenzel, Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth, Biomacromolecules 7 (2006) 1072-1082.
    149. C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
    150. H. Yan, B. J. Scott, Q. Huang, T. J. Marks, Enhanced polymer light‐emitting diode performance using a crosslinked‐network electron‐blocking interlayer, Adv. Mater., 16 (2014) 1948-1953.
    151. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol‐/water‐soluble conjugated polymers, Adv. Mater. 16 (2004) 1826-1830.
    152. M. Gross, D. C. Müller, H. G. Nothofer, U. Scherf, D. Neher, C. Bräuchle, K. Meerholz, Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes, Nature 405 (2000) 661-665.
    153. G. Latini, L. W. Tan, F. Cacialli, S. R. P. Silva, Superficial fluoropolymer layers for efficient light-emitting diodes, Org. Electron. 13 (2012) 992-998.
    154. Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bre´das, S. R. Marder, A. Kahn, B. Kippelen, A universal method to produce low-work function electrodes for organic electronics, Science 336 (2012) 327-332.
    155. S. Nam, J. Seo, S. Woo, W. H. Kim, H. Kim, D. D. C. Bradley, Y. Kim, Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers, Nat. Commun. 6 (2015) 8929.
    156. S. Gubbala, H. B. Russell, H. Shah, B. Deb, J. Jasinski, H. Rypkema, M. K. Sunkara, Surface properties of SnO2 nanowires for enhanced performance with dye-sensitized solar cells, Energy Environ. Sci. 2 (2009) 1302-1309.
    157. K. G. Lim, H. B. Kim, J. Jeong, H. Kim, J. Y. Kim, T. W. Lee, Boosting the power conversion efficiency of perovskite solar cells using self‐organized polymeric hole extraction layers with high work function, Adv. Mater. 26 (2014) 6461-6466.
    158. C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells, Nat. Commun. 6 (2015) 7747.
    159. C. G. Wu, C. H. Chiang, Z. L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, High efficiency stable inverted perovskite solar cells without current hysteresis, Energy Environ. Sci. 8 (2015) 2725.
    160. W. Z. Li, J. D. Fan, J. W. Li, Y. H. Mai, L. D. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%, J. Am. Chem. Soc. 137 (2015) 10399-10405.
    161. J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, S. H. Im, Highly efficient low temperature solution processible planar type CH3NH3PbI3 perovskite flexible solar cells, J. Mater. Chem. A 4 (2016) 1572-1578.
    162. M. K. Gangishetty, R. W. J. Scott, T. L. Kelly, Effect of relative humidity on crystal growth, device performance and hysteresis in planar heterojunction perovskite solar cells, Nanoscale 8 (2016) 6300-6307.
    163. A. Ummadisingu, L. Steier, J. Y. Seo, A. Abate, W. Tress, M. Grätzel, The effect of illumination on the formation of metal halide perovskite films, Nature 545 (2017) 208-212.
    164. C. Jiang, S. L. Lim, W. P. Goh, F. X. Wei, J. Zhang, Improvement of CH3NH3PbI3 formation for efficient and better reproducible mesoscopic perovskite solar cells, ACS Appl. Mater. Interfaces 7 (2015) 24726-24732.
    165. C. H. Chiang, C. G. Wu, Bulk heterojunction perovskite-PCBM solar cells with high fill factor, Nat. Photon. 10 (2016) 196-200.
    166. T. Y. Zhang, M. J. Yang, Y. X. Zhao, K. Zhu, Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion, Nano Lett. 15 (2015) 3959-3963.
    167. Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang, Z. D. Chen, Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18%, Nanoscale 8 (2016) 19654-19661.
    168. H.-S. Ko, J.-W. Lee, N.-G. Park, 15.76% Efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3, J. Mater. Chem. A 3 (2015) 8808-8815.
    169. X. Zhang, J. Ye, L. Zhu, L. Zheng, H. Zheng, G. Liu, X. Liu, B. Duan, X. Pan, S. Dai, High-efficiency perovskite solar cells prepared by using a sandwich structure MAI-PbI2-MAI precursor film, Nanoscale 9 (2017) 4691-4699.
    170. H. Zhang, J. Mao, H. He, D. Zhang, H. L. Zhu, F. Xie, K. S. Wong, M. Grätzel, W. C. H. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells, Adv. Energy Mater. 5 (2015) 1501354.
    171. M. C. Kao, H. Z. Chen, S. L. Young, Effects of preannealing temperature of ZnO thin films on the performance of dye-sensitized solar cells, Appl. Phys. A 98 (2010) 595-599.
    172. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nat. Energy 2 (2016) 16177.
    173. S. Kondo, M. Shiraki, T. Saito, Optical characterization of amorphous PbI2 films and their crystallization, Jpn. J. Appl. Phys. 31 (1992) 3399-3402.
    174. U. Kwon, M. M. Hasan, W. Yin, D. Kim, N. Y. Ha, S. Lee, T. K. Ahn, H. J. Park, Investigation into the advantages of pure perovskite film without PbI2 for high performance solar cell, Sci. Rep. 6 (2016) 35994.
    175. B. Wang, K. Y. Wong, S. Yang, T. Chen, Crystallinity and defect state engineering in organo-lead halide perovskite for high efficiency solar cells, J. Mater. Chem. A 4 (2016) 3806-3812.
    176. L.-C. Chen, J.-C. Chen, C.-C. Chen, C.-G. Wu, Fabrication and properties of high-efficiency perovskite/PCBM organic solar cells, Nanoscale Res. Lett. 10 (2015) 312.
    177. H.-H. Fang, S. Adjokatse, S. Shao, J. Even, M. A. Loi, Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites, Nat. Commun. 9 (2018) 243.
    178. B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V hysteresis in perovskite solar cells, J. Phys. Chem. Lett. 7 (2016) 905-917.
    179. Z. L. Tseng, C. H. Chiang, C. G. Wu, Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells, Sci. Rep. 5 (2015) 13211.
    180. N. Chakravarthi, K. Gunasekar, W. Cho, D. X. Long, Y. H. Kim, C. E. Song, J. C. Lee, A. Facchetti, M. Song, Y. Y. Noh, S. H. Jin, A simple structured and efficient triazine-based molecule as an interfacial layer for high performance organic electronics, Energy Environ. Sci. 9 (2016) 2595-2602.
    181. J. X. Song, J. Bian, E. Q. Zheng, X. F. Wang, W. J. Tian, T. Miyasaka, Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chem. Lett. 44 (2015) 610-612.
    182. J. B. You, L. Meng, T. B. Song, T. F. Guo, Y. Yang, W. H. Chang, Z. Hong, H. J. Chen, H. P. Zhou, Q. Chen, Y. S. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol. 11 (2015) 75-81.
    183. K. C. Wang, P. S. Shen, M. H. Li, S. Chen, M. W. Lin, P. Chen, T. F. Guo, Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells, ACS Appl. Mater. Interfaces 6 (2014) 11851-11858.
    184. L. Hu, J. Peng, W. W. Wang, Z. Xia, J. Y. Yuan, J. L. Lu, X. D. Huang, W. L. Ma, H. B. Song, W. Chen, Y. B. Cheng, J. Tang, Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photon. 1 (2014) 547-553.
    185. A. Dymshits, L. Iagher, L. Etgar, Parameters influencing the growth of ZnO nanowires as efficient low temperature flexible perovskite-based solar cells. Materials 9 (2016) 60.
    186. M. H. Kumar, N. Yantara, S. Dharani, M. Gratzel, S. Mhaisalkar, P. P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun. 49 (2013) 11089-11091.
    187. D. Montalvo, F. Degryse, R.C. da Silva, R. Baird, M.J. McLaughlin, Agronomic effectiveness of zinc sources as micronutrient fertilizer. Adv. Agron. 139 (2016) 215-267.
    188. F. V. Molefe, L. F. Koao, J. J. Dolo, B. F. Dejene, Effect of reaction time on structural, morphology and optical properties of ZnO nanoflakes prepared by chemical bath deposition method, Phys. B 439 (2014) 185-188.
    189. T. Senthil, S. Anandhan, Structure-property relationship of sol-gel electrospun ZnO nanofibers developed for ammonia gas sensing, J. Colloid Interface Sci. 432 (2014) 285-296.
    190. T. Oku, Solar cells-new approaches and reviews, InTech, Japan, 2015.
    191. P. Cubillas, M. W. Anderson, Zeolites and catalysis: synthesis, reactions and applications, Wiley-VCH Verlag. GmbH & Co. KGaA, Weinheim, 2010.
    192. T. Senda, R. C. Bradt, Grain growth in sintered ZnO and ZnO-Bi2O3 ceramics, J. Am. Ceram. Soc. 73 (1990) 106-114.
    193. D. S. Ahlawat, D. Mohan, S. K. Ghoshal, R. D. Singh, M. Sharma, Study of thermal transport parameters in PbI2 single crystal using a photoacoustic technique, Mod. Phys. Lett. B 20 (2016) 1253.
    194. R. P. Sear, Heterogeneous and homogeneous nucleation compared: rapid nucleation on microscopic impurities, J. Phys. Chem. B 110 (2006) 4985-4989.
    195. T. D. Senguttuvan, L. K. Malhotra, Sol gel deposition of pure and antimony doped tin dioxide thin films by non alkoxide precursors, Thin Solid Films 289 (1996) 22-28.
    196. J. Yang, B. D. Siempelkamp, E. Mosconi, F.D. Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO, Chem. Mater. 27 (2015) 4229-4236.
    197. Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip, S.-W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles, ACS Appl. Mater. Interfaces 7 (2015) 19986-19993.
    198. X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li, H. Lin, Aluminum-doped zinc oxide as highly stable electron collection layer for perovskite solar cells, ACS Appl. Mater. Interfaces 8 (2016) 7826-7833.
    199. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, Y.- B. Cheng, J. Zhong, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells, Energy Environ. Sci. 10 (2017) 2509-2515.
    200. D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu, X. Wang, C. Li, S. Liu, R. P. H. Chang, Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells, Energy Environ. Sci. 9 (2016) 3071-3078.
    201. J. Lian, Q. Wang, Y. Yuan, Y. Shao, J. Huang, Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells, J. Mater. Chem. A 3 (2015) 9146-9151.
    202. Y. Zhou, F. Wang, H.-H. Fang, M. A. Loi, F.-Y. Xie, N. Zhao, C.-P. Wong, Distribution of bromine in mixed iodide-bromide organolead perovskites and its impact on photovoltaic performance, J. Mater. Chem. A 4 (2016) 16191-16197.
    203. S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo, S. I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor, Energy Environ. Sci. 7 (2014) 2614-2618.

    無法下載圖示 全文公開日期 2023/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE