簡易檢索 / 詳目顯示

研究生: 李永元
Yung-Yuan Lee
論文名稱: 超輕薄型高分子有機太陽能電池穩定性之研究
Research on stability of ultrathin and lightweight polymer solar cells
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
張志豪
Chih-Hao Chang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 輕薄型基板原子層沉積穩定性
外文關鍵詞: Ultrathin and lightweight substrate, Atomic layer deposition, Stability
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為對超輕薄高分子有機太陽能電池 (Polymer Solar Cell, PSC)穩定性的研究並實現高功率重量比,在重量極輕(3.17 g/m2)的聚一氯對二甲苯 (Polychloroparaxylene, Parylene-C)基板上製作高分子太陽能電池,主體材料使用高分子施體材料NTUST-1和非富勒烯受體材料 (Non-Fullerene Acceptor, NFA) NTUST-2,在倒置型元件使用三氧化鉬 (Molybdenum trioxide, MoO3)/銀 (Ag)/三氧化鎢 (Tungsten oxide, WO3) (MAW)結構做為上入光電極結構,PSC最高效率達到9.9%,元件總厚度為2 m,擁有高功率重量比27.58 W/g。
    超輕薄型太陽能電池除了擁有高功率重量比,元件在經過原子層沉積(Atomic Layer Deposition, ALD)薄膜封裝後,放置於大氣環境下648小時之後還維持初始效率的69%,未來期望能應用在無人飛行器、穿戴式電子裝置。


    In this thesis, we study the stability of ultra-thin and lightweight polymer organic solar cells (PSC) with high power-to-weight ratio, a polymer solar cell was fabricated on Polychloroparaxylene (Parylene-C) substrate with extremely lightweight (3.17 g/m2), that the polymer donor NTUST-1 and non-fullerene acceptor (NFA) NTUST-2 use as active layer, the molybdenum trioxide (MoO3)/silver (Ag)/tungsten oxide (WO3) (MAW) structure use as the light incident top cathode in inverted structure, the highest power conversion efficiency (PCE) of PSC realize 9.9%, the total thickness of 2 um and a high power-per-weight ratio of 27.58 W/g.
    In addition, ultrathin and lightweight polymer solar cells which have a high power-per-weight ratio maintain 69% of their initial efficiency after thin film encapsulation by Atomic Layer Deposition (ALD) and storage in the atmosphere for 648 hours. In the future, It is expected to be applied at unmanned aerial vehicles, wearable electronics.

    致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖索引 vii 表索引 x 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.2.1 矽晶圓 2 1.2.2 矽薄膜 2 1.2.3 無機化合物[10] 2 1.2.4 有機化合物[11] 2 1.2.5 染料敏化 3 1.2.6 量子點[13] 3 1.2.7 鈣鈦礦[14] 3 1.3 OPVs的結構演變 4 1.3.1 單層結構 (Single Layer) 4 1.3.2 雙層結構 (Bilayer) 5 1.3.3 塊狀異質接面結構 (Bulk Heterojunction) 6 1.3.4 連續塊狀異質接面結構 8 1.4 聚一氯對二甲苯基板與傳統柔性基板簡介 9 第二章 研究動機與文獻回顧 10 第三章 基礎理論 16 3.1 有機太陽能電池工作原理 16 3.1.1 光子吸收 16 3.1.2 激子擴散 17 3.1.3 激子拆解 17 3.1.4 電荷收集 17 3.2 有機太陽能電池等效電路 18 3.3 電流密度-電壓(J-V)特性曲線 19 3.3.1 開路電壓 20 3.3.2 短路電流密度 21 3.3.3 填充因子 21 3.3.4 功率轉換效率 21 3.3.5 串聯電阻(RS)與並聯電阻(RP) 22 第四章 實驗架構 23 4.1 實驗設備與量測儀器 23 4.1.1 超音波震盪清洗機 23 4.1.2 旋轉塗佈機 23 4.1.3 高真空熱蒸鍍機 24 4.1.4 高分子鍍膜機 25 4.1.5 原子層沉積 26 4.1.6 氮氣手套箱 28 4.1.7 薄膜厚度輪廓量測儀 28 4.1.8 四點探針面電阻量測儀 29 4.1.9 太陽光模擬量測儀 29 4.1.10 外部量子效率量測儀 30 4.2 實驗前準備 32 4.2.1 濕製程溶液準備 32 4.3 實驗步驟 32 4.3.1 玻璃基板清洗 32 4.3.2 柔性基板製作 32 4.3.3 底電極蒸鍍 33 4.3.4 主動層與ETL旋轉塗佈 34 4.3.5 電動傳輸層與上電極蒸鍍 34 4.3.6 玻璃封裝 35 4.3.7 原子層沉積薄膜封裝 36 4.4 量測與分析 37 4.4.1 薄膜特性 37 4.4.2 元件光電特性 37 4.4.3 元件外部量子效率 37 4.4.4 元件照光穩定性 37 第五章 結果與討論 38 5.1 薄膜特性 38 5.1.1 主動層材料特性 38 5.1.2 陰極薄膜特性 39 5.2 元件特性 39 5.2.1 玻璃基板及Parylene基板元件比較 39 5.2.2 柔性基板厚度調變 41 5.2.3 玻璃封裝元件與ALD封裝元件比較 42 5.2.4 柔性元件之功率重量比 44 第六章 結論與未來展望 46 參考文獻 47

    [1] C. Lungenschmieda, G. Dennlera, H. Neugebauera, S. N. Sariciftcia, M. Glatthaarb, T. Meyerc and A. Meyerc, “Flexible, long-lived, large-area, organic solar cells“, Sol. Energy Mater. Sol. Cells, vol. 91, pp. 379-384 (2007).
    [2] B. A. Nieto-Díaz, C. Pearson, Z. Al-Busaidi, L. Bowen, M. C. Petty and C. Groves, “Enhanced lifetime of organic photovoltaic diodes achieved by blending with PMMA: Impact of morphology and Donor:Acceptor combination”, Sol. Energy Mater. Sol. Cells, vol. 219, 110765 (2021).
    [3] Y. Shao and Y. Yang, “Efficient Organic Heterojunction Photovoltaic Cells Based on Triplet Materials”, Adv. Mater., vol. 17, pp. 2841-2844 (2005).
    [4] I. Visoly-Fisher, A. Mescheloff, M. Gabay, C. Bounioux, L. Zeiri, M. Sansotera, A. E. Goryachev, A. Braun, Y. Galagan and E. A. Katz, “Concentrated sunlight for accelerated stability testing of organic photovoltaic materials: towards decoupling light intensity and temperature”, Sol. Energy Mater. Sol. Cells, vol. 134, pp. 99-107 (2015).
    [5] X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen, H. Xu, H. Yao, Y. Li, J. Hou and Y. Li, “Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a “Welding” Flexible Transparent Electrode”, Adv. Mater., vol. 32, 1908478 (2020).
    [6] J. Wan, X. Fan, H. Huang, J. Wang, Z. Zhang, J. Fang and F. Yan, “Metal oxide-free flexible organic solar cells with 0.1 M perchloric acid sprayed polymeric anodes”, J. Mater. Chem. A, vol. 8, pp. 21007-21015 (2020).
    [7] Y. Sun, L. Meng, X. Wan, Z. Guo, X. Ke, Z. Sun, K. Zhao, H. Zhang, C. Li and Y. Chen, “Flexible High-Performance and Solution-Processed Organic Photovoltaics with Robust Mechanical Stability”, Adv. Funct. Mater., vol. 31, 2010000 (2021).
    [8] Y. Sun, M. Chang, L. Meng, X. Wan, H. Gao, Y. Zhang, K. Zhao, Z. Sun, C. Li, S. Liu, H. Wang, J. Liang and Y. Chen, “Flexible organic photovoltaics based on water-processed silver nanowire electrodes”, Nat. Electron., vol 2, pp. 513-520 (2019).
    [9] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25, 676-677 (1954).
    [10] R. Liu, “Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells”, Materials, vol. 7, pp. 2747-2771 (2014).
    [11] B. A. Gregg and M. C. Hanna, “Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation”, J. Appl. Phys., vol. 93, pp. 3605 (2003).
    [12] B. O'Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, pp. 737-740 (1991).
    [13] R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution”, J. Chem. Phys., vol. 79, pp. 1086-1088 (1983).
    [14] Z. Chen, X. Zheng, F. Yao, J. Ma, C. Tao and G. Fang, “Methylammonium, formamidinium and ethylenediamine mixed triple-cation perovskite solar cells with high efficiency and remarkable stability”, J. Mater. Chem. A, vol. 6, pp. 17625-17632 (2018).
    [15] G. A. Chamberlain, “Organic solar cells: A review”, Solar Cells, vol. 8, pp. 47-83 (1983).
    [16] A. K. Ghosh, D. L. Morel, T. Feng, R. F. Shaw, and C. A. Rowe, “Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells”, J. Appl. Phys., 45, 230 (1974).
    [17] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., vol. 48, pp. 183-185 (1986).
    [18] P. Peumans, V. Bulovic, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes”, Appl. Phys. Lett., vol. 76, pp. 2650-2652 (2000).
    [19] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions”, Science, vol. 270, pp 1789-1791 (1995).
    [20] B. P. Rand, J. Xue, F. Yang and S. R. Forrest, “Organic solar cells with sensitivity extending into the near infrared”, Appl. Phys. Lett., vol. 87, 233508 (2005).
    [21] D. Gebeyehu, B. Maennig, J. Drechsel, K. Leo and M. Pfeiffer, “Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends”, Sol. Energy Mater. Sol. Cells, vol. 79, pp. 81-92 (2003).
    [22] P. Peumans, S. Uchida and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films”, Nature, vol. 425, pp. 158-162 (2003).
    [23] S. Uchida, J. Xue, B. P. Rand and S. R. Forrest, “Organic small molecule solar cells with a homogeneously mixed copper phthalocyanine: C60 active layer”, Appl. Phys. Lett., vol. 84, pp. 4218-4220 (2004).
    [24] F. Yang, K. Sun, and S. R. Forrest, “Efficient Solar Cells Using All-Organic Nanocrystalline Networks”, Adv. Mater., vol. 19, pp. 4166-4171 (2007).
    [25] R. Pandey and R. J. Holmes, “Organic Photovoltaic Cells Based on Continuously Graded Donor–Acceptor Heterojunctions”, IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 1537-1543 (2010).
    [26] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater., vol. 4, pp. 864-868 (2005).
    [27] R. Pandey and R. J. Holmes, “Graded Donor-Acceptor Heterojunctions for Efficient Organic Photovoltaic Cells”, Adv. Mater., vol. 22, pp. 5301-5305 (2010).
    [28] F. Glocklhofer, D. Lumpi, M. Kohlstadt, O. Yurchenko, U. Wurfel and J. Frohlich, “Towards continuous junction (CJ) organic electronic devices: Fast and clean post-polymerization modification by oxidation using dimethyldioxirane (DMDO)”, React. Funct. Polym., vol. 86, pp. 16-26 (2015).
    [29] W. A. MacDonald, K. Rollins, D. MacKerron, R. Eveson, R. A. Rustin, K. Rakos and M. Handa , “P-46: Plastic Displays — Latest Developments in Polyester Film for Plastic Electronics”, Soc. Inf. Disp., vol. 35, pp. 420-423 (2012).
    [30] A. Hogg, T. Aellen, S. Uhl, B. Graf, H. Keppner, Y. Tardy and J. Burger, “Ultra-thin layer packaging for implantable electronic devices”, J. Micromech. Microeng., vol. 23, 075001 (2013).
    [31] R. Wolf, K. Wandel and C. Boeffel, “Moisture Barrier Films Deposited on PET by ICPECVD of SiNx”, Plasma Process. Polym., vol. 4, pp. S185-S189 (2007).
    [32] W. A. MacDonald, “Engineered films for display technologies”, J. Mater. Chem., vol. 14, pp. 4-10 (2004).
    [33] T. N. Chen, D. S. Wuu, C. C. Wu, C. C. Chiang, Y. P. Chen and R. H. Horng, “Improvements of Permeation Barrier Coatings Using Encapsulated Parylene Interlayers for Flexible Electronic Applications”, Plasma Process. Polym., vol. 4, pp. 180-185 (2007).
    [34] J. Wu, F. Fei, C. Wei, X. Chen, S. Nie, D. Zhang, W. Su and Z. Cui, “Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers”, R. Soc. Chem. Adv., vol. 8, pp. 5721-5727 (2018).
    [35] J. Jean, A. Wang and V. Bulovic, “In situ vapor-deposited parylene substrates for ultra-thin, lightweight organic solar cells”, Org. Electron., vol. 31, pp. 120-126 (2016).
    [36] X. Xua, K. Fukuda, A. Karkid, S. Parka, H. Kimura, H. Jinno, N. Watanabe, S. Yamamoto, S. Shimomura, D. Kitazawa, T. Yokota, S. Umezu, T. Q. Nguyen and T. Someya, “Thermally stable, highly efficient, ultraflexible organic photovoltaics”, PNAS, vol. 115, pp. 4589-4594 (2018).
    [37] F. Li, S. Ruan, Y. Xu, F. Meng, J. Wang, W. Y. Chen and L. Shen, “Semitransparent inverted polymer solar cells using MoO3/Ag/WO3 as highly transparent anodes”, Sol. Energy Mater Sol. Cells, vol. 95, pp. 877-880 (2011).
    [38] T. H. Yeh, C. C. Lee, C. J. Shih, G. Kumar, S. Biring and S. W. Liu, “Vacuum-deposited MoO3/Ag/WO3 multilayered electrode for highly efficient transparent and inverted organic light-emitting diodes”, Org. Electron., vol. 59, pp. 266-271 (2018).
    [39] W. J. Potscavage, S. Yoo, B. Domercq and B. Kippelen, “Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition”, Appl. Phys. Lett., vol. 90, 253511 (2007).
    [40] “Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition”, Org. Electron., vol. 10, pp. 1300-1306 (2009).
    [41] I. G. Hill, A. Kahn, Z. G. Soos and R. A. Pascal, Jr, “Charge-separation energy in films of π-conjugated organic molecules”, Chem. Phys. Lett., vol. 327, pp. 181-188 (2000).
    [42] M. Knupfer, “Exciton binding energies in organic semiconductors”, Appl. Phys., vol. 77, pp. 623-626 (2003).
    [43] S. B. Rim, R. F. Fink, J. C. Schoneboom, P. Erk and P. Peumans, “Effect of molecular packing on the exciton diffusion length in organic solar cells”, Appl. Phys. Lett., vol. 91, pp. 173504 (2007).
    [44] B. Leckner, “The spectral distribution of solar radiation at the earth's surface—elements of a model”, Sol. Energy., vol. 20, pp. 143-150 (1978).
    [45] P. Peumans, A. Yakimov and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells”, J. Appl. Phys., vol. 93, pp. 3693-3723 (2003).
    [46] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster and D. E. Markov, “Device Physics of Polymer: Fullerene Bulk Heterojunction Solar Cells”, Adv. Mater., vol. 19, pp.1551-1566 (2007).
    [47] J. L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, “Molecular Understanding of Organic Solar Cells: The Challenges”, Acc. Chem. Res., vol. 42, pp. 1691-1699 (2009).
    [48] A. Jannat, M. F. Rahman and M. S. H. khan, “A Review Study of Organic Photovoltaic Cell”, Int. J. Sci. Eng. Res., vol. 4 (2013).
    [49] B. Kippelen and J. L. Bredas, “Organic photovoltaics”, Energy Environ. Sci., vol. 2, pp. 251-261 (2009).
    [50] B. P. Rand, J. Genoe, P. Heremans and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors”, Prog. Photovolt., vol. 15, pp. 659-676 (2007).
    [51] C. Kulshreshtha, J. W. Choi, J. k. Kim, W. S. Jeon, M. C. Suh, Y. Park and J. H. Kwon, “Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells”, Appl. Phys. Lett., vol. 99, 023308 (2011).
    [52] B. P. Rand, D. P. Burk and S. R. Forrest, “Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells”, Phys. Rev. B, vol. 75, 115327 (2007).
    [53] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview”, J. Mater. Res., vol. 19, pp. 1924-1945 (2004).
    [54] D. Gupta, S. Mukhopadhyay and K. S. Narayan, “Fill factor in organic solar cells”, Sol. Energy Mater. Sol. Cells, vol. 94, pp. 1309-1313 (2010).
    [55] S. Kang, J. Jeong, S. Cho, Y. J. Yoon, S. Park, S. Lim, J. Y. Kim and H. Ko, “Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance”, J. Mater. Chem. A, vol. 7, pp. 1107-1114 (2019).
    [56] S. Xiong, K. Fukuda, S. Lee, K. Nakano, X. Dong, T. Yokota, K. Tajima, Y. Zhou and T. Someya, “Ultrathin and Efficient Organic Photovoltaics with Enhanced Air Stability by Suppression of Zinc Element Diffusion”, Adv. Sci., vol. 9, 2105288 (2022).
    [57] W. Song, K. Yu, E. Zhou, L. Xie, L. Hong, J. Ge, J. Zhang, X. Zhang, R. Peng and Z. Ge, “Crumple Durable Ultraflexible Organic Solar Cells with an Excellent Power-per-Weight Performance”, Adv. Funct. Mater., vol. 31, 2102694 (2021).
    [58] M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer , “Ultrathin and lightweight organic solar cells with high flexibility”, Nat. Commun., vol. 3, 770 (2012).
    [59] SM. Kaltenbrunner, G. Adam, E. D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D. H. Apaydin, H. Groiss, M. C. Scharber, M. S. White, N. S. Sariciftci and S. Bauer , “Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air”, Nat. Mater., vol. 14, pp. 1032-1039 (2015).

    無法下載圖示 全文公開日期 2024/07/28 (校內網路)
    全文公開日期 2024/07/28 (校外網路)
    全文公開日期 2024/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE