簡易檢索 / 詳目顯示

研究生: 蔡明泉
Ming-Quan Cai
論文名稱: 第一原理計算和分子動力學模擬研究鈣鈦礦材料在光誘導下的結構穩定性
Insights into Light Induced Structural Stability of Perovskites by A Combined DFT and AIMD Studies
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
Jyh-Chiang Jiang
陳良益
Liang-Yih Chen
郭哲來
Jer-Lai Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 110
中文關鍵詞: 光降解鈣鈦礦密度泛函理論
外文關鍵詞: Photo-degradation, Perovskite, DFT
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球能源消耗的增加使得能源需求將達到每天1GW的使用量,龐大的能源消耗,對目前的能源基礎設施造成巨大壓力。加上傳統化石燃料能源的枯竭和氣候變遷的威脅,使得可再生能源的發展和利用成為迫在眉睫的挑戰。在眾多的可再生能源技術當中,太陽能電池有望成為取代傳統化石燃料能源並大幅减少二氧化碳的排放。近年來,因為鈣鈦礦材料具有廣泛的光吸收範圍、低的非輻射發射和低的製造成本,使得鈣鈦礦材料在太陽能電池中的應用引起了學術界的廣泛關注。如今,鈣鈦礦太陽能電池的光電轉換效率已大幅提高到25.2%,可以與矽晶太陽能電池相媲美。除了將鈣鈦礦材料應用在太陽能電池中,鈣鈦礦材料在發光二極管(LED)和光催化領域也具有相當亮眼的表現。然而,鈣鈦礦材料很容易受到大氣環境的影響,例如光,氧氣,水氣,進而降低鈣鈦礦電池的穩定性且限制了鈣鈦礦太陽能電池的產品商業化。因此,本論文的研究方向是利用密度泛函理論(DFT)和分子動力學模擬(AIMD)探討環境因素對於鈣鈦礦材料結構穩定性的影響,並將研究結果用來開發新一代太陽能電池和光催化的鈣鈦礦材料。
    有機-無機金屬鹵化物鈣鈦礦作為鈣鈦礦眾多種類之一,由於其良好的晶體結構和光電性質,在光電領域中獲得了高度的關注。一般來說,有機-無機鹵化物鈣鈦礦(例如, CH3NH3PbI3(MAPbI3))的有機陽離子容易與氧氣或水氣反應,進而加速鈣鈦礦結構的光降解。但是,對於MAPbI3鈣鈦礦同時暴露於水和氧時的光降解機制,計算上並沒有太多的深入探討。因此,我們利用密度泛函理論 (DFT) 探討照光條件下,水氣和氧氣對四方晶相的MAPbI3鈣鈦礦穩定性的影響。計算結果顯示MAPbI3(110)在水氣和氧氣共吸附的條件下,其光降解速度和表面崩壞程度比單獨水氣或氧氣的系統下來的快速和嚴重。此外,由AIMD可知PbI2表面的結構降解比MAI表面更明顯。因此,製備富含MAI的MAPbI3薄膜可以有效降低鈣鈦礦的不穩定性。
    另外,全無機鹵化物鈣鈦礦(AIHPs)材料近年來也被廣泛得使用在光催化領域來降低環境的汙染。然而,由於氧氣在光下的相互作用,AIHPs結構變得相當不穩定且嚴重阻礙了其工業化和商業化。因此,本研究利用第一原理計算探討了CsPbX3(其中X=Cl、Br和I)在光照下接觸氧氣時的穩定性。計算結果顯示,照光會增加了鈣鈦礦表面與氧氣的靜電相互作用力。此外,分子動力學結果揭示,吸附在CsPbBr3和CsPbI3表面上的氧氣很容易被活化,在照光產生電子極化子系統下,氧氣比較容易與表面的Pb自發形成Pb-O鍵。基於上述結果我們可預期CsPbCl3在結構上更加的穩定,因此CsPbCl3鈣鈦礦有機會為高潛力的光催化材料。


    Increases in global energy demand, which are expected to reach 1 GW/day, will significantly strain the current energy infrastructure. This impending challenge, together with the depletion of traditional fossil-fuel-based energy sources and the threat of climate change, necessitates the development of renewable energy technologies. Of the possible renewable energy approaches, solar cells represent a promising route. Perovskite materials have attracted widespread academic interest in recent years due to their broad range of light absorption, low non-radiative emission, and low manufacturing cost. The photovoltaic conversion efficiency of perovskite solar cells has now been significantly increased to 25.2%, comparable to silicon solar cells. Perovskite has a strong track record in light-emitting diodes (LEDs) and photocatalysis, and its use in solar cells. Despite their many advantages, the perovskite materials are easily affected by environmental factors such as light, oxygen, and water vapor, which reduce the stability of perovskite cells and limit the commercialization of perovskite solar cell products. Therefore, the focus of this thesis is to investigate environmental effects on the perovskite materials structural stability using density functional theory (DFT) and ab initio molecular dynamic calculations (AIMD) develop novel perovskite-based materials for solar cells and photocatalysis applications.
    Organic-inorganic halide perovskites (OIHPs), one of the many types of perovskites, have been widely used in optoelectronics due to their good crystalline structure and photoelectric properties. In general, the organic cations in OIHPs (for example, CH3NH3PbI3 (MAPbI3)) tend to react with oxygen or water vapor, which accelerates the photodegradation of the perovskite structures. The detailed photodegradation mechanism of MAPbI3 perovskite upon simultaneous exposure to water and oxygen in the presence of light, however, was not thoroughly investigated. Therefore, the role of light in the structural stability of MAPbI3 perovskite after exposure to water and oxygen is investigated, with a particular emphasis on the effects of surface termination. The coexistence of H2O and O2 molecules causes both the MAI and PbI2 terminated MAPbI3 perovskite surfaces to degrade faster than the presence of either monomer on the surface, with the structural degradation being more noticeable in the PbI2 terminated surface than in the MAI terminated surface. Therefore, it is concluded that preparing MAI-rich MAPbI3 films can reduce perovskite instability.
    Furthermore, in recent years, all-inorganic halide perovskite materials (AIHPs) have been widely used in photocatalytic applications to reduce environmental pollution. However, the inherent instability of AIHPs due to the interaction of O2 in the presence of light severely impedes their industrialization and commercialization. Hence, the stability of CsPbX3 (where X=Cl, Br, and I) upon O2 exposure in the presence of light is explored in this study using first-principles calculations. The results show that the presence of light increases the electrostatic interactions of these perovskite surfaces with O2. AIMD simulations clearly show that adsorbing O2 is readily activated on the surfaces of CsPbBr3 and CsPbI3, and Pb-O bonds form spontaneously in the presence of light. Based on the results, CsPbCl3 is structurally more stable, suggesting that the CsPbCl3 perovskite could be the potential catalyst material for the photocatalyst applications.

    摘要 I ABSTRACT III Acknowledgments VI Table of Contents VII List of Figures IX List of Tables XIV Chapter 1 General Introduction 1 1.1 Background 1 1.2 Organic-inorganic Halide Perovskites (OIHPs) 4 1.2.1 Crystal Structures 4 1.2.2 Optical and Electronic Properties of OIHPs 6 1.2.3 Applications 9 1.3 All-inorganic Halide Perovskites (AIHPs) 11 1.3.1 Crystal Structures 11 1.3.2 Optical and Electronic Properties of AIHPs 13 1.3.3 Applications 15 1.4 Limitations of Perovskites 16 1.5 Present study 21 Chapter 2 Light induced Air and Moisture stability of MAPbI3 perovskites: Effects of surface termination on degradation 23 2.1 Introduction 23 2.2 Computational details 26 2.3 Results and Discussion 28 2.3.1 MAPbI3 (110) Surface 28 2.3.2 Effects H2O and O2 on MAPbI3 (110) surface 31 2.3.3 Electronic Properties of upon H2O and O2 adsorption on MAPbI3 (110) surface 42 2.3.4 AIMD simulations of MAPbI3 Photo Degradation Mechanism 46 2.4 Conclusions 63 Chapter 3 Exploring Air stability of All-Inorganic Halide Perovskites in the presence of Photogenerated Electrons by DFT and AIMD studies 64 3.1 Introduction 64 3.2 Computational details 67 3.3 Results and Discussion 69 3.3.1 Bulk and Surface modeling of CsPbX3 69 3.3.2 O2 Adsorption on the Perovskite Surfaces in the Dark 74 3.3.3 O2 Adsorption on the Perovskite Surfaces in the Light 77 3.3.4 AIMD simulations 88 3.4 Conclusions 96 Chapter 4 Summary 97 References 99

    1. Van Aalst, M. K., The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5-18.
    2. Moodley, P.; Trois, C., 2 - Lignocellulosic biorefineries: the path forward. Sustainable Biofuels 2021, 21-42.
    3. Avtar, R.; Sahu, N.; Aggarwal, A. K.; Chakraborty, S.; Kharrazi, A.; Yunus, A. P.; Dou, J.; Kurniawan, T. A., Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149.
    4. Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G., Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chem. Rev. 2010, 110, 6474-6502.
    5. Kannan, N.; Vakeesan, D., Solar energy for future world: - A review. Renew. Sust. Energ. Rev. 2016, 62, 1092-1105.
    6. Verlinden, P. J.; Blakers, A. W.; Weber, K. J.; Babaei, J.; Everett, V.; Kerr, M. J.; Stuckings, M. F.; Gordeev, D.; Stocks, M. J., Sliver® solar cells: A new thin-crystalline silicon photovoltaic technology. Sol. Energy Mater. Sol. Cells 2006, 90, 3422-3430.
    7. Descoeudres, A., et al., Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells. Sol Energy 2018, 175, 54-59.
    8. Chopra, K. L.; Paulson, P. D.; Dutta, V., Thin-film solar cells: an overview. Prog. Photovolt.: Res. Appl. 2004, 12, 69-92.
    9. Grätzel, M., Dye-sensitized solar cells. J. Photochem. Photobiol. C: Photochem. Rev. 2003, 4, 145-153.
    10. Nozik, A. J., Quantum dot solar cells. Phys. E: Low-Dimens. Syst. Nanostructures 2002, 14, 115-120.
    11. Green, M. A.; Ho-Baillie, A.; Snaith, H. J., The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506-514.
    12. Pham, H. D.; Yang, T. C.-J.; Jain, S. M.; Wilson, G. J.; Sonar, P., Development of Dopant-Free Organic Hole Transporting Materials for Perovskite Solar Cells. Adv. Energy. Mater. 2020, 10, 1903326.
    13. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
    14. Chang, Y. H.; Park, C. H.; Matsuishi, K., First-principles study of the structural and the electronic properties of the lead-halide-based inorganic-organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 2004, 44, 889-893.
    15. Zhou, J.; Huang, J., Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites. Adv. Sci. 2018, 5, 1700256.
    16. Goldschmidt, V. M., Krystallbau und chemische Zusammensetzung. Ber. Dtsch. Chem. Ges. 1927, 60, 1263-1296.
    17. Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z., Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2008, 64, 702-7.
    18. Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y., Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355-396.
    19. Lehmann, F.; Franz, A.; Többens, Daniel M.; Levcenco, S.; Unold, T.; Taubert, A.; Schorr, S., The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction. Rsc Adv 2019, 9, 11151-11159.
    20. Carretero-Palacios, S.; Calvo, M. E.; Míguez, H., Absorption Enhancement in Organic–Inorganic Halide Perovskite Films with Embedded Plasmonic Gold Nanoparticles. J. Phys. Chem. C 2015, 119, 18635-18640.
    21. Ju, D.; Dang, Y.; Zhu, Z.; Liu, H.; Chueh, C.-C.; Li, X.; Wang, L.; Hu, X.; Jen, A. K. Y.; Tao, X., Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1–xBr3 Single Crystals. Chem. Mater. 2018, 30, 1556-1565.
    22. Ma, X., et al., Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nat. Commun 2021, 12, 5009.
    23. Ogomi, Y., et al., CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004-1011.
    24. Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1628-1635.
    25. Dittrich, T.; Lang, F.; Shargaieva, O.; Rappich, J.; Nickel, N. H.; Unger, E.; Rech, B., Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Appl. Phys. Lett. 2016, 109, 073901.
    26. Yin, W.-J.; Shi, T.; Yan, Y., Superior Photovoltaic Properties of Lead Halide Perovskites: Insights from First-Principles Theory. J. Phys. Chem. C 2015, 119, 5253-5264.
    27. Wang, K., et al., Lead-Free Organic–Perovskite Hybrid Quantum Wells for Highly Stable Light-Emitting Diodes. ACS Nano 2021, 15, 6316-6325.
    28. Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G., 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088-4093.
    29. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234-1237.
    30. Zheng, L.; Wang, J.; Xuan, Y.; Yan, M.; Yu, X.; Peng, Y.; Cheng, Y.-B., A perovskite/silicon hybrid system with a solar-to-electric power conversion efficiency of 25.5%. J. Mater. Chem. A 2019, 7, 26479-26489.
    31. Xia, H.-R.; Sun, W.-T.; Peng, L.-M., Hydrothermal synthesis of organometal halide perovskites for Li-ion batteries. Chem. Commun. 2015, 51, 13787-13790.
    32. Mo, H.; Yin, Y.-C.; Luo, J.-D.; Yang, J.-T.; Li, F.; Huang, D.-M.; Zhang, H.; Ye, B.; Tian, T.; Yao, H.-B., Lead-Free Solid-State Organic–Inorganic Halide Perovskite Electrolyte for Lithium-Ion Conduction. ACS Appl. Mater. Inter. 2022, 14, 17479-17485.
    33. Duong, T.; John, A. T.; Chen, H.; Pham, H.; Murugappan, K.; Tran-Phu, T.; Tricoli, A.; Catchpole, K., Mixed-dimensional organic–inorganic metal halide perovskite (OIMHP) based gas sensors with superior stability for NO2 detection. Mater. Adv. 2022, 3, 1263-1271.
    34. Tian, J.; Xue, Q.; Yao, Q.; Li, N.; Brabec, C. J.; Yip, H.-L., Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Adv. Energy. Mater. 2020, 10, 2000183.
    35. Liang, J., et al., All-Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 15829-15832.
    36. MØLler, C. K., Crystal Structure and Photoconductivity of Cæsium Plumbohalides. Nature 1958, 182, 1436-1436.
    37. Chen, W.; Li, X.; Li, Y.; Li, Y., A review: crystal growth for high-performance all-inorganic perovskite solar cells. Energ. Environ. Sci. 2020, 13, 1971-1996.
    38. Miyasaka, T.; Kulkarni, A.; Kim, G. M.; Öz, S.; Jena, A. K., Perovskite Solar Cells: Can We Go Organic-Free, Lead-Free, and Dopant-Free? Adv. Energy. Mater. 2020, 10, 1902500.
    39. Wang, B.; Navrotsky, A., Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites. Thermochim. Acta 2021, 695, 178813.
    40. Fakharuddin, A.; Gangishetty, M. K.; Abdi-Jalebi, M.; Chin, S.-H.; bin Mohd Yusoff, A. R.; Congreve, D. N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H. J., Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203-216.
    41. Zou, Y.; Li, F.; Zhao, C.; Xing, J.; Yu, Z.; Yu, W.; Guo, C., Anomalous Ambipolar Phototransistors Based on All-Inorganic CsPbBr3 Perovskite at Room Temperature. Adv. Opt. Mater. 2019, 7, 1900676.
    42. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692-3696.
    43. Chen, W.; Xin, X.; Zang, Z.; Tang, X.; Li, C.; Hu, W.; Zhou, M.; Du, J., Tunable photoluminescence of CsPbBr3 perovskite quantum dots for light emitting diodes application. J. Solid State Chem. 2017, 255, 115-120.
    44. Li, X.; Wu, Y.; Zhang, S.; Cai, B.; Gu, Y.; Song, J.; Zeng, H., CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes. Adv. Funct. Mater. 2016, 26, 2435-2445.
    45. Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M. I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M. V., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun 2015, 6, 8056.
    46. Swarnkar, A.; Mir, W. J.; Nag, A., Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? ACS Energy Lett. 2018, 3, 286-289.
    47. Wu, Y.; Jia, R.; Xu, J.; Song, L.; Liu, Y.; Zhang, Y.; Ullah, S.; Dai, J., Strategies of Improving CsPbX3 Perovskite Quantum Dots Optical Performance. Front. Mater. 2022, 9.
    48. Alam, F.; Wegner, K. D.; Pouget, S.; Amidani, L.; Kvashnina, K.; Aldakov, D.; Reiss, P., Eu2+: A suitable substituent for Pb2+ in CsPbX3 perovskite nanocrystals? J. Chem. Phys. 2019, 151, 231101.
    49. Zhao, Y.; Shi, H.; Hu, X.; Liu, E.; Fan, J., Fabricating CsPbX3/CN heterostructures with enhanced photocatalytic activity for penicillins 6-APA degradation. Chem. Eng. J. 2020, 381, 122692.
    50. Bhat, A. A.; Khandy, S. A.; Islam, I.; Tomar, R., Optical, electrochemical and photocatalytic properties of cobalt doped CsPbCl3 nanostructures: a one-pot synthesis approach. Sci. Rep. 2021, 11, 16473.
    51. Shu, M.; Zhang, Z.; Dong, Z.; Xu, J., CsPbBr3 perovskite quantum dots anchored on multiwalled carbon nanotube for efficient CO2 photoreduction. Carbon 2021, 182, 454-462.
    52. Bai, S.; Yuan, Z.; Gao, F., Colloidal metal halide perovskite nanocrystals: synthesis, characterization, and applications. J. Mater. Chem. C 2016, 4, 3898-3904.
    53. Huang, C.-Y.; Zou, C.; Mao, C.; Corp, K. L.; Yao, Y.-C.; Lee, Y.-J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y., CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability. ACS Photonics 2017, 4, 2281-2289.
    54. Pan, A.; Li, Y.; Wu, Y.; Yan, K.; Jurow, M. J.; Liu, Y.; He, L., Stable luminous nanocomposites of CsPbX3 perovskite nanocrystals anchored on silica for multicolor anti-counterfeit ink and white-LEDs. Mater. Chem. Front. 2019, 3, 414-419.
    55. Padhiar, M. A.; Wang, M.; Ji, Y.; Yang, Z.; Zhou, Y.; Qiu, H.; Wang, H.; Shah, A. A.; Bhatti, A. S., Stable CsPbX3 (Br/Cl) Perovskite Nanocrystal Layer Passivated with Al-Doped CdSe for Blue Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 908-916.
    56. Guan, Z.; Wu, Y.; Wang, P.; Zhang, Q.; Wang, Z.; Zheng, Z.; Liu, Y.; Dai, Y.; Whangbo, M.-H.; Huang, B., Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light. Appl. Catal B-Environ. 2019, 245, 522-527.
    57. Gao, G.; Xi, Q.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Guo, P.; Xu, J., Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032-12038.
    58. Cardenas-Morcoso, D.; Gualdrón-Reyes, A. F.; Ferreira Vitoreti, A. B.; García-Tecedor, M.; Yoon, S. J.; Solis de la Fuente, M.; Mora-Seró, I.; Gimenez, S., Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 630-636.
    59. Conings, B., et al., Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy. Mater. 2015, 5, 1500477.
    60. Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G., Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell. Adv. Energy. Mater. 2015, 5, 1501310.
    61. Kim, N.-K., et al., Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis. Sci. Rep. 2017, 7, 4645.
    62. Shan, D.; Tong, G.; Cao, Y.; Tang, M.; Xu, J.; Yu, L.; Chen, K., The Effect of Decomposed PbI2 on Microscopic Mechanisms of Scattering in CH3NH3PbI3 Films. Nanoscale Res. Lett. 2019, 14, 208.
    63. Li, W.; Liu, J.; Bai, F.-Q.; Zhang, H.-X.; Prezhdo, O. V., Hole Trapping by Iodine Interstitial Defects Decreases Free Carrier Losses in Perovskite Solar Cells: A Time-Domain Ab Initio Study. ACS Energy Lett. 2017, 2, 1270-1278.
    64. Liu, R.; Wang, L.; Fan, Y.; Li, Z.; Pang, S., UV degradation of the interface between perovskites and the electron transport layer. Rsc Adv 2020, 10, 11551-11556.
    65. Mishra, A. K.; Shukla, R. K., Effect of humidity in the perovskite solar cell. Mater. Today: Proc. 2020, 29, 836-838.
    66. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun 2017, 8, 15218.
    67. Feng, S., et al., Modifying CsPbX3 (X = Cl, Br, I) with a Zeolitic Imidazolate Framework through Mechanical Milling for Aqueous Photocatalytic H2 Evolution. ACS Appl. Energy Mater. 2022, 5, 6248-6255.
    68. Swarnkar, A.; Ravi, V. K.; Nag, A., Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping. ACS Energy Lett. 2017, 2, 1089-1098.
    69. Guo, X.-X.; Tang, S.-F.; Mu, Y.-F.; Wu, L.-Y.; Dong, G.-X.; Zhang, M., Engineering a CsPbBr3-based nanocomposite for efficient photocatalytic CO2 reduction: improved charge separation concomitant with increased activity sites. Rsc Adv 2019, 9, 34342-34348.
    70. Wu, D.; Zhou, J.; Kang, W.; An, K.; Yang, J.; Zhou, M.; He, P.; Huang, Q.; Tang, X., Ultrastable Lead-Free CsAgCl2 Perovskite Microcrystals for Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 2021, 12, 5110-5114.
    71. Li, N.; Chen, X.; Wang, J.; Liang, X.; Ma, L.; Jing, X.; Chen, D.-L.; Li, Z., ZnSe Nanorods–CsSnCl3 Perovskite Heterojunction Composite for Photocatalytic CO2 Reduction. ACS Nano 2022, 16, 3332-3340.
    72. Chen, Z.; Hu, Y.; Wang, J.; Shen, Q.; Zhang, Y.; Ding, C.; Bai, Y.; Jiang, G.; Li, Z.; Gaponik, N., Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes. Chem. Mater. 2020, 32, 1517-1525.
    73. Zhan, H.; Zhou, Q.; Li, M.; Zhou, R.; Mao, Y.; Wang, P., Photocatalytic O2 activation and reactive oxygen species evolution by surface B-N bond for organic pollutants degradation. Appl. Catal B-Environ. 2022, 310, 121329.
    74. Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M., High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Adv. Mater. 2014, 26, 1584-1589.
    75. Lian, Z.; Yan, Q.; Lv, Q.; Wang, Y.; Liu, L.; Zhang, L.; Pan, S.; Li, Q.; Wang, L.; Sun, J.-L., High-Performance Planar-Type Photodetector on (100) Facet of MAPbI3 Single Crystal. Sci. Rep. 2015, 5, 16563.
    76. Adhyaksa, G. W. P.; Veldhuizen, L. W.; Kuang, Y.; Brittman, S.; Schropp, R. E. I.; Garnett, E. C., Carrier Diffusion Lengths in Hybrid Perovskites: Processing, Composition, Aging, and Surface Passivation Effects. Chem. Mater. 2016, 28, 5259-5263.
    77. Leguy, A. M. A., et al., Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 2016, 8, 6317-6327.
    78. Ščajev, P.; Miasojedovas, S.; Juršėnas, S., A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbI3 and MAPbBr3 crystals measured under one- and two-photon excitations. J. Mater. Chem. C 2020, 8, 10290-10301.
    79. Chen, Z.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X.; Gereige, I.; AlSaggaf, A.; Mohammed, O. F.; Bakr, O. M., Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Lett. 2019, 4, 1258-1259.
    80. Parida, B.; Yoon, S.; Ryu, J.; Hayase, S.; Jeong, S. M.; Kang, D.-W., Boosting the Conversion Efficiency Over 20% in MAPbI3 Perovskite Planar Solar Cells by Employing a Solution-Processed Aluminum-Doped Nickel Oxide Hole Collector. ACS Appl. Mater. Inter. 2020, 12, 22958-22970.
    81. Qiu, L.; Ono, L. K.; Qi, Y., Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology. Mater. Today Energy 2018, 7, 169-189.
    82. Saliba, M., Perovskite solar cells must come of age. Science 2018, 359, 388-389.
    83. Ju, M.-G.; Chen, M.; Zhou, Y.; Dai, J.; Ma, L.; Padture, N. P.; Zeng, X. C., Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics. Joule 2018, 2, 1231-1241.
    84. Berhe, T. A.; Su, W.-N.; Chen, C.-H.; Pan, C.-J.; Cheng, J.-H.; Chen, H.-M.; Tsai, M.-C.; Chen, L.-Y.; Dubale, A. A.; Hwang, B.-J., Organometal halide perovskite solar cells: degradation and stability. Energ. Environ. Sci. 2016, 9, 323-356.
    85. Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V., Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. J. Am. Chem. Soc. 2015, 137, 1530-1538.
    86. Tong, C.-J.; Geng, W.; Tang, Z.-K.; Yam, C.-Y.; Fan, X.-L.; Liu, J.; Lau, W.-M.; Liu, L.-M., Uncovering the Veil of the Degradation in Perovskite CH3NH­3PbI3 upon Humidity Exposure: A First-Principles Study. J. Phys. Chem. Lett. 2015, 6, 3289-3295.
    87. Lu, Y.-B.; Cong, W.-Y.; Guan, C.; Sun, H.; Xin, Y.; Wang, K.; Song, S., Light enhanced moisture degradation of perovskite solar cell material CH3NH3PbI3. J. Mater. Chem. A 2019, 7, 27469-27474.
    88. Peng, C.; Chen, J.; Wang, H.; Hu, P., First-Principles Insight into the Degradation Mechanism of CH3NH3PbI3 Perovskite: Light-Induced Defect Formation and Water Dissociation. J. Phys. Chem. C 2018, 122, 27340-27349.
    89. Senocrate, A.; Acartürk, T.; Kim, G. Y.; Merkle, R.; Starke, U.; Grätzel, M.; Maier, J., Interaction of oxygen with halide perovskites. J. Mater. Chem. A 2018, 6, 10847-10855.
    90. Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A., The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. Angew. Chem. Int. Ed. 2015, 54, 8208-8212.
    91. He, J.; Fang, W.-H.; Long, R., Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH3NH3PbI3 perovskite: a time-domain ab initio study. Chem. Sci 2019, 10, 10079-10088.
    92. Gordillo, G.; Otálora, C. A.; Ramirez, A. A., A study of trap and recombination centers in MAPbI3 perovskites. Phys. Chem. Chem. Phys. 2016, 18, 32862-32867.
    93. He, J.; Fang, W.-H.; Long, R.; Prezhdo, O. V., Superoxide/Peroxide Chemistry Extends Charge Carriers’ Lifetime but Undermines Chemical Stability of CH3NH3PbI3 Exposed to Oxygen: Time-Domain ab Initio Analysis. J. Am. Chem. Soc. 2019, 141, 5798-5807.
    94. Zhang, L.; Sit, P. H. L., Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3. J. Mater. Chem. A 2017, 5, 9042-9049.
    95. Herrera Martínez, W. O.; Giudici, P.; Correa Guerrero, N. B.; Ibarra, M. L.; Perez, M. D., Effect of high energy proton irradiation on MAPbI3 films for space applications observed by micro-Raman spectroscopy. Mater. Adv. 2020, 1, 2068-2073.
    96. Tang, X., et al., Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. J. Mater. Chem. A 2016, 4, 15896-15903.
    97. Aristidou, N.; Eames, C.; Islam, M. S.; Haque, S. A., Insights into the increased degradation rate of CH3NH3PbI3 solar cells in combined water and O2 environments. J. Mater. Chem. A 2017, 5, 25469-25475.
    98. Siegler, T. D., et al., Water-Accelerated Photooxidation of CH3NH3PbI3 Perovskite. J. Am. Chem. Soc. 2022, 144, 5552-5561.
    99. Chen, B.; Hu, H.; Salim, T.; Lam, Y. M., A facile method to evaluate the influence of trap densities on perovskite solar cell performance. J. Mater. Chem. C 2019, 7, 5646-5651.
    100. Mosconi, E.; Grancini, G.; Roldán-Carmona, C.; Gratia, P.; Zimmermann, I.; Nazeeruddin, M. K.; De Angelis, F., Enhanced TiO2/MAPbI3 Electronic Coupling by Interface Modification with PbI2. Chem. Mater. 2016, 28, 3612-3615.
    101. Haruyama, J.; Sodeyama, K.; Han, L.; Tateyama, Y., Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 2903-2909.
    102. He, J.; Casanova, D.; Fang, W.-H.; Long, R.; Prezhdo, O. V., MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI3/CuSCN Heterojunction. J. Phys. Chem. Lett. 2020, 11, 4481-4489.
    103. Kresse, G., Ab initio molecular dynamics for liquid metals. J. Non·Cryst. Solids 1995, 192-193, 222-229.
    104. Perdew, J. P.; Burke, K.; Wang, Y., Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Physical Review B 1996, 54, 16533-16539.
    105. Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G., The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. J. Chem. Phys. 2005, 122, 234102.
    106. Hafner, J., Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044-2078.
    107. Blöchl, P. E., Projector augmented-wave method. Phys.Rev. B 1994, 50, 17953-17979.
    108. Klimeš, J.; Bowler, D. R.; Michaelides, A., Van der Waals density functionals applied to solids. Phys.Rev. B 2011, 83, 195131.
    109. J. E. Dennis, J.; Moré, J. J., Quasi-Newton Methods, Motivation and Theory. SIAM REV 1977, 19, 46-89.
    110. Pack, J. D.; Monkhorst, H. J., "Special points for Brillouin-zone integrations"---a reply. Phys.Rev. B 1977, 16, 1748-1749.
    111. Shao, F.; Qin, P.; Wang, D.; Zhang, G.; Wu, B.; He, J.; Peng, W.; Sum, T. C.; Wang, D.; Huang, F., Enhanced Photovoltaic Performance and Thermal Stability of CH3NH3PbI3 Perovskite through Lattice Symmetrization. ACS Appl. Mater. Inter. 2019, 11, 740-746.
    112. Blöchl, P. E.; Jepsen, O.; Andersen, O. K., Improved tetrahedron method for Brillouin-zone integrations. Phys.Rev. B 1994, 49, 16223-16233.
    113. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. J. Phys-Condens. Mat. 2009, 21, 084204.
    114. Iftimie, R.; Minary, P.; Tuckerman, M. E., Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. 2005, 102, 6654-6659.
    115. Braga, C.; Travis, K. P., A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys. 2005, 123, 134101.
    116. Kong, L., et al., Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic–inorganic trihalide perovskites. Proc. Natl. Acad. Sci. 2016, 113, 8910-8915.
    117. López, C. A., et al., Enhanced stability in CH3NH3PbI3 hybrid perovskite from mechano-chemical synthesis: structural, microstructural and optoelectronic characterization. Sci. Rep. 2020, 10, 11228.
    118. Guo, R.; Dahal, B.; Thapa, A.; Poudel, Y. R.; Liu, Y.; Li, W., Ambient processed (110) preferred MAPbI3 thin films for highly efficient perovskite solar cells. Nanoscale Adv. 2021, 3, 2056-2064.
    119. Cheng, Z.; O'Carroll, D. M., Photon Recycling in Semiconductor Thin Films and Devices. Adv. Sci. 2021, 8, 2004076.
    120. Ouyang, Y., et al., Photo-oxidative degradation of methylammonium lead iodide perovskite: mechanism and protection. J. Mater. Chem. A 2019, 7, 2275-2282.
    121. Udalova, N. N.; Tutantsev, A. S.; Chen, Q.; Kraskov, A.; Goodilin, E. A.; Tarasov, A. B., New Features of Photochemical Decomposition of Hybrid Lead Halide Perovskites by Laser Irradiation. ACS Appl. Mater. Inter. 2020, 12, 12755-12762.
    122. Ling, Y. C.; Yuan, Z.; Tian, Y.; Wang, X.; Wang, J. C.; Xin, Y.; Hanson, K.; Ma, B. W.; Gao, H. W., Bright Light-Emitting Diodes Based on Organometal Halide Perovskite Nanoplatelets. Adv. Mater. 2016, 28, 305-311.
    123. Tan, Z. K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687-692.
    124. Chouhan, L.; Ghimire, S.; Subrahmanyam, C.; Miyasaka, T.; Biju, V., Synthesis, optoelectronic properties and applications of halide perovskites. Chem. Soc. Rev. 2020, 49, 2869-2885.
    125. Schanze, K. S.; Kamat, P. V.; Yang, P. D.; Bisquert, J., Progress in Perovskite Photocatalysis. ACS Energy Lett. 2020, 5, 2602-2604.
    126. Wang, W.; Tade, M. O.; Shao, Z. P., Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371-5408.
    127. Zhao, Y.; Wang, C.; Hu, X.; Fan, J., Recent Progress in CsPbX3 Perovskite Nanocrystals for Enhanced Stability and Photocatalytic Applications. ChemNanoMat 2021, 7, 789-804.
    128. Huang, H. W.; Pradhan, B.; Hofkens, J.; Roeffaers, M. B. J.; Steele, J. A., Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett. 2020, 5, 1107-1123.
    129. Warby, J. H.; Wenger, B.; Ramadan, A. J.; Oliver, R. D. J.; Sansom, H. C.; Marshall, A. R.; Snaith, H. J., Revealing Factors Influencing the Operational Stability of Perovskite Light-Emitting Diodes. ACS Nano 2020, 14, 8855-8865.
    130. Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 2015, 9, 1955-1963.
    131. Busipalli, D. L.; Lin, K. Y.; Nachimuthu, S.; Jiang, J. C., Enhanced moisture stability of cesium lead iodide perovskite solar cells - a first-principles molecular dynamics study. Phys. Chem. Chem. Phys. 2020, 22, 5693-5701.
    132. Chen, B.; Wang, S. R.; Song, Y. H.; Li, C. B.; Hao, F., A critical review on the moisture stability of halide perovskite films and solar cells. Chem. Eng. J. 2022, 430, 132701.
    133. Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A., Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells (vol 9, pg 1655, 2016). Energ. Environ. Sci. 2016, 9, 1850-1850.
    134. Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X. N.; Kosco, J.; Islam, M. S.; Haque, S. A., Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 2017, 8, 15218.
    135. Sun, Q.; Fassl, P.; Becker-Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P. E.; Snaith, H. J.; Vaynzof, Y., Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Adv. Energy. Mater. 2017, 7, 1700977.
    136. Conings, B., et al., Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv. Energy. Mater. 2015, 5, 1500477.
    137. He, J.; Fang, W.-H.; Long, R.; Prezhdo, O. V., Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH3NH3PbI3 under Light Irradiation: Time-Domain Ab Initio Analysis. J. Am. Chem. Soc. 2020, 142, 14664-14673.
    138. Tian, Y.; Peter, M.; Unger, E.; Abdellah, M.; Zheng, K.; Pullerits, T.; Yartsev, A.; Sundström, V.; Scheblykin, I. G., Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. Phys. Chem. Chem. Phys. 2015, 17, 24978-24987.
    139. Motti, S. G.; Gandini, M.; Barker, A. J.; Ball, J. M.; Srimath Kandada, A. R.; Petrozza, A., Photoinduced Emissive Trap States in Lead Halide Perovskite Semiconductors. ACS Energy Lett. 2016, 1, 726-730.
    140. Fu, X.; Jacobs, D. A.; Beck, F. J.; Duong, T.; Shen, H.; Catchpole, K. R.; White, T. P., Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 2016, 18, 22557-22564.
    141. Brenes, R., et al., Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals. Joule 2017, 1, 155-167.
    142. Kong, W.; Rahimi-Iman, A.; Bi, G.; Dai, X.; Wu, H., Oxygen Intercalation Induced by Photocatalysis on the Surface of Hybrid Lead Halide Perovskites. J. Phys. Chem. C 2016, 120, 7606-7611.
    143. Ohtani, B.; Nohara, Y.; Abe, R., Role of Molecular Oxygen in Photocatalytic Oxidative Decomposition of Acetic Acid by Metal Oxide Particulate Suspensions and Thin Film Electrodes. Electrochemistry 2008, 76, 147-149.
    144. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535.
    145. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys.Rev. B 1996, 54, 11169-11186.
    146. Kresse, G., Ab-Initio Molecular-Dynamics for Liquid-Metals. J. Non-Cryst. Solids 1995, 193, 222-229.
    147. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15-50.
    148. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys.Rev. B 1999, 59, 1758-1775.
    149. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
    150. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Phys.Rev. B 1976, 13, 5188.
    151. Klimes, J.; Bowler, D. R.; Michaelides, A., Van der Waals density functionals applied to solids. Phys.Rev. B 2011, 83, 195131.
    152. Henkelman, G.; Arnaldsson, A.; Jonsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 2006, 36, 354-360.
    153. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. J. Phys-Condens. Mat. 2009, 21, 084204.
    154. Ahmad, M.; Rehman, G.; Ali, L.; Shafiq, M.; Iqbal, R.; Ahmad, R.; Khan, T.; Jalali-Asadabadi, S.; Maqbool, M.; Ahmad, I., Structural, electronic and optical properties of CsPbX3 (X=Cl, Br, I) for energy storage and hybrid solar cell applications. J. Alloys Compd. 2017, 705, 828-839.
    155. Cottingham, P.; Brutchey, R. L., On the crystal structure of colloidally prepared CsPbBr3 quantum dots. Chem. Commun. 2016, 52, 5246-5249.
    156. Zhao, Q.; Hazarika, A.; Schelhas, L. T.; Liu, J.; Gaulding, E. A.; Li, G.; Zhang, M.; Toney, M. F.; Sercel, P. C.; Luther, J. M., Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Lett. 2020, 5, 238-247.
    157. Sebastian, M.; Peters, J. A.; Stoumpos, C. C.; Im, J.; Kostina, S. S.; Liu, Z.; Kanatzidis, M. G.; Freeman, A. J.; Wessels, B. W., Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys.Rev. B 2015, 92, 235210.
    158. Yaffe, O., et al., Local Polar Fluctuations in Lead Halide Perovskite Crystals. Phys. Rev. Lett. 2017, 118, 136001.
    159. Wang, K.; Jin, Z. W.; Liang, L.; Bian, H.; Bai, D. L.; Wang, H. R.; Zhang, J. R.; Wang, Q.; Liu, S. Z., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat. Commun. 2018, 9, 4544.
    160. Parobek, D.; Roman, B. J.; Dong, Y. T.; Jin, H.; Lee, E.; Sheldon, M.; Son, D. H., Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. Nano Lett. 2016, 16, 7376-7380.
    161. López, C. A.; Abia, C.; Alvarez-Galván, M. C.; Hong, B.-K.; Martínez-Huerta, M. V.; Serrano-Sánchez, F.; Carrascoso, F.; Castellanos-Gómez, A.; Fernández-Dı́az, M. T.; Alonso, J. A., Crystal Structure Features of CsPbBr3 Perovskite Prepared by Mechanochemical Synthesis. ACS Omega 2020, 5, 5931-5938.
    162. Sutton, R. J.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Giustino, F.; Snaith, H. J., Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment. ACS Energy Lett. 2018, 3, 1787-1794.
    163. Li, Z.; Ji, J.; Zhang, C.; Hou, Q.; Jin, P., First-Principles Study on the Oxygen–Light-Induced Iodide Vacancy Formation in FASnI3 Perovskite. J. Phys. Chem. C 2020, 124, 14147-14157.
    164. Evans, D. J.; Holian, B. L., The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069-4074.

    無法下載圖示 全文公開日期 2024/08/17 (校內網路)
    全文公開日期 2024/08/17 (校外網路)
    全文公開日期 2024/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE