簡易檢索 / 詳目顯示

研究生: Rafika Amalia Annur
Rafika Amalia Annur
論文名稱: 三價鐵離子存在下以二氧化鈦/鈦箔光觸媒程序降解鄰苯二甲酸二酯之研究 (DEHP)
Photodegradation of Di(2-ethyl-hexyl) Phthalate in the Presence of Fe(III) Ions via TiO2/Ti Foil Photocatalytic Process
指導教授: 顧 洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Diy-Hwa Tseng
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 167
中文關鍵詞: 光催化降解DEHP光降解紫外光發光二極體動力學分析
外文關鍵詞: Photocatalytic degradation, DEHP photodegradation, UV-LED, kinetic analysis
相關次數: 點閱:257下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在可見光的照射下,以二氧化鈦/鈦箔作為光觸媒,於含有三價鐵離子的溶液中降解鄰苯二甲酸二酯(DEHP),並使用批次反應器進行操作,探討DEHP與三價鐵離子的濃度、溶液pH值、光照強度和溫度等實驗操作變因對DEHP光降解速率之影響。此外,藉由比表面積分析 (BET)、X-光繞射 (XRD)、場發射掃描式電子顯微鏡 (FESEM)、紫外-可見漫反射光譜 (UV-vis DRS)、X射線光電子能譜和界達電位,分析光觸媒的特性。
    研究結果表明,當DEHP濃度為10 mg/L時,具有最佳的光降解性能。並根據二氧化鈦的零電荷點 pH 值、三價鐵離子的物種分佈和鄰苯二甲酸的解離常數,光降解效率在溶液pH 3.9時為最高。 此外,在低光強度下,DEHP的光降解速率隨著光強度的增加而顯著提升;而在高光強度下,光降解速率的增加則趨近平緩。同時,於溶液中添加二價鐵離子能促使Fe(II) 氧化為Fe(III),以利於進行DEHP的光降解程序;而在共存離子的實驗當中,氯離子則會顯著抑制DEHP 的光降解效能。透過本實驗的動力學研究表明,DEHP 的光降解過程符合 Langmuir-Hinshelwood 動力學模型,並且速率決定步驟為表面反應。


    Photodegradation of DEHP by TiO2/Ti foil in aqueous solution in the presence of Fe(III) Ions were conducted at UV-LED illumination. The effect of DEHP and Fe(III) ions concentration, solution pH, light intensity, and temperature were evaluated in a batch reactor. Brunauer-Emmet-Teller surface area measurement (BET), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-vis diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectroscopy, and zeta potential were used to examine the characteristics of the photocatalyst.
    The result demonstrated that 10 mg/L of DEHP and Fe(III) ions exhibited higher photodegradation performance. Due to the pHzpc of TiO2, species distribution of Fe(III) ions, and the pKa of phthalic acid, the photodegradation rate showed better performance at pH 3.9. Additionally, the photodegradation rate of DEHP increased significantly at low light intensity, however the increase of the photodegradation rate tended to remain constant at high light intensity. The reaction didn’t seem to be dependent with the arising temperatures. Meanwhile, the addition of Fe(II) ions only slightly induces the DEHP photodegradation from the oxidation of Fe(II) to Fe(II) ions and the chloride ions significantly inhibited the DEHP photodegradation from the co-existing ions experiment. The kinetic analysis in this study revealed that DEHP photodegradation follows the Langmuir-Hinshelwood kinetic model and the rate-determining step is the surface reaction.

    中文摘要 V Abstract VI Acknowledgments VII Table of Content VIII List of Figure XI List of Tables XVI List of Symbol XVIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives and Scopes 3 Chapter 2 Literature Review 1 2.1 Photolysis and Photocatalysis 1 2.1.1 Basic Properties of TiO2 1 2.1.2 Basic Properties of DEHP 3 2.1.3 Fundamentals of Photocatalytic Reaction and Mechanism 4 2.2 Photocatalytic Degradation of DEHP in Aqueous Solution 8 2.2.1 DEHP Removal Process 8 2.2.2 DEHP Photodegradation in Presence of Oxidizing Agents 12 2.2.3 Reaction Mechanism of DEHP Photodegeadation 14 2.3 Operating Factors Affecting Photocatalytic Redox Reactions 18 2.3.1 Initial Concentration of Fe(III) Ions 18 2.3.2 Initial Concentration of Organic Compound 19 2.3.3 Solution pH 19 2.3.4 Light Intensity 22 2.3.5 Temperature 23 2.3.6 Co-existing Ions 24 Chapter 3 Materials and Experiments 26 3.1 Materials 26 3.2 Experimental Instruments and Apparatus 26 3.2.1 Experimental Apparatus 27 3.2.2 Experimental Instruments 30 3.3 Experimental Procedures 31 3.3.1 Experimental Framework 32 3.3.2 Preparation of Photocatalyst 34 3.3.3 Background Experiments 34 3.3.4 Photooxidation of DEHP under UV-LED Illumination 47 Chapter 4 Results and Discussion 48 4.1 Characterization of TiO2-Ti Foil 48 4.2 Photodegradation of DEHP in Presence of Fe(III) Ions under Continuous Illumination 58 4.2.1 Effect of Initial Concentration of Fe(III) Ions 60 4.2.2 Effect of Initial Concentration of DEHP 68 4.2.3 Effect of Solution pH 73 4.2.4 Effect of Light Intensity 80 4.2.5 Effect of Temperature 87 4.2.6 Effect of Radical Inhibitors 93 4.2.7 Effect of Co-existing Ions 96 4.2.8 Characterization of of TiO2/Ti Foil after Reaction 101 4.3 Proposed Mechanism and Kinetic Analysis 107 4.3.1 Proposed Mechanism and Kinetic Models 107 4.3.2 Kinetic Analysis 119 Chapter 5 Conclusions and Recommendations 128 Reference 132

    Abdoul Magid, A.S.I., Islam, M.S., Chen, Y., Weng, L., Sun, Y., Chang, X., Zhou, B., Ma, J., Li, Y., "Competitive Adsorption of Dibutyl Phthalate (DBP) and Di(2-ethylhexyl) Phthalate (DEHP) onto Fresh and Oxidized Corncob Biochar", Chemosphere, Vol. 280, pp. 130-139 (2021)
    Adamek, E., Baran, W., and Sobczak, A., "Effect of FeCl3 on the Photocatalytic Processes Initiated by UVA and Vis Light in the Presence of TiO2–P25", Appl. Catal. B Environ, Vol. 172–173, pp. 136–144 (2015)
    Aljuboury, D., Palaniandy, P., Aziz, H., and Feroz, S., "Degradation of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) in Petroleum Wastewater by Solar Photo-Fenton Process", Glob. Nest J, Vol. 19, pp. 430–438 (2017)
    Al-Sayyed, G., D’Oliveira, J. C., and Pichat, P., "Semiconductor-Sensitized Photodegradation of 4-Chlorophenol in Water", J. Photochem. Photobiol. Chem, Vol. 58, pp. 99–114 (1991)
    Bahnemann, W., Muneer, M., and Haque, M. M., "Titanium Dioxide-Mediated Photocatalysed Degradation of Few Selected Organic Pollutants in Aqueous Suspensions", Catal. Today, Vol. 124, pp. 133–148 (2007)
    Bajt, O., Mailhot, G., and Bolte, M., "Degradation of Dibutyl Phthalate by Homogeneous Photocatalysis with Fe(III) in Aqueous Solution", Appl. Catal. B Environ, Vol. 33, pp. 239–248 (2001)
    Barakat, N. A. M., Kanjwal, M. A., Chronakis, I. S., and Kim, H. Y., "Influence of Temperature on the Photodegradation Process Using Ag-Doped TiO2 Nanostructures: Negative Impact with the Nanofibers", J. Mol. Catal. Chem, Vol. 366, pp. 333–340 (2013)
    Behnajady, M.A., Modirshahla, N., and Hamzavi, R., "Kinetic Study on Photocatalytic Degradation of C.I. Acid Yellow 23 by ZnO Photocatalyst", J. Hazard. Mater, Vol. 133, pp. 226–232 (2006)
    Bolton, J. R., Bircher, K. G., Tumas, W., and Tolman, C. A., "Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-Driven Systems (IUPAC Technical Report)", Pure Appl. Chem, Vol. 73, pp. 627–637 (2001)
    Bora, L.V., Mewada, R.K., "Visible/solar light active photocatalysts for Organic Effluent Treatment: Fundamentals, Mechanisms and Parametric Review". Renew. Sustain. Energy Rev, Vol. 76, pp. 1393–1421 (2017)
    Camacho-Muñoz, D., Martín, J., Santos, J.L., Alonso, E., Aparicio, I., Torre, T.D. la, Rodriguez, C., Malfeito, J.J., "Effectiveness of Three Configurations of Membrane Bioreactors on the Removal of priority and Emergent Organic Compounds from wastewater: comparison with Conventional Wastewater Treatments, J. Environ. Monit, Vol. 14, pp. 1428–1436 (2012)
    Chan, C.M., Wong, K.H., Chung, W.K., Chow, T.S., Wong, P.K., "Photocatalytic Degradation Of Di(2-Ethylhexyl)Phthalate Adsorbed by Chitin A", Water Sci. Technol, Vol. 56, pp. 125–134 (2007)
    Chang, B.V., Liao, G.S., Yuan, S.Y., "Anaerobic Degradation of Di-n-butyl Phthalate and Di-(2-ethylhexyl) Phthalate in Sludge", Bull. Environ. Contam. Toxicol, Vol. 75, pp. 775–782 (2005)
    Chen, C.-Y., "The Oxidation of Di-(2-Ethylhexyl) Phthalate (DEHP) in Aqueous Solution by UV/H2O2 Photolysis", Water. Air. Soil Pollut, Vol. 209, pp. 411–417 (2010)
    Chen, H.W., Ku, Y., and Kuo, Y.L., "Effect of Pt/TiO2 Characteristics on Temporal Behavior of O-cresol Decomposition by visible Light-Induced Photocatalysis", Water Res, Vol. 41, pp. 2069–2078 (2007)
    Chiou, C. S., Chen, Y. H., Chang, C. T., Chang, C. Y., Shie, J. L., and Li, Y. S., "Photochemical Mineralization of Di-N-Butyl Phthalate with H2O2/Fe3+", J. Hazard. Mater, Vol. 135, pp. 344–349 (2006)
    Chung, Y.-C., Chen, C.-Y., "Degradation of Di-(2-ethylhexyl) Phthalate (DEHP) by TiO2 Photocatalysis", Water. Air. Soil Pollut, Vol. 200, pp. 191–198 (2009)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., "Quantum Yields of the Photocatalytic Oxidation of Formate in Aqueous TiO2 Suspensions under Continuous and Periodic Illumination", J. Phys. Chem. B, Vol. 105, pp. 1351–1354 (2001)
    Deng, B., Tang, J., and Kim, C. N., "Modeling of Photonic Efficiency under Controlled Periodic Illumination and Continuous Illumination", J. Environ. Chem. Eng, Vol. 8, pp. 103-110 (2020).
    Environmental Protection Administration, Executive Yuan, R.O.C.(Taiwan), 2017. "Wafer and Semiconductor Manufacturing Industry Effluent Standards", https://oaout.epa.gov.tw/law/EngLawContent.aspx?lan=E&id=192 (accessed 4.18.22)
    Fang, H., Gao, Y., Li, G., An, J., Wong, P.-K., Fu, H., Yao, S., Nie, X., An, T., "Advanced Oxidation Kinetics and Mechanism of Preservative Propylparaben Degradation in Aqueous Suspension of TiO2 and Risk Assessment of Its Degradation Products", Environ. Sci. Technol, Vol. 47, pp. 2704–2712 (2013).
    Faust, B.C., and Hoigné, J., "Photolysis of Fe (III)-Hydroxy Complexes as Sources of OH radicals In Clouds, Fog and Rain", Atmospheric Environ. Vol. 24, pp. 79–89 (1990)
    Feng, J. R., Deng, Q. X., and Ni, H. G., "Photodegradation of Phthalic Acid Esters under Simulated Sunlight: Mechanism, Kinetics, and Toxicity Change. Chemosphere, Vol. 299, pp. 134-145 (2022)
    Feng, W., Nansheng, D., "Photochemistry of Hydrolytic Iron (III) Species and Photoinduced Degradation of Organic Compounds: A minireview", Chemosphere, Vol. 41, pp. 1137–1147 (2000)
    Feng, Z., Kunyan, C., Jiamo, F., Guoying, S., Huifang, Y., "Biodegradability of Di(2-Ethylhexyl) Phthalate by Pseudomonas Fluorescens FS1", Water. Air. Soil Pollut, Vol. 140, pp. 297–305 (2002)
    Gao, D.-W., Wen, Z.-D., "Phthalate Esters in the Environment: A Critical Review of Their Occurrence, Biodegradation, and Removal During Wastewater Treatment Processes", Sci. Total Environ, Vol. 541, pp. 986–1001 (2016)
    Ghasemi, Z., Younesi, H., and Zinatizadeh, A.A., "Kinetics and Thermodynamics of Photocatalytic Degradation of Organic Pollutants in Petroleum Refinery Wastewater over Nano-TiO2 Supported on Fe-ZSM-5", J. Taiwan Inst. Chem. Eng, Vol. 65, pp. 357–366 (2016)
    Guo, Y., Zhang, Z., Liu, L., Li, Y., Ren, N., and Kannan, K., "Occurrence and Profiles of Phthalates in Foodstuffs from China and Their Implications for Human Exposure, J. Agric. Food Chem, Vol. 60, pp. 6913–6919 (2012)
    Guo, Q., Zhou, C., Ma, Z., Yang, X., "Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges", Adv. Mater, Vol. 31, pp. 190-199 (2019)
    Guozheng, J., Guoxiang, W., Yong, Z., and Linsheng, Z., "Effects of Light Intensity and H2O2 on Photocatalytic Degradation of Phenol in Wastewater Using TiO2/ACF", International Conference on Digital Manufacturing & Automation, pp. 623–626 (2010)
    Halmann, M., "Photodegradation of Di-N-Butyl-Ortho-Phthalate in Aqueous Solutions", J. Photochem. Photobiol. Chem, Vol. 66, pp. 215–223 (1992)
    Holm, A., Hamandi, M., Simonet, F., Jouguet, B., Dappozze, F., Guillard, C., "Impact of Rutile and Anatase Phase on the Photocatalytic Decomposition of Lactic Acid", Appl. Catal. B Environ, Vol. 253, pp. 96–104 (2019)
    Huang, W. B., and Chen, C. Y., "Photocatalytic Degradation of Diethyl Phthalate (DEP) in Water Using TiO2", Water. Air. Soil Pollut, Vol. 207, pp. 349–355 (2010)
    Hu, C., Yu, J.C., Hao, Z., Wong, P.K., "Effects of Acidity and Inorganic Ions on the Photocatalytic Degradation of Different Azo Dyes", Appl. Catal. B Environ, Vol. 46, pp. 35–47 (2003)
    Hu, Q., Liu, B., Zhang, zhengzhong, Song, M., and Zhao, X., "Temperature Effect on the Photocatalytic Degradation of Methyl Orange under UV-Vis Light Irradiation", J. Wuhan Univ. Technol.-Mater Sci Ed, Vol. 25, pp. 210–213 (2010)
    Hussein, F., "Photochemical Treatments of Textile Industries Wastewater", Asian J. Chem, Vol. 24, pp. 5427–5434 (2012)
    Jing, W.W., Li, D.Q., Li, J., Li, X.F., Wu, Z.H., Liu, Y.L., "Photodegradation of Dimethyl Phthalate (DMP) by UV–TiO2 in Aqueous Solution: Operational Parameters and Kinetic Analysis", Int. J. Environ. Sci. Technol, Vol. 15, pp. 969–976 (2018)
    Kandiel, T. A., Dillert, R., Robben, L., Bahnemann, D. W., "Photonic Efficiency and Mechanism of Photocatalytic Molecular Hydrogen Production over Platinized Titanium Dioxide from Aqueous Methanol Solutions", Catal. Today, Vol. 161, pp. 196–201 (2011)
    Kim, D., Lee, D., Monllor-Satoca, D., Kim, K., Lee, W., Choi, W., "Homogeneous Photocatalytic Fe3+/Fe2+ Redox Cycle for Simultaneous Cr(VI) Reduction and Organic Pollutant Oxidation: Roles of hydroxyl radical and Degradation Intermediates, J. Hazard. Mater., Vol. 372, pp. 121–128 (2019)
    Knez, J., "Endocrine-disrupting Chemicals and Male Reproductive Health", Reprod. Biomed. Online, Vol. 26, pp. 440–448 (2013)
    Ku, Y., and Hsieh, C.B., "Photocatalytic Decomposition of 2,4-Dichlorophenol in Aqueous TiO2 Suspensions", Water Res, Vol. 26, pp. 1451–1456 (1992)
    Ku, Y., and Jung, I. L., "Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide", Water Res, Vol. 35, pp. 135–142 (2001)
    Ku, Y., Leu, R.M., and Lee, K.C., "Decomposition of 2-Chlorophenol in Aqueous Solution by UV Irradiation with the Presence of Titanium Dioxide", Water Res, Vol. 30, pp. 2569–2578 (1996)
    Li, Q., Huang, K., Duan, X., Liang, J., Chen, X., Tao, X., and Lu, G., "Degradation of Tris (2-Chloroethyl) Phosphate via UV/Fe(III) Photocatalysis: Kinetics, Products, and Toxicity Assessment", Water. Air. Soil Pollut, Vol. 232, pp. 389 (2021)
    Liang, D.-W., Zhang, T., Fang, H.H.P., He, J., "Phthalates biodegradation in the environment", Appl. Microbiol. Biotechnol, Vol. 80, pp. 183-191 (2008)
    Linsebigler, A.L., Lu, G., Yates, J.T., "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results", Chem. Rev, Vol. 95, pp. 735–758 (1995)
    Liu, Y., Chen, Z., and Shen, J., "Occurrence and Removal Characteristics of Phthalate Esters from Typical Water Sources in Northeast China", J. Anal. Methods Chem, pp. 230-237 (2013)
    Liu, Y., Deng, L., Chen, Y., Wu, F., Deng, N., "Simultaneous Photocatalytic Reduction of Cr(VI) and Oxidation of Bisphenol A induced by Fe(III)–OH Complexes in Water, J. Hazard. Mater, Vol. 139, pp. 399–402 (2007)
    Ma, T.T., Christie, P., Luo, Y.M., and Teng, Y., "Phthalate Esters Contamination in Soil and Plants on Agricultural Land Near an Electronic Waste Recycling Site", Environ. Geochem. Health, Vol. 35, pp. 465–476 (2013)
    Mailhot, G., Asif, A., and Bolte, M., "Degradation of Sodium 4-Dodecylbenzenesulphonate Photoinduced by Fe(III) in Aqueous Solution", Chemosphere, Vol. 41, pp. 363–370 (2000)
    Malato, S., Fernández-Ibáñez, P., Maldonado, M.I., Blanco, J., Gernjak, W., "Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview And Trends", Catal. Today, Vol. 147, pp. 1–59 (2009)
    Martín-Sómer, M., Pablos, C., van Grieken, R., and Marugán, J., “Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs Mercury lamps,” Appl. Catal. B, Vol. 215, pp. 1-7 (2017)
    Matthews, R.W., "Kinetics of Photocatalytic Oxidation of Organic Solutes Over Titanium Dioxide", J. Catal, Vol. 111, pp. 264–272 (1988)
    Méndez Díaz, J. D., Abdel Daiem, M. M., Rivera Utrilla, J., Sánchez Polo, M., and Bautista Toledo, I., "Adsorption/Bioadsorption of Phthalic Acid, an Organic Micropollutant Present in Landfill Leachates, on Activated Carbons", J. Colloid Interface Sci, Vol. 369, pp. 358–365 (2012)
    Mokhtar, B., Kandiel, T.A., Ahmed, A.Y., Komy, Z.R., "New Application for TiO2 P25 Photocatalyst: A Case Study of Photoelectrochemical Sensing of Nitrite Ions", Chemosphere, Vol. 268, pp. 128-147 (2021)
    Moreira, M.A., André, L.C., and Cardeal, Z. de L., "Analysis of Plasticiser Migration to Meat Roasted in Plastic Bags by SPME–GC/MS", Food Chem, Vol. 178, pp. 195–200 (2015)
    Nagarajan, S., Skillen, N.C., Fina, F., Zhang, G., Randorn, C., Lawton, L.A., Irvine, J.T.S., Robertson, P.K.J., "Comparative Assessment of Visible Light and UV Active Photocatalysts by Hydroxyl Radical Quantification", J. Photochem. Photobiol. Chem, Vol. 334, pp. 13–19 (2017)
    Nakata, K., Fujishima, A., "TiO2 Photocatalysis: Design and Applications", J. Photochem. Photobiol. C Photochem. Rev, Vol. 13, pp. 169–189 (2012)
    Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M., "Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases", J. Catal, Vol. 203, pp. 82–86 (2001)
    Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., and Itaya, A., "Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder", Bull. Chem. Soc. Jpn, Vol. 58, pp. 2015–2022 (1985)
    Ollis, D.F., Pelizzetti, E., and Serpone, N., "Photocatalyzed Destruction of Water Contaminants", Environ. Sci. Technol, Vol. 25, pp. 9 (1991)
    Ouyang, Z., Yang, C., He, J., Yao, Q., Zhang, B., Wang, H., Jiang, Y., Zhou, J., Deng, Y., Liu, Y., Yang, J., Lu, G., Dang, Z., "Homogeneous Photocatalytic Degradation of Sulfamethazine Induced by Fe(III)-Carboxylate Complexes: Kinetics, Mechanism And Products", Chem. Eng. J, Vol. 402, pp. 126122 (2020)
    Pang, X., Skillen, N., Gunaratne, N., Rooney, D.W., Robertson, P.K.J., "Removal of Phthalates from Aqueous Solution by Semiconductor Photocatalysis: A Review", J. Hazard. Mater, Vol. 402, pp. 123461 (2021)
    Park, C.G., Kim, J.C.,"Effects of Nitrate on the advanced UV photolysis of Di(2-Ethylhexyl) Phthalate Degradation in Aqueous Solution", Desalination Water Treat, Vol. 47, pp. 163–170 (2012)
    Perović, K., dela Rosa, F.M., Kovačić, M., Kušić, H., Štangar, U.L., Fresno, F., Dionysiou, D.D., Loncaric Bozic, A., "Recent Achievements in Development of TiO2-Based Composite Photocatalytic Materials for Solar Driven Water Purification and Water Splitting", Materials, Vol. 13, pp. 13-38 (2020)
    Perry, E.S., and Weber, W.H., "Vapor Pressures of Phlegmatic Liquids. II. High Molecular Weight Esters and Silicone Oils", J. Am. Chem. Soc, Vol. 71, pp. 3726–3730 (1949)
    Protti, S., Albini, A., Serpone, N., "Photocatalytic Generation of Solar Fuels from the Reduction of H2O and CO2: A Look at the Patent Literature", Phys. Chem, Vol. 16 (2014)
    Restori, R., Schwarzenbach, D., Schneider, J.R., "Charge Density in Rutile, TiO2", Acta Crystallogr. B, Vol. 43, pp. 251–257 (1987)
    Sakiti, S.A., Boontanon, S.K., Boontanon, N., "Removal of Di-2-Ethyl Hexyl Phthalates by Membrane Bioreactor", J. Environ. Prot, Vol. 4, pp. 380–384 (2013)
    Salama, A., Mohamed, A., Aboamera, N. M., Osman, T. A., and Khattab, A., "Photocatalytic Degradation of Organic Dyes Using Composite Nanofibers under UV Irradiation", Appl. Nanosci, Vol. 8, pp. 155–161 (2018)
    Santiago, D. E., Araña, J., González Díaz, O., Alemán-Dominguez, M. E., Acosta-Dacal, A.C., Fernandez Rodríguez, C., Pérez Peña, J., and Doña Rodríguez, J. M., "Effect of Inorganic Ions on the Photocatalytic Treatment of Agro-Industrial Wastewaters Containing Imazalil", Appl. Catal. B Environ, Vol. 156–157, pp. 284–292 (2014)
    Santos, S.G.S., Paulista, L.O., Silva, T.F.C.V., Dias, M.M., Lopes, J.C.B., Boaventura, R.A.R., Vilar, V.J.P., "Intensifying Heterogeneous TiO2 Photocatalysis for Bromate Reduction Using The Netmix Photoreactor", Sci. Total Environ, Vol. 664, pp. 805–816 (2019)
    Schoßberger, F., "Über die Umwandlung des Titandioxyds", Z. Für Krist. - Cryst. Mater, Vol. 104, pp. 358–374 (1942)
    Sczechowski, J. G., Koval, C. A., and Noble, R. D., "Evidence of critical illumination and Dark Recovery Times for Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis", J. Photochem. Photobiol. Chem, Vol. 74, pp. 273–278 (1993)
    Seraghni, N., Belattar, S., Mameri, Y., Debbache, N., and Sehili, T., "Fe(III)-Citrate-Complex-Induced Photooxidation of 3-Methylphenol in Aqueous Solution", Int. J. Photoenergy, Vol. 23 pp.60-68 (2012)
    Serpone, N., "Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis", J. Photochem. Photobiol. Chem, Vol. 104, pp. 1–12 (1997)
    Shi, Y., Chen, F., He, L., Tang, Y., "Enhanced photodegradation of Di(2-Ethyl)Hexyl Phthalate by Molecularly Imprinted Titanium Dioxide", E3S Web Conf, Vol. 53 (2018)
    Siddique, M., Khan, N.M., and Saeed, M., "Photocatalytic Activity of Bismuth Ferrite Nanoparticles Synthesized via Sol-Gel Route", Z. Für Phys. Chem, Vol. 233, pp. 595–607 (2019)
    Spurr, R.A., Myers, Howard.,"Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer", Anal. Chem, Vol. 29, pp. 760–762 (1957)
    Stephenson, R.M., and Malanowski, S., "Properties of Organic Compounds, in: Stephenson, R.M., Malanowski, S. (Eds.), Handbook of the Thermodynamics of Organic Compounds", Springer Netherlands, Dordrecht, pp. 1–471 (1987)
    Theurich, J., Lindner, M., Bahnemann, D.W., "Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions:  A Kinetic and Mechanistic Study", Langmuir, Vol. 12, pp. 6368–6376 (1996)
    Tokode, O., Prabhu, R., Lawton, L.A., Robertson, P.K.J., "Controlled Periodic Illumination in Semiconductor Photocatalysis", J. Photochem. Photobiol. Chem, Vol. 319–320, pp. 96–106 (2016)
    Tong, K., Yang, L., Du, X., and Yang, Y., "Review of modeling and Simulation Strategies for Unstructured Packing Bed Photoreactors with CFD Method", Renew. Sustain. Energy Rev, Vol. 131, pp. 109-119 (2020)
    Tzeng, J. H., Weng, C. H., Yen, L. T., Gaybullaev, G., Chang, C. J., de Luna, M.D.G., and Lin, Y. T., "Inactivation of Pathogens by Visible Light Photocatalysis with Nitrogen-Doped TiO2 and Tourmaline-Nitrogen Co-Doped TiO2", Sep. Purif. Technol, Vol. 274, pp. 118-129 (2021)
    Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., and Luo, X., "Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO2, and UV-Vis/Bi2WO6 Systems", Front. Chem, Vol. 7, pp. 852 (2019)
    Wang, J., Liu, Z., and Cai, R., "A New Role for Fe3+ in TiO2 Hydrosol: Accelerated Photodegradation of Dyes under Visible Light", Environ. Sci. Technol, Vol. 42, pp. 5759–5764 (2008)
    Wang, T., Qu, G., Yin, X., Sun, Q., Liang, D., Guo, X., and Jia, H., "Dimethyl Phthalate Elimination from Micro-Polluted Source Water by Surface Discharge Plasma: Performance, Active Species Roles and Mechanisms", J. Hazard. Mater, Vol. 357, pp. 279–288 (2018)
    Wang, W.Y., and Ku, Y., "Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution By UV-LED Radiation", Water Res, Vol. 40, pp. 2249–2258 (2006)
    Xu, Y., "Comparative Studies of the Fe3+/2+–UV, H2O2–UV, TiO2–UV/Vis Systems for the Decolorization of a Textile Dye X-3B in Water", Chemosphere, Vol. 43, pp. 1103–1107 (2001)
    Yamamoto, A., Mizuno, Y., Teramura, K., Shishido, T., Tanaka, T., "Effects of Reaction Temperature on the Photocatalytic Activity of Photo-SCR of NO with NH3 Over a TiO2 Photocatalyst", Catal. Sci. Technol, Vol. 3, pp. 1771–1775 (2013)
    Yang, G.C.C., Tang, P.-L., "Removal of Phthalates and Pharmaceuticals from Municipal Wastewater by Graphene Adsorption Process", Water Sci. Technol, Vol. 73, pp. 2268–2274 (2016)
    Yang, L., and Liu, Z., “Study on Light Intensity in the Pocess of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy, “Energy Convers. Manag., Vol. 48 (3), pp. 882-889 (2007)
    Yao, H., Pei, J., Wang, H., and Fu, J., "Effect of Fe(II/III) on tetracycline Degradation under UV/VUV Irradiation", Chem. Eng. J, Vol. 308, pp. 193–201 (2017)
    Ye, H., Zhao, B., Zhou, Y., Du, J., and Huang, M., "Recent Advances in Adsorbents for the Removal of Phthalate Esters from Water: Material, Modification, and Application", Chem. Eng. J, Vol. 409, pp. 128-137 (2021)
    Yuan, B., Li, X., and Graham, N., "Reaction Pathways of Dimethyl Phthalate Degradation in TiO2–UV–O2 and TiO2–UV–Fe(VI) Systems", Chemosphere, Vol. 72, pp. 197–204 (2008)
    Yu, Q., Xiong, X., He, J., Zuo, Y., Chen, Y., Wang, C., "Photolysis of Bis(2-Ethylhexyl) Phthalate in aqueous solutions at the presence of Natural Water Photoreactive Constituents under Simulated Sunlight Irradiation". Environ. Sci. Pollut. Res, Vol. 26, pp. 26797–26806 (2019)
    Zhang, J., Fu, D., Gao, H., Deng, L., "Mechanism of Enhanced Photocatalysis of TiO2 by Fe3+ in Suspensions", Appl. Surf. Sci, Vol. 258, pp. 1294–1299 (2011)
    Zhang, T., Pan, G., Zhou, Q., "Temperature Effect on Photolysis Decomposing of Perfluorooctanoic Acid", J. Environ. Sci, Vol. 42, pp. 126–133 (2016)
    Zhang, X., Ma, Y., Xi, L., Zhu, G., Li, X., Shi, D., and Fan, J., "Highly Efficient Photocatalytic Removal of Multiple Refractory Organic Pollutants by BiVO4/CH3COO(BiO) Heterostructured Nanocomposite", Sci. Total Environ, Vol. 647, pp. 245–254 (2019)
    Zhang, Y., Yu, H., Li, S., Wang, L., Huang, F., Guan, R., Li, J., Jiao, Y., Sun, J., "Rapidly Degradation of Di-(2-Ethylhexyl) Phthalate by Z-scheme Bi2O3/Tio2@Reduced Graphene Oxide Driven by Simulated Solar Radiation", Chemosphere, Vol. 272, pp. 129-136 (2021)
    Zhou, P., Zhang, J., Xiong, Z., Liu, Y., Huo, X., Cheng, X., Li, W., Cheng, F., and Zhang, Y., "C60 Fullerol Promoted Fe(III)/H2O2 Fenton Oxidation: Role of Photosensitive Fe(III)-Fullerol Complex", Appl. Catal. B Environ, Vol. 265, pp. 118-130 (2020)

    QR CODE