簡易檢索 / 詳目顯示

研究生: LELY AYU NINGSIH
LELY AYU NINGSIH
論文名稱: 利用釕金屬混合g-C3N4之光觸媒探討溫度和低pH值對於塑膠光降解的影響
Influence of the Temperature and Low pH Value on the Photocatalytic Degradation of Plastics Using Ruthenium-Incorporated g-C3N4 as A Catalyst
指導教授: 胡哲嘉
Chechia Hu
口試委員: 胡哲嘉
Chechia Hu
邱昱誠
Yu-Cheng Chiu
羅承慈
chen-Tsyr Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 82
外文關鍵詞: Microplastics, Ru/g-C3N4
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直徑小於5mm塑膠微粒(MPs)是一種常見的塑膠汙染物,嚴重影響了自然環境以及人類的健康,因此塑膠廢棄物處理儼然成為世界關注的項目。本研究利用低密度聚乙烯(LDPEMW=~35000) 塑膠微粒(MPs)作為實驗目標,為了改善MPs的降解效果,本實驗將釕金屬添加至g-C3N4作為新的觸媒,並且和MPs充分混合,隨後測試不同pH值(pH 1~6)與不同溫度(0, 35, 50, 70oC)之下MPs的降解效果,實驗證明,添加本觸媒於MPs中,並在pH 3,溫度分別是0、50和70oC的環境下照射紫外光24小時,MPs皆表現出明顯的重量損失,分別是66.04、74.5和69.64 wt%,實驗證明了Ru-g-C3N4於適當的溫度和pH值之下,可以有效提高MPs的光降解特性。


    Microplastics (MPs) are pollutants generated by plastic debris with a diameter of ≤ 5 mm. Moreover, it becomes global concern that can pose severe threats to human and environmental health in both aquatic and terrestrial areas. In this study, low-density polyethylene (LDPEMW=~35000) was selected as representative of MPs. To improve the degradation efficiency of MPs, Ruthenium was incorporated with g-C3N4 as a catalyst, and blended with LDPE film. The experiment was conducted with the addition of aqueous medium with various pH values ranging from 1-6 at different temperature (0, 35, 50, 70oC). Furthermore, the Ru-incorporated g-C3N4@PE treated under the aqueous medium at pH 3 at 0, 50, and 70oC upon light irradiation for 24 h showed a significant weight loss approximately 66.04, 74.51, and 69.64 wt%, respectively. This study suggested that Ru-incorporated g-C3N4 can be an effective catalyst for the degradation of LDPE MPs under appropriate temperature and pH value upon light irradiation.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii TABLE OF CONTENT v LIST OF FIGURES x LIST OF SCHEMES xii CHAPTER I INTRODUCTION 1 I. 1. BACKGROUND 1 I. 2. OBJECTIVES 3 CHAPTER II LITERATURE REVIEW 4 II. 1. PLASTICS 4 II.1.1. THERMOPLASTICS 6 II.1.2. THERMOSETTING PLASTICS 7 II. 2. POLYOLEFINS 8 II.2.1. POLYETHYLENE (PE) 9 II.2.2. POLYPROPYLENE (PP) 11 II.2.3. POLYBUT-1-ENE 12 II.2.4. POLYISOBUTYLENE 12 II. 3. POLYMER DEGRADATION 13 II.3.1. PHOTO-OXIDATIVE DEGRADATION 13 II.3.2. THERMAL DEGRADATION 15 II.3.3. OZONE INDUCED DEGRADATION 16 II.3.4. MECHANO-CHEMICAL DEGRADATION 17 II.3.5. CATALYTIC DEGRADATION 17 II.3.6. BIODEGRADATION 17 II. 4. FACTOR AFFECTING POLYMER DEGRADATION 18 II.4.1. INTERNAL FACTOR 18 II.4.2. ENVIRONMENTAL FACTOR 19 II. 5. GRAPHITIC CARBON NITRIDE (g-C3N4) 20 II.5.1. STRUCTURE AND MORPHOLOGY OF g-C3N4 21 II.5.2. MODIFICATION OF g-C3N4 24 CHAPTER III EXPERIMENTAL 26 III. 1. MATERIALS 26 III. 2. EQUIPMENT AND INSTRUMENTS 26 III. 3. INSTRUMENT FOR CHARACTERIZATIONS 27 III. 4. EXPERIMENTAL PROCEDURES 28 III.4.1. SYNTHESIS OF Ru/g-C3N4 28 III.4.2. PREPARATION LDPE FILM COMPOSITE 28 III.4.3. PREPARATION BUFFER SOLUTION 29 III.4.4. PHOTOCATALYTIC DEGRADATION TEST 30 III. 5. CHARACTERIZATION OF Ru/g-C3N4 31 III.5.1. SURFACE MORPHOLOGY 31 III.5.2. X-RAY DIFFRACTION (XRD) 31 III.5.3. X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 31 III.5.4. THERMOGRAVIMETRIC ANALYSIS (TGA) 31 III. 6. CHARACTERIZATION OF LDPE FILM 32 III.6.1. WEIGHT LOSS 32 III.6.2. TENSILE TESTING 32 III.6.3. SURFACE MORPHOLOGY 32 III.6.4. THERMOGRAVIMETRIC ANALYSIS (TGA) 33 III.6.5. ATR-FTIR 33 III.6.6. HIGH-TEMPERATURE GEL PERMEATION CHROMATOGRAPHY (HT-GPC) 33 III.6.7. ZETA POTENTIAL 33 III.6.8. X-RAY DIFFRACTION (XRD) 34 CHAPTER IV RESULT AND DISCUSSION 35 IV. 1. CHARACTERIZATION OF Ru/g-C3N4 35 IV.1. 1. SURFACE MORPHOLOGY OF CATALYST 35 IV.1. 2. CRYTALLINITY OF Ru/g-C3N4 AND g-C3N4 37 IV.1. 3. SURFACE CHEMICAL STATE OF g-C3N4 AND Ru/g-C3N4 38 IV.1. 4. THERMAL STABILITY TEST OF g-C3N4 AND Ru/g-C3N4 39 IV. 2. CHARACTERIZATION OF LDPE FILM BEFORE AND AFTER DEGRADATION 40 IV.2.1. TENSILE STRENGTH OF PE FILM 40 IV.2.2. THERMAL STABILITY TEST OF PE FILM 41 IV.2.3. SURFACE MORPHOLOGY PE FILM BEFORE AND AFTER DEGRADATION 43 IV.2.4. WEIGHT LOSS OF PE FILM AFTER DEGRADATION 45 IV.2.5. ZETA POTENTIAL BETWEEN AQUEOUS MEDIUM AND PE FILM 46 IV.2.6. MOLECULAR WEIGHT CHANGE OF PE FILM AFTER DEGRADATION 47 IV.2.7. CRYTALLINITY OF PE FILM BEFORE AND AFTER DEGRADATION 49 IV.2.8. FUNCTIONAL GROUP CHANGES OF PE FILM BEFORE AND AFTER DEGRADATION 51 CONCLUSION 59 REFERENCE 60 SUPPORTING INFROMATION 69

    REFERENCE
    [1] A. Siddiqua, J.N. Hahladakis, W.A.K.A. Al-Attiya, An overview of the environmental pollution and health effects associated with waste landfilling and open dumping, Environ. Sci. Pollut. Res. 29 (2022) 58514–58536. https://doi.org/10.1007/s11356-022-21578-z.
    [2] N. Evode, S.A. Qamar, M. Bilal, D. Barceló, H.M.N. Iqbal, Plastic waste and its management strategies for environmental sustainability, Case Stud. Chem. Environ. Eng. 4 (2021) 100142. https://doi.org/10.1016/j.cscee.2021.100142.
    [3] L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, N.H. Ravindranath, Perspective: Jatropha cultivation in southern India: Assessing farmers’ experiences, Biofuels, Bioprod. Biorefining. 6 (2012) 246–256. https://doi.org/10.1002/bbb.
    [4] H.J. Lee, J.W. Baek, T.J. Kim, H.S. Park, S.H. Moon, K.L. Park, S.M. Bae, J. Park, B.Y. Lee, Synthesis of long-chain branched polyolefins by coordinative chain transfer polymerization, Macromolecules. 52 (2019) 9311–9320. https://doi.org/10.1021/acs.macromol.9b01705.
    [5] M.E. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling. 2 (2017) 1–11. https://doi.org/10.3390/recycling2040024.
    [6] R. Siddique, J. Khatib, I. Kaur, Use of recycled plastic in concrete: A review, Waste Manag. 28 (2008) 1835–1852. https://doi.org/10.1016/j.wasman.2007.09.011.
    [7] R. Kumar, A. Verma, A. Shome, R. Sinha, S. Sinha, P.K. Jha, R. Kumar, P. Kumar, Shubham, S. Das, P. Sharma, P.V.V. Prasad, Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions, Sustain. 13 (2021) 1–40. https://doi.org/10.3390/su13179963.
    [8] B. Singh, N. Sharma, Mechanistic implications of plastic degradation, Polym. Degrad. Stab. 93 (2008) 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.
    [9] J. Henych, A. Mattsson, J. Tolasz, V. Štengl, L. Österlund, Solar light decomposition of warfare agent simulant DMMP on TiO2 /graphene oxide nanocomposites, Catal. Sci. Technol. 9 (2019) 1816. https://doi.org/10.1039/c9cy00059c.
    [10] M. Rani, U. Shanker, Green synthesis of TiO2 and its photocatalytic activity, Handb. Smart Photocatalytic Mater. (2020) 11–61. https://doi.org/10.1016/b978-0-12-819051-7.00002-6.
    [11] J. Saien, A.R. Soleymani, Feasibility of using a slurry falling film photo-reactor for individual and hybridized AOPs, J. Ind. Eng. Chem. 18 (2012) 1683–1688. https://doi.org/10.1016/j.jiec.2012.03.014.
    [12] S.K. Gaddam, R. Pothu, R. Boddula, Graphitic carbon nitride (g-C3N4) reinforced polymer nanocomposite systems—A review, Polym. Compos. 41 (2020) 430–442. https://doi.org/10.1002/pc.25410.
    [13] M.D. Bhatt, J.Y. Lee, Advancement of platinum (Pt)-Free (Non-Pt precious metals) and/or metal-free (Non-precious-metals) electrocatalysts in energy applications: A Review and Perspectives, Energy and Fuels. 34 (2020) 6634–6695. https://doi.org/10.1021/acs.energyfuels.0c00953.
    [14] Q. Xu, Q.S. Huang, T.Y. Luo, R.L. Wu, W. Wei, B.J. Ni, Coagulation removal and photocatalytic degradation of microplastics in urban waters, Chem. Eng. J. 416 (2021) 129123. https://doi.org/10.1016/j.cej.2021.129123.
    [15] K. Hu, W. Tian, Y. Yang, G. Nie, P. Zhou, Y. Wang, X. Duan, S. Wang, Microplastics remediation in aqueous systems: Strategies and technologies, Water Res. 198 (2021) 117144. https://doi.org/10.1016/j.watres.2021.117144.
    [16] R.V. de Camargo, C. Saron, Mechanical–chemical recycling of low-density polyethylene waste with polypropylene, J. Polym. Environ. 28 (2020) 794–802. https://doi.org/10.1007/s10924-019-01642-5.
    [17] Y.N. Kim, J.H. Yoon, K.H. Kim, Microplastic contamination in soil environment - A review, Soil Sci. Annu. 71 (2020) 300–308. https://doi.org/10.37501/soilsa/131646.
    [18] M. Oliveira, M. Almeida, The why and how of micro(nano)plastic research, TrAC Trends Anal. Chem. 114 (2019) 196–201. https://doi.org/10.1016/j.trac.2019.02.023.
    [19] M.C. Rillig, W © 2012, (2012) 6453–6454.
    [20] V. Siracusa, P. Rocculi, S. Romani, M.D. Rosa, Biodegradable polymers for food packaging: a review, Trends Food Sci. Technol. 19 (2008) 634–643. https://doi.org/10.1016/j.tifs.2008.07.003.
    [21] S. Nanda, F. Berruti, Thermochemical conversion of plastic waste to fuels: A review, Environ. Chem. Lett. 19 (2021) 123–148. https://doi.org/10.1007/s10311-020-01094-7.
    [22] Polymers : Molecular Structure, (1953) 1–2.
    [23] S. Amin, M. Amin, Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation, Rev. Adv. Mater. Sci. 29 (2011) 15–30.
    [24] A. Dotan, Biobased Thermosets, Handb. Thermoset Plast. (2014) 577–622. https://doi.org/10.1016/b978-1-4557-3107-7.00015-4.
    [25] K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag. 69 (2017) 24–58. https://doi.org/10.1016/j.wasman.2017.07.044.
    [26] C. Li, A. Strachan, Molecular simulations of crosslinking process of thermosetting polymers, Polymer (Guildf). 51 (2010) 6058–6070. https://doi.org/10.1016/j.polymer.2010.10.033.
    [27] G. Zanchin, G. Leone, Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges, Prog. Polym. Sci. 113 (2021) 101342. https://doi.org/10.1016/j.progpolymsci.2020.101342.
    [28] N.G. Karsli, A. Aytac, Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites, Mater. Des. 32 (2011) 4069–4073. https://doi.org/10.1016/j.matdes.2011.03.021.
    [29] O.P. Grigoryeva, A.M. Fainleib, A.L. Tolstov, O.M. Starostenko, E. Lievana, J. Karger-Kocsis, Thermoplastic elastomers based on recycled high-density polyethylene, ethylene-propylene-diene monomer rubber, and ground tire rubber, J. Appl. Polym. Sci. 95 (2005) 659–671. https://doi.org/10.1002/app.21177.
    [30] D. Jayanth, P.S. Kumar, G.C. Nayak, J.S. Kumar, S.K. Pal, R. Rajasekar, A Review on Biodegradable Polymeric Materials Striving Towards the Attainment of Green Environment, J. Polym. Environ. 26 (2018) 838–865. https://doi.org/10.1007/s10924-017-0985-6.
    [31] R. Hackl, S. Perret, Power production with Organic Rankine Cycle technology utilizing waste heat from a cracker and three polyethylene units, (2009). https://doi.org/10.13140/rg.2.1.3160.0160.
    [32] H. Sato, M. Shimoyama, T. Kamiya, T. Amari, S. Aic, T. Ninomiya, H.W. Siesler, Y. Ozaki, Raman spectra of high-density, low-density, and linear low-density polyethylene pellets and prediction of their physical properties by multivariate data analysis, J. Appl. Polym. Sci. 86 (2002) 443–448. https://doi.org/10.1002/app.10999.
    [33] R. Polymerization, Handbook of, 2009.
    [34] D.L. Wilfong, G.W. Knight, Crystallization mechanisms for LLDPE and its fractions, J. Polym. Sci. Part B Polym. Phys. 28 (1990) 861–870. https://doi.org/10.1002/polb.1990.090280605.
    [35] P. Bajpai, Carbon Fiber, Second Edition, 2020. https://doi.org/10.1016/c2020-0-01857-8.
    [36] M. Liang, X. Xin, W. Fan, J. Zhang, H. Jiang, Z. Yao, Comparison of rheological properties and compatibility of asphalt modified with various polyethylene, Int. J. Pavement Eng. 22 (2021) 11–20. https://doi.org/10.1080/10298436.2019.1575968.
    [37] J. Parameswaranpillai, S.M. Rangappa, A.G. Rajkumar, S. Siengchin, Recent Developments in Plastic Recycling, 2021. http://www.springer.com/series/16333.
    [38] M. Arslan, G. Acik, M.A. Tasdelen, The emerging applications of click chemistry reactions in the modification of industrial polymers, Polym. Chem. 10 (2019) 3806–3821. https://doi.org/10.1039/c9py00510b.
    [39] W. Zheng, A. He, C. Liu, H. Shao, R. Wang, The influences of alkylaluminium as cocatalyst on butene-1 polymerization with MgCl2-supported TiCl4 Ziegler-Natta catalysts, Polymer (Guildf). 210 (2020) 122998. https://doi.org/10.1016/j.polymer.2020.122998.
    [40] G.P. Belov, Selective dimerization, oligomerization, homopolymerization and copolymerization of olefins with complex organometallic catalysts, Russ. J. Appl. Chem. 81 (2008) 1655–1666. https://doi.org/10.1134/s107042720809036x.
    [41] N.E. Stucker, J.J. Higgins, C. Exxon Chemical, Butyl rubber and polyisobutylene, (1977) 185–186. https://doi.org/10.1007/978-1-4757-0866-0_14.
    [42] A. Svobodova, D. Walterova, J. Vostalova, Ultraviolet light induced alteration to the skin., Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 150 (2006) 25–38. https://doi.org/10.5507/bp.2006.003.
    [43] L. Hao, H. Huang, Y. Zhang, T. Ma, Oxygen Vacant Semiconductor Photocatalysts, Adv. Funct. Mater. 31 (2021) 1–32. https://doi.org/10.1002/adfm.202100919.
    [44] P. R. E. J. Cowley, H. W. Melville, The photo-degradation of polymethylmethacrylate I. The mechanism of degradation, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 210 (1952) 461–481. https://doi.org/10.1098/rspa.1952.0013.
    [45] E. Yousif, R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene: Review, Springerplus. 2 (2013) 1–32. https://doi.org/10.1186/2193-1801-2-398.
    [46] J. Li, S.I. Stoliarov, Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers, Polym. Degrad. Stab. 106 (2014) 2–15. https://doi.org/10.1016/j.polymdegradstab.2013.09.022.
    [47] F. Shafizadeh, A.G.W. Bradbury, Thermal degradation of cellulose in air and nitrogen at low temperatures, 23 (1979) 1431–1442.
    [48] S.M. Al-Salem, P. Lettieri, Kinetic study of high density polyethylene (HDPE) pyrolysis, Chem. Eng. Res. Des. 88 (2010) 1599–1606. https://doi.org/10.1016/j.cherd.2010.03.012.
    [49] M. Shiraiwa, K. Selzle, U. Pöschl, Hazardous components and health effects of atmospheric aerosol particles: Reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins, Free Radic. Res. 46 (2012) 927–939. https://doi.org/10.3109/10715762.2012.663084.
    [50] B. Singh, N. Sharma, Mechanistic implications of plastic degradation, Polym. Degrad. Stab. 93 (2008) 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008.
    [51] D.P. Serrano, J. Aguado, J.M. Escola, Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals, ACS Catal. 2 (2012) 1924–1941. https://doi.org/10.1021/cs3003403.
    [52] F. Alshehrei, Biodegradation of synthetic and natural plastic by microorganism. journal of applied & environmental microbiology., J. Appl. Environ. Microbiol. 5(1), 8–1 (2017) 8–19. https://doi.org/10.12691/jaem-5-1-2.
    [53] A.Schnürer, Å.Jarvis, Microbiology of the Biogas process. SLU (Swedish University of Agricultural Sciences), 2018.
    [54] W. Summer, Microbial degradation of plastics, Anti-Corrosion Methods Mater. 11 (1964) 19–21. https://doi.org/10.1108/eb020171.
    [55] D. Briassoulis, A. Aristopoulou, M. Bonora, I. Verlodt, Degradation Characterisation of Agricultural Low-density Polyethylene Films, Biosyst. Eng. 88 (2004) 131–143. https://doi.org/10.1016/j.biosystemseng.2004.02.010.
    [56] L. Liu, M. Xu, Y. Ye, B. Zhang, On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts, Sci. Total Environ. 806 (2022) 151312. https://doi.org/10.1016/j.scitotenv.2021.151312.
    [57] P. Bracco, L. Costa, M.P. Luda, N. Billingham, A review of experimental studies of the role of free-radicals in polyethylene oxidation, Polym. Degrad. Stab. 155 (2018) 67–83. https://doi.org/10.1016/j.polymdegradstab.2018.07.011.
    [58] M.C. Ariza-Tarazona, J.F. Villarreal-Chiu, J.M. Hernández-López, J. Rivera De la Rosa, V. Barbieri, C. Siligardi, E.I. Cedillo-González, Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: Effect of pH and temperature in the photocatalytic degradation process, J. Hazard. Mater. 395 (2020) 122632. https://doi.org/10.1016/j.jhazmat.2020.122632.
    [59] S. Ullah, K. Khan, M.U. Farooq, W. Ahmad, M. Naeem, F. Subhan, M. Yaseen, Perspectives on Advances in the Catalytic Desulfurization and Denitrogenation of Transportation Fuel Oils Using Graphitic Carbon Nitride and Boron Nitride, Energy and Fuels. 36 (2022) 8900–8924. https://doi.org/10.1021/acs.energyfuels.2c01059.
    [60] J. Zhu, P. Xiao, H. Li, S.A.C. Carabineiro, Graphitic carbon nitride: Synthesis, properties, and applications in catalysis, ACS Appl. Mater. Interfaces. 6 (2014) 16449–16465. https://doi.org/10.1021/am502925j.
    [61] P. Niu, L. Zhang, G. Liu, H.M. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater. 22 (2012) 4763–4770. https://doi.org/10.1002/adfm.201200922.
    [62] J. Liu, H. Wang, M. Antonietti, Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis, Chem. Soc. Rev. 45 (2016) 2308–2326. https://doi.org/10.1039/c5cs00767d.
    [63] J. Wang, S. Wang, A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application, Coord. Chem. Rev. 453 (2022) 214338. https://doi.org/10.1016/j.ccr.2021.214338.
    [64] J. Xu, Y. Li, S. Peng, G. Lu, S. Li, Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: The effect of the pyrolysis temperature of urea, Phys. Chem. Chem. Phys. 15 (2013) 7657–7665. https://doi.org/10.1039/c3cp44687e.
    [65] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media, Nat. Commun. 8 (2017) 1–10. https://doi.org/10.1038/ncomms14969.
    [66] J. Lin, J. Ding, H. Wang, X. Yang, X. Zheng, Z. Huang, W. Song, J. Ding, X. Han, W. Hu, Boosting energy efficiency and Stability of Li–CO2 batteries via synergy between Ru atom clusters and single-atom Ru–N4 sites in the Electrocatalyst Cathode, Adv. Mater. 34 (2022) 1–11. https://doi.org/10.1002/adma.202200559.
    [67] C. Hu, M.T. Liu, A. Sakai, M. Yoshida, K.Y.A. Lin, C.C. Huang, Synergistic effect of Cu and Ru decoration on g-C3N4 for electrocatalytic CO2 reduction, J. Ind. Eng. Chem. 115 (2022) 329–338. https://doi.org/10.1016/j.jiec.2022.08.015.
    [68] F.S. Marinkovic, D.M. Popovic, J.D. Jovanovic, B.S. Stankovic, B.K. Adnadjevic, Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: example of low-density polyethylene and NaA zeolite composite, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1–9. https://doi.org/10.1007/s00339-019-2899-8.
    [69] T.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta, Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods, Environ. Chem. Lett. 17 (2019) 1341–1346. https://doi.org/10.1007/s10311-019-00859-z.
    [70] K.N. Fotopoulou, H.K. Karapanagioti, Degradation of various plastics in the environment, Handb. Environ. Chem. 78 (2019) 71–92. https://doi.org/10.1007/698_2017_11.
    [71] E. Földes, Some aspects of the degradation and stabili-zation of Phillips type polyethylene Ildikó Kriston (2010).

    無法下載圖示 全文公開日期 2026/02/09 (校內網路)
    全文公開日期 2028/02/09 (校外網路)
    全文公開日期 2028/02/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE