簡易檢索 / 詳目顯示

研究生: TRUONG CHI TAM
TRUONG CHI TAM
論文名稱: 對設備更換問題的動態規劃方法進行研究
On Investigation of Dynamic Programming Approaches to Equipment Replacement Problems
指導教授: 水谷英二
Eiji Mizutani
口試委員: 黃安橋
An-Chyau Huang
蔡欣男
Hsin-Nan Tony Tsai
水谷英二
Eiji Mizutani
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 56
外文關鍵詞: Equipment replacement, Dynamic programming, Capacity scheduling
相關次數: 點閱:50下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • This thesis primarily focuses on investigating existing literature regarding dynamic programming approaches for various equipment replacement problems, with the overarching goal of identifying optimal replacement policies that effectively optimize specified criteria. Through an extensive literature review, the study systematically explores fundamental dynamic programming models, including Bellman's classical model, Wagner's economic life models, and age replacement policies. Additionally, the research extends its scope to dynamic programming methods addressing equipment replacement problems influenced by the stochastic arrival of new technology, considering both single and multiple challengers and drawing insights from Hartman's study. Furthermore, the investigation broadens to encompass capacity scheduling problems, providing a nuanced understanding of the complexities inherent in strategic planning and operational efficiency. By examining a diverse array of equipment replacement models and other relevant models, our goal is to uncover their respective strengths and weaknesses, offering a comprehensive understanding of the landscape surrounding equipment replacement models.

    Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . ii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 BACKGROUND AND MOTIVATION . . . . . . . . . . . . . . 1 1.1 Basic equipment replacement models . . . . . . . . . . . 1 1.2 Extensive equipment replacement models . . . . . . . . . 4 1.3 Research motivation . . . . . . . . . . . . . . . . . . . . . 9 2 FUNDAMENTAL EQUIPMENT REPLACEMENT MODELS . 13 2.1 Age replacement policies . . . . . . . . . . . . . . . . . . 13 2.2 Bellman’s classical model . . . . . . . . . . . . . . . . . . 16 2.3 Economic life models . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Wagner’s deterministic economic life model . . . . 20 2.3.2 Wagner’s stochastic economic life model . . . . . 23 3 VARIOUS EXTENSIONS OF THE BASIC MODELS . . . . . 27 3.1 Extension of Bellman’s model . . . . . . . . . . . . . . . 28 3.1.1 Single challenger case . . . . . . . . . . . . . . . 28 3.1.2 Multiple challengers case . . . . . . . . . . . . . . 32 3.2 Extension of Wagner’s model . . . . . . . . . . . . . . . . 35 3.2.1 Single challenger case . . . . . . . . . . . . . . . 35 3.2.2 Multiple challengers case . . . . . . . . . . . . . . 39 3.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . 42 4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix: CAPACITY SCHEDULING MODELS . . . . . . . . . 50 A.1 Economic Lot Size Model . . . . . . . . . . . . . . . . . 50 A.1.1 Description and assumptions . . . . . . . . . . . . 50 A.1.2 Mathematical model . . . . . . . . . . . . . . . . 51 A.1.3 Dynamic programming formulation . . . . . . . . 52 A.2 Workforce size model . . . . . . . . . . . . . . . . . . . . 53 A.2.1 Description and assumptions . . . . . . . . . . . . 53 A.2.2 Dynamic programming formulation . . . . . . . . 53 A.3 Elementary inventory model . . . . . . . . . . . . . . . . 54 A.3.1 Description and assumptions . . . . . . . . . . . . 54 A.3.2 Mathematical model . . . . . . . . . . . . . . . . 55 A.3.3 Dynamic programming formulation . . . . . . . . 56

    [1] Abensur, E. (2010). Optimization models applied to equipment replacement policy. In XVI International Conference on Industrial Engineering and Operations Management. São Carlos, Brazil.
    [2] Arda, Y. and Hennet, J.-C. (2006). Inventory control in a multi-supplier system. International Journal of Production Economics, 104(2):249–259.
    [3] Aryanezhad, M.-B. Q. (1992). An algorithm based on a new sufficient condition of optimality in dynamic lot size model. European Journal of Operational Research, 59(3):425–433.
    [4] Barlow, R. E. and Proschan, F. (1996). Mathematical theory of reliability. SIAM.
    [5] Bean, J. C., Lohmann, J. R., and Smith, R. L. (1984). A dynamic infinite horizon replacement economy decision model. The Engineering Economist, 30(2):99–120.
    [6] Bellman, R. (1955). Equipment replacement policy. Journal of the Society for Industrial and Applied Mathematics, 3:133–136.
    [7] Bellman, R. (1957). Dynamic programming princeton university press princeton. New Jersey Google Scholar, pages 24–73.
    [8] Bethuyne, G. (1998). Optimal replacement under variable intensity of utilization and technological progress. The Engineering Economist, 43(2):85.
    [9] Bhattacharyya, D., Khan, R. A., and Mitra, M. (2021). Two-sample nonparametric test for comparing mean time to failure functions in age replacement. Journal of Statistical Planning and Inference, 212:34–44.
    [10] Boucekkine, R., Hritonenko, N., and Yatsenko, Y. (2013). Optimal control of agestructured populations in economy, demography, and the environment. Routledge.
    [11] Brahimi, N., Dauzere-Peres, S., Najid, N. M., and Nordli, A. (2006). Single item lot sizing problems. European Journal of Operational Research, 168(1):1–16.
    [12] Cattrysse, D., Maes, J., and Van Wassenhove, L. N. (1990). Set partitioning and column generation heuristics for capacitated dynamic lotsizing. European Journal of Operational Research, 46(1):38–47.
    [13] Chang, C.-C. (2018). Optimal age replacement scheduling for a random work system with random lead time. International Journal of Production Research, 56(16):5511–5521.
    [14] Chang, C.-C., Sheu, S.-H., and Chen, Y.-L. (2013). Optimal replacement model with age-dependent failure type based on a cumulative repair-cost limit policy. Applied Mathematical Modelling, 37(1-2):308–317.
    [15] Cheevaprawatdomrong, T. and Smith, R. L. (2003). A paradox in equipment replacement under technological improvement. Operations Research Letters, 31(1):77–82.
    [16] Cho, Y. Y., Jeong, G. H., and Kim, S. H. (1991). A delphi technology forecasting approach using a semi-markov concept. Technological Forecasting and Social Change, 40(3):273–287.
    [17] Dreyfus, S. E. (1960). A generalized equipment replacement study. Journal of the Society for Industrial and Applied Mathematics, 8(3):425–435.
    [18] Ekoko, P. (2006). Derivation of transition matrix for staff promotion markov model using pgf. Global Journal of Mathematical Sciences, 5(2):141–145.
    [19] Eryilmaz, S. (2021). Revisiting discrete time age replacement policy for phase-type lifetime distributions. European Journal of Operational Research, 295(2):699–704.
    [20] Evans, J. R. (1985). An efficient implementation of the wagner-whitin algorithm for dynamic lot-sizing. Journal of Operations Management, 5(2):229–235.
    [21] Fraser, J. M. and Posey, J. W. (1989). A framework for replacement analysis. European Journal of Operational Research, 40(1):43–57.
    [22] Guerrero, W. J., Yeung, T. G., and Guéret, C. (2013). Joint-optimization of inventory policies on a multi-product multi-echelon pharmaceutical system with batching and ordering constraints. European Journal of Operational Research, 231(1):98–108.
    [23] Guo, C. and Li, X. (2014). A multi-echelon inventory system with supplier selection and order allocation under stochastic demand. International Journal of Production Economics, 151:37–47.
    [24] Hajji, A., Gharbi, A., Kenne, J.-P., and Pellerin, R. (2011). Production control and replenishment strategy with multiple suppliers. European Journal of Operational Research, 208(1):67–74.
    [25] Hartman, J. C. and Murphy, A. (2006). Finite-horizon equipment replacement analysis. IIE transactions, 38(5):409–419.
    [26] Hartman, J. C. and Rogers, J. (2006). Dynamic programming approaches for equipment replacement problems with continuous and discontinuous technological change.
    IMA Journal of Management Mathematics, 17(2):143–158.
    [27] Hartman, J. C. and Tan, C. H. (2014). Equipment replacement analysis: a literature review and directions for future research. The Engineering Economist, 59(2):136–153.
    [28] Heady, R. B. and Zhu, Z. (1994). An improved implementation of the wagner-whitin algorithm. Production and Operations Management, 3(1):55–63.
    [29] Hopp, W. J. and Nair, S. K. (1991). Timing replacement decisions under discontinuous technological change. Naval Research Logistics (NRL), 38(2):203–220.
    [30] Hopp, W. J. and Nair, S. K. (1994). Markovian deterioration and technological change. IIE transactions, 26(6):74–82.
    [31] Hritonenko, N. and Yatsenko, Y. (2007). Optimal equipment replacement without paradoxes: a continuous analysis. Operations Research Letters, 35(2):245–250.
    [32] Jardine, A. K. and Tsang, A. H. (2005). Maintenance, replacement, and reliability: theory and applications. CRC press.
    [33] Jiang, R. (2018). Performance evaluation of seven optimization models of age replacement policy. Reliability Engineering & System Safety, 180:302–311.
    [34] Kara, S. S. (2011). Supplier selection with an integrated methodology in unknown environment. Expert Systems with Applications, 38(3):2133–2139.
    [35] Meyer Jr, R. A. (1971). Equipment replacement under uncertainty. Management Science, 17(11):750–758.
    [36] Nair, S. K. and Hopp, W. J. (1992). A model for equipment replacement due to technological obsolescence. European Journal of Operational Research, 63(2):207–221.
    [37] Nakagawa, T. (2005). Age replacement. Maintenance Theory of Reliability, pages 69–94.
    [38] Nakagawa, T. et al. (2014). Random maintenance policies. Springer.
    [39] Nakagawa, T., Hashimoto, M., Hashimoto, Y., Shirozu, K., and Hoka, S. (2017). The effects of tramadol on postoperative shivering after sevoflurane and remifentanil anesthesia. BMC anesthesiology, 17(1):1–7.
    [40] Park, M. and Pham, H. (2016). Cost models for age replacement policies and block replacement policies under warranty. Applied Mathematical Modelling, 40(9-10):5689–5702.
    [41] Price, W. and Piskor, W. (1972). The application of goal programming to manpower planning. INFOR: information systems and operational research, 10(3):221–231.
    [42] Raghavendra, B. (1991). A bivariate model for markov manpower planning systems.
    Journal of the Operational Research Society, 42:565–570.
    [43] Rao, P. P. (1990). A dynamic programming approach to determine optimal manpower recruitment policies. Journal of the Operational Research Society, 41(10):983–988.
    [44] Sethi, S. and Chand, S. (1979). Planning horizon procedures for machine replacement models. Management Science, 25(2):140–151.
    [45] Shang, L., Liu, B., Cai, Z., and Wu, C. (2022). Random maintenance policies for sustaining the reliability of the product through 2d-warranty. Applied Mathematical Modelling, 111:363–383.
    [46] Sheu, S.-H., Liu, T.-H., and Zhang, Z.-G. (2019). Extended optimal preventive replacement policies with random working cycle. Reliability Engineering & System Safety, 188:398–415.
    [47] Sheu, S.-H., Liu, T.-H., Zhang, Z.-G., Zhao, X., and Chien, Y.-H. (2021). A generalized age-dependent minimal repair with random working times. Computers & Industrial Engineering, 156:107248.
    [48] Sterman, J. (2000). Instructor’s manual to accompany business dyanmics: systems thinking and modeling for a complex world. McGraw-Hill.
    [49] Taha, H. A. (2002). Operations Research: An Introduction. Pearson Education.
    [50] Taha, H. A. (2017). Operations research an introduction tenth edition global edition.
    [51] Tanchoco, J. and Leung, L. (1987). An input-output model for equipment replacement decisions. Engineering Costs and Production Economics, 11(1):69–78.
    [52] Veinott Jr, A. F. and Wagner, H. M. (1962). Optimal capacity scheduling—i. Operations Research, 10(4):518–532.
    [53] Wagner, H. M. (1975). Princibles of Operations Research. Englewood Cliffs, NJ: Prentice-Hall,Inc.
    [54] Wagner, H. M. and Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management science, 5(1):89–96.
    [55] Wang, J., Qiu, Q., and Wang, H. (2021). Joint optimization of condition-based and age-based replacement policy and inventory policy for a two-unit series system. Reliability Engineering & System Safety, 205:107251.
    [56] Ware, N. R., Singh, S., and Banwet, D. (2014). A mixed-integer non-linear program to model dynamic supplier selection problem. Expert Systems with Applications, 41(2):671–678.
    [57] Wicaksono, P. A. et al. (2015). Optimal strategy for multi-product inventory system with supplier selection by using model predictive control. Procedia Manufacturing,4:208–215.
    [58] Wolsey, L. A. (1995). Progress with single-item lot-sizing. European Journal of Operational Research, 86(3):395–401.
    [59] Zanakis, S. H. and Maret, M. W. (1981). A markovian goal programming approach to aggregate manpower planning. Journal of the Operational Research Society, 32:55–63.
    [60] Zhao, X., Al-Khalifa, K. N., Hamouda, A. M., and Nakagawa, T. (2017). Age replacement models: A summary with new perspectives and methods. Reliability Engineering & System Safety, 161:95–105.

    QR CODE