簡易檢索 / 詳目顯示

研究生: 王鈴祺
Ling-Chi Wang
論文名稱: 以紫外線/La2Ti2O7程序分別處理含染料及異丙醇水溶液之研究
Treatment of Dye and Isopropanol in Aqueous Solution by UV/La2Ti2O7 process
指導教授: 顧洋
Young Ku
口試委員: 劉志成
Jhy-Chern, Liu
曾迪華
Dyi-Hua, Tseng
張祖恩
Juu-En, Chang
蔣本基
Pen-Chi, Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 145
中文關鍵詞: 異丙醇光降解鈣鈦礦固態反應法光解
外文關鍵詞: Solid state reaction, Perovskite, Photocatalytic degradation, IPA, Photolysis
相關次數: 點閱:224下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • La2Ti2O7 為一種層狀的perovskite結構,並且在紫外線的照射下可以產生光觸媒的特性,它的活性主要是因為特殊的晶相及觸媒的表面積。在固態反應法的製備過程中,研磨和燒結溫度的高低對於perovskite結構晶相的形成和觸媒表面積的大小有著很大的影響。在本研究中La2Ti2O7 由固態反應法製備而成,而其特性則分別使用XRD、SEM、UV-DRS、ESCA和界達電位儀進行分析。
    本研究係利用紫外線/ La2Ti2O7 程序分別處理含染料及異丙醇水溶液,探討溶液pH值、反應物初始濃度、紫外線光強度和觸媒添加量對反應物去除率的影響。紫外線/ La2Ti2O7程序光分解含染料及IPA水溶液時,由實驗結果顯示,隨著反應物的初始濃度降低、紫外線光強度及觸媒添加量的增加,皆會使得染料及異丙醇的去除率增加。對於IPA光分解的反應系統而言,在酸性溶液中的去除率比在鹼性溶液中高,而其反應趨勢與染料的光分解系統不同。在染料的光分解系統中當溶液的pH值為3.0時反應較快,而在溶液pH值為7.0時反應速率最慢,而反應速率會突然增加當溶液pH值在8.0到11.0。此實驗結果是因為染料在酸性條件中光催化的反應速率會比光解的反應速率快,而在溶液pH值大於10時,光催化的反應速率會比光解速率慢。


    A highly donor-doped (110) layered perovskite, La2Ti2O7, was found to be an efficient photocatalyst under UV irradiation. The activity depended on the crystalline phase and the surface area of perovskite oxide. The grinding methods of the mixed oxide precursors before sintering as well as the sintering temperature affected the crystalline phase and the surface area of the formed perovskite. La2Ti2O7 in this study was prepared by solid state reaction (SSR) and the obtained powders were characterized by XRD, SEM, UV-DRS, XPS and zeta potential.
    Photocatalytic degradation of dye and IPA in aqueous solution by UV/ La2Ti2O7 process was studied. The experiments were carried out under solution pH, initial concentration of RR22 and IPA, UV light intensity and catalyst loading. Photocatalytic degradation of RR22 and IPA in aqueous solution by UV/ La2Ti2O7 process was increased with increasing UV light intensity and catalyst loading. Photocatalytic degradation of RR22 and IPA in aqueous solution by UV/ La2Ti2O7 process was decreased with increasing initial concentration. Photocatalyst degradation was better in acid than in alkaline solution for IPA in aqueous solution by UV/ La2Ti2O7 process but the experimental trend of RR22 was different from IPA. The reaction rate of photocatalytic degradation was faster at pH=3.0, the slowest at pH=7.0 and that suddenly increased at solution pH 8.0~11.0. Reaction rate of RR22 photocatalytic degradation was faster than that of photolysis in acidic solution but reaction rate of RR22 photocatalytic degradation was slower than that of photolysis at pH=10.0~pH=11.0.

    ACKNOWLEDGMENTS…………………………………………………………………Ⅰ ENGLISH ABSTRACT…………….………………………………………………..........Ⅱ CHINESE ABSTRACT……...……………………………………………………………Ⅲ TABLE OF CONTENTS……………………………………………………………….....Ⅳ LIST OF FIGURES………………………………………………………………………..Ⅷ LIST OF TABLES…………………………………………..………………………….ⅩⅡ LIST OF SYMBOLS……………………………….……………….………………….ⅩⅢ CHAPTER 1 INTRODUCTION………………………………………….….…………….1 1.1 Background……………………………………………………………………..1 1.2 Objective and Scope…………………………………………………………….3 CHAPTER 2 LITERATURES REVIEW………………………………………...…………4 2.1 Perovskite Structures and Characteristics………………………………..……..4 2.1.1 Basic Information of Perovskite Structure………………………..……….4 2.1.2 Characteristics and Purposes of Perovskite Structures……………..……..7 2.1.3 Preparative Methods of Perovskite Structures………………………..….13 2.2 Reaction Principles of UV/La2Ti2O7..................................................................17 2.2.1 Structures and Photocatalytic Principles of TiO2…………………...……17 2.2.2 Principles and Reaction Mechanisms for UV/La2Ti2O7…………...……..26 2.3 Parameters Effect on UV/La2Ti2O7 Process……………………...……………29 2.3.1 Effect of Sintering Temperature for La2Ti2O7……………………..…….29 2.3.2 Effect of Solution pH…………………………..………………………...30 2.3.3 Effect of Initial Concentration………………………..………………….33 2.3.4 Effect of Light Intensity……………………………………..…………...35 2.3.5 Effect of Catalyst Loading………………………..……………………...37 CHAPTER 3 EXPERIMENTAL PROCEDURES AND EQUIPMENTS…………...……40 3.1 Instruments……………………………………………………...……………..40 3.2 Chemicals………………………………………………………...……………41 3.3 Apparatus……………………………………………..……………………….44 3.4 Experimental Procedures…………………………………………..………...47 3.4.1 Catalyst Preparation…………………………………..…………………47 3.4.2 Background Experiments…………………………..……………………47 3.4.3 Decomposition of RR22 by Photocatalytic Oxidation Process Using La2Ti2O7……………………………………….….……………………..48 3.4.4 Decomposition of IPA by Photocatalytic Oxidation Process Using La2Ti2O7……………………………………….….……………………..49 3.5 Experimental Framework……………………………………..……………….50 3.6 Analysis…..……………………………………………………………………51 3.6.1 Light Intensity Analysis………………………………………..………..51 3.6.2 Reactive Red 22 Analysis………………………………………...……..51 3.6.3 Isopropanol Analysis…………………………...………………………..51 CHAPTER 4 RESULTS AND DISCUSSIONS………………………………...………...55 4.1 Background Experiments………………………………..………………………55 4.1.1 Photolysis of RR22…………………………………..……………………55 4.1.2 Absorption Equilibrium of RR22……………………………..…………...58 4.1.3 Photolysis of IPA………………………...………………………………...60 4.2 La2Ti2O7 characterization analysis…………………………………..………….62 4.2.1 X-Ray Diffraction (XRD) Analysis…………………………...………….62 4.2.2 Scanning Electron Microscope (SEM) Analysis…………………...…….66 4.2.3 Diffuse Reflectance Spectra (DRS) Analysis………………………….....70 4.2.4 Zeta Potential Analysis……………………...……………………………72 4.2.5 X-ray Photoelectron Spectroscope Analysis (XPS)………………...……74 4.3 Decomposition of RR22 by Photocatalytic Oxidation Process Using La2Ti2O7.............................................................................................................77 4.3.1 Effect of solution pH………………………..……………………………77 4.3.2 Effect of light intensity…………………..………………………………88 4.3.3 Effect of photocatalyst loading………………………………………..…94 4.4 Decomposition of IPA by Photocatalytic Oxidation Process Using La2Ti2O7……………………………………………………………………….97 4.4.1 Effect of Solution pH………………………………..………………….97 4.4.2 Effect of Light Intensity……………………………………..………….107 4.4.3 Effect of Photocatalyst Loading………………………...………………114 4.5 Discussions………………………..…………………………………………...117 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS………………..……….123 REFERENCES………………………………………...…………………………………126 VITA……………………………………………...………………………………………135

    Aguedach, A., Brosillon, S., Morvan, J. and Lhadi, E. K., “Photocatalytic Degradation of Azo-Dyes Reactive Black 5 and Reactive Yellow 145 in Water over a Newly Deposited Titanium Dioxide ,” Appl. Catal. B, Vol.57, pp.55-62 (2005).
    Arslan, I., Balcioglu, I. A. and Bahnemann, D. W.,“Heterogeneous Photocatalytic Treatment of Simulated Dyehouse Effluents Using Novel TiO2-Photocatalysts,” Appl. Catal. B, Vol.26, pp.193-206 (2000).
    Behnajady, M.A., Modirshahla, N. and Hamzavi, R.,“Kinetic Study on Photocatalytic Degradation of C.I. Acid Yellow 23 by ZnO Photocatalyst,” J. Hazard. Mater, Vol.133, pp.226-232 (2006).
    Bhatkhande, D. S., Pangarkar, V. G. and Beenackers, A. A.C. M., “Photocatalytic Degradation of Nitrobenzene Using Titanium Dioxide and Concentrated Solar Radiation: Chemical Effects and Scaleup,” Water Res., Vol. 37, pp.1223-1230 (2003).
    Bruno, J.C., Cavalheiro, A.A., Zaghete, M.A. and Varela, J.A.,“Study of Potassium Additive on the Phase Formation and Ferroelectric Properties of 0.9PMN–0.1PT Ceramics,” Ceram. Int., Vol.32, pp.189- 194 (2006).
    Calzada, M. L., Sirela, R., Carmona, F. and Jiménez, B. “Investigations of a diol based sol-gel process for the preparation of lead titanate materials” J. Am. Ceram. Soc., Vol. 77, pp.1802-1808 (1995)
    Chiang, Y. M., Birnie III, D. P. and Kingery, W. D., “Physical Ceramics,” J. Wiley, pp. 38-41 (1976).
    Cho, S. P., Hong, S. C. and Hong, S. I., “Photocatalytic Degradation of the Landfill Leachate Containing Refractory Matters and Nitrogen Compounds,” Appl. Catal. B, Vol.39, pp.125-133 (2002).
    Chung, C. Y., Chang, Y. H., Chang, Y. S. and Chen, G. J. “High Dielectric Permittivity in Ca1−xBixTi1−xCrxO3 Ferroelectric Perovskite Ceramics,” J. Alloys Compd., Vol. 385, pp. 298-303 (2004).
    Cogan, S. F., Nguyen, N. M., Perrotti, S. J. and Rauh, R. D. “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., Vol. 66, pp.1333-1337 (1989).
    Domen, K.,”Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni-K2La2Ti3O10 ”, J. of Catal., Vol.196, pp.362-365 (2000).
    Fujishima, A. and Honda, K.,“Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, Vol. 37, pp.238 (1972).
    Galindo, C., Jacques, P. and Kalt, A.,“Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” Chemosphere, Vol. 45, pp.997-1005 (2001).
    Gratzel, M.,“Photoelectrochemical Cells”, Nature, 414 338 (2001).
    Guan, G., Kida, T., Harada, T., Isayama, M. and Yoshida, A., “Photoreduction of Dioxide with Water over K2Ti2O13 Photocatalyst Combined with Cu/ZnO Catalyst under Concentrated Sunlight,” Appl. Catal., A, Vol. 249, pp.11-18 (2003).
    Hagfeldt, A. and Grätzel, M.,“Light-Induced Redox Reactions in Nanocrystalline Systems,” Chem. Rev., Vol. 95, pp. 49 (1995).
    Hwang D.W., Kim H.G. and Lee J. S, “Photocatalytic Water Splliting over Highly Donor-Doped (110) Layered Perovskite,” J. Catal, Vol. 193, pp.40-48 (2000).
    Hwang D.W., Kim H.G. and Lee J. S,“ Photocatalytic Hydrogen Production from Water over M-Doped La2Ti2O7 (M=Cr, Fe) under Visible Light Irradiation”, J.Phys.Chem.B,Vol.109, pp. 2093-2102 (2005).
    Hwang D.W., Kim H.G. and Lee J. S., “Photocatalytic Decomposition of Water-Methanol Solution over Metal-Doped Layered Povskites under Visible Light Irradiation”, Catal. Today, Vol.93-95, pp. 845 – 850 (2004).
    Hwang, D. W., Kim, H. G., Jang, J. S., Bae, S. W., Ji, S. M. and Lee, J. S., ”Photocatalytic Degradation of CH3Cl over a Nickel-Loaded Layered Perovskite”, Ind. Eng. Chem. Res., Vol.42, pp.1184-1189 (2003).
    Hwang, D. W., Kim, H. G., Jang, J. S., Bae, S. W., Ji, S. M. and Lee, J. S., “Photocatalytic Decomposition of Water–Methanol Solution over Metal-Doped Layered Perovskites under Visible Light Irradiation,” Catal. Today, Vol.93-95, pp.845-850 (2004).
    Hwang, D. W., Kim, H. G., Jang, J. S., Bae, S. W., Ji, S. M. and Lee, J. S., ”Photocatalytic Degradation of CH3Cl over a Nickel-Loaded Layered Perovskite”, Ind. Eng. Chem. Res., Vol.42, pp.1184-1189 (2003).
    Im, K. V. and Choo, W. K., “The Perovskite Phase Formation of 0.4Pb(Yb1/2Nb1/2)O3- 0.6PbTiO3 Thin Films Prepared on Pt / Ti Electrode by Reactive Magnetron Sputtering”, J. Eur. Ceram. Soc., Vol.21, pp.1553-1556 (2001).
    Imai, H., Takei, Y., Shimizu, K., Matsuda, M. and Hirashima, H.,“Direct Preparation of Anatase TiO2 Nanotubes in Porous Alumina Membranes”, J. Mater. Chem., Vol.9, pp.2971 (1999).
    Jain, S., Vardia, J., Ameta, R. and Ameta, S. C., “Use of Malachite Green as Photocatalyst in Reduction of Sodium and Potassium Carbonates,” Energy Convers. Manage, Vol. 45, pp.1233-1242 (2004).
    Jeon, C. H., Kim, C. S., Han, K. B., Jhon, H. S. and Lee, S. Y., “Enhancement of the Ferroelectric Properties of Pb(Zr0.53Ti0.47)O3 Thin Films Fbricated by Laser Ablation,” Mater. Sci. Eng., B., Vol. 109, pp. 141-145 (2004).
    Jr, C. P. P. and Owens, F. J., “Introduction to Nanotechnology,” Willy Interscience, pp. 114 (2003).
    Kaneco, S., Rahmana, M. A., Suzuki, T., Katsumata, H. and Ohta, K., “Optimization of Solar Photocatalytic Degradation Conditions of Bisphenol A in Water Using Titanium Dioxide,” J. Photochem. Photobio., A., Vol. 163, pp.419-424 (2004).
    Kao, C. F. and Yang, C. L.,“Preparation and Electrical Properties of Barium Titanate Film by Hydrothermal Method,” J. Eur. Ceram. Soc., Vol. 19, pp. 1365-1368 (1999)
    Kato H. and Kudo A.,“Photocatalytic Water Splliting into H2 and O2 over Various Tantalate Photocatalysts,” Catal. Today, Vol.78, pp. 561 - 569 (2003)
    Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., “Introduction to ceramics,” Wiley, J., N. Y. (1976)
    Kudo, A. and Kato, H., “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting, ” Chem. Phys. Lett., Vol. 331, pp.373-377 (2000).
    Kudo, A., Kato, H. and Nakagawa, S., “Water Splitting into H2 and O2 on New Sr2M2O7 (M=Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity,” J. Phys. Chem. B, Vol. 104, pp. 571-575 (2000)
    Lee W.Y and Ko Y.G.,“Effect of Nickel-Loaded Method on the Water-Splitting Activity of a Layered NiOx /Sr4Ti3O10 Photocatalyst,” Catal. Lett., Vol.83, pp.157-160 (2000)
    Linsebigler, A. L., Lu, G. and Yates, J. T. “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev., Vol. 95, pp. 735-758 (1995)
    Lu, C. H. and Chen, Y. C., “Sintering and Decomposition of Ferroelectric Layered Perovskites: Strontium Bismuth Tantalate Ceramics,” J. Eur. Ceram. Soc., Vol.19, pp.2909-2915 (1999)
    Miller, S. L. and McWhorter, P. J., “Physics of the Ferroelectric Nonvolatile Memory Field Effect Transistor,” Jpn. J. Appl. Phys., Vol.72(12), pp.15 (1992).
    Miura K., “Analytic Expression for the Appearance of the Slater Mode in Ferroelectric Perovskites,” Solid State Commun., Vol.126, pp.453- 456 (2003)
    Muruganandham, M. and Swaminathan, M.,“Solar Photocatalytic Degradation of a Reactive Azo Dye in TiO2-Suspension,” Sol. Energy Mater. Sol. Cells., Vol. 81, pp. 439-457 (2004).
    O’Regan, B. and Grätzel, M.,“A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films”, Nature, 353 737 (1991).
    Ohno, T., Tsubota, T., Nakamura, Y., and Sayama, K.,“Preparation of S, C cation-codoped SrTiO3 and Its Photocatalytic Activity under Visible Light,” Appl. Catal., A, Vol. 288, pp.74-79 (2005).
    Ollis, D.F., Pelizzetti, E. and Serpone, N., “Photocatalyzed destruction of water contaminants,” Environ. Sci. Technol., Vol. 25, pp.1522-1529 (1991).
    Pan, J. S. and Zhang X. W., “Dielectric and Ferroelectric Properties of Pb(Ni1/3Nb2/3)O3–Pb(Zn1/3Nb2/3)O3–PbTiO3 Ternary Ceramics,” Mater. Sci. Eng. B, Vol. 127, pp.6-11(2006).
    Park, H., Lee, J. and Choi, W.,“Study of Special Cases Where the Enhanced Photocatalytic Activities of Pt/TiO2 Vanish under Low Light Intensity,” Catal. Today, Vol. 111, pp.259-265 (2006).
    Patsoura, A., Kondarides, D. I., and Verykios, X. E.,“Enhancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-Dyes,” Appl. Catal. B, Vol.64, pp.171-179 (2006).
    Pralrie, M. R., Evans, L. R., Stange, B. M. and Matinze, S. L., “An Investigation of TiO2 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals,” Environ. Sci. Technol., Vol.27, pp.1776-1782 (1993).
    Ravi, V. and Navale, S. C.,“A Co-Precipitation Technique to Prepare CaNb2O6,” Ceram. Int., Vol.35, pp. 475-477 (2006)
    Reddy, S. B., Kant, K. M., Rao, K. P., Opel, M., Gross, R., and Rao, M. S. R., “Ferroelectric and Magnetic Properties of Ho2CuTiO6 Double Perovskite,” J. Magn. Magn. Mater, Vol. 303, pp.332-334 (2006)
    Roselin, L. S., Rajarajeswari, G. R., Selvin, R., Sadasivam, V., Sivasankar, B. and Rengaraj, K., “Sunlight/ZnO-Mediated Photocatalytic Degradation of Reactive Red 22 Using Thin Film Flat Bed Flow Photoreactor,” Sol. Energy, Vol.73, pp.281-285 (2002).
    Rynkowski J, Samulkiewicz P., Ladavos A.K. and Pomonis P.J.,“Catalytic Performance of Reduced La2−xSrxNiO4 Perovskite-Like Oxides for CO2 Reforming of CH4,”Appl. Catal. A, Vol.263, pp.1-9 (2004)
    Ryu, J. H., Lim, C. S. and Auh, K. H.,“Synthesis of ZnWO4 Nanocrystalline Powders, by the Polymerized Complex Method,” Mater. Lett., Vol.57, pp. 1550-1554 (2003)
    Sauer, T., Neto, G. C., José, H.J. and Moreira R.F.P.M.,“Kinetics of Photocatalytic Degradation of Reactive Dyes in a TiO2 Slurry Reactor,” J. Photochem. Photobio., A., Vol. 149, pp.147-154 (2002).
    Thaminimulla, C. T. K., Takata, T., Hara, M., Kondo, J. N. and Domen, K.,“Effect of Chromium Addition for Photocatalytic Overall Water Splitting on Ni-K2La2Ti3O10,” J. Catal., Vol. 196, pp.362-365 (2000).
    Thomas, R., Mochizuki, S., Mihara, T. and Ishida, T., “Preparation of Ferroelectric Pb(Zr0.5,Ti0.5)O3 Thin Films by Sol–Gel Process: Dielectric and Ferroelectric Properties,” Mater. Lett., Vol.57, pp. 2007 - 2014 (2003).
    Udawatte, C. P., Kakihana, M. and Yoshimura, M., “Preparation of Pure Perovskite-Type BaSnO3 Powders by the Polymerized Complex Method at Reduced Temperature,” Solid State Ionics., Vol.108, pp. 23-30 (1998).
    Ulrich, S., Nicola, H. and Lorenz, A. “Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides,” Chem. Mater., Vol. 7, pp. 2010-2017 (1995).
    Xu, H., Gao,H. and Guo, J., “Preparation and Characterizations of Tetragonal Barium Titanate Powders by Hydrothermal Method,” J. Eur. Ceram. Soc., Vol. 22, pp. 1163-1170 (2002).
    Yao., W.F., Xu, X. H., Wang,. H., Zhau, J. Z., Yang, X. N., Zhang, Y., Shang, S. X. and Huang, B. B., “Photocatalytic Property of Perovskite Bismuth Titanate,” Appl. Catal., Vol. 52, pp.109-116 (2004).
    Yun, S. and Wang, X.,“Preparation of PZN–PT–BT Ferroelectric Ceramics by Modified Two-Step Method,” Mater. Chem. Phys., Vol.98, pp.65-65 (2006).
    Zahi, S., Bouaziz, R., Abdessalem, N. and Boutarfaia, A., “Dielectric and Piezoelectric Properties of PbZrO3–PbTiO3–Pb(Ni1/3, Sb2/3)O3 Ferroelectric Ceramic System,” Ceram. Int., Vol. 29, pp.35-39 (2003).
    Zhang Y., Zhao Z. and Yang J.,“Low-Temperature Synthesis of La2Ti2O7 Nanocrystal by Metallorganic Decomposition Method,” J. Cera. Soc., Vol.113, pp. 67-70 (2005).
    Zhao, Z., Zhang, Y., Yang, J., Li, H., Song, W. and Zhao, X.,“Low-Temperature Synthesis of La2Ti2O7 Nanocrystal by Metallorganic Decomposition Method,” J. Ceram. Soc. Jpn., Vol. 113, pp.67-70 (2005).
    Zhou, Q. F., Chan, H. L. W. and Choy, C. L., “Synthesis and Properties of Ferroelectric SrBi2Ta2O9 Powder and Films Prepared by a Sol-Gel Process,” J. Non-Cryst. Solids, Vol. 254, pp.106-111 (1999).
    Zieli´nska, B., Grzechulska, J., Kale´nczuk, R. J. and Morawski, A. W., “ The pH Influence on Photocatalytic Decomposition of Organic Dyes over A11 and P25 Titanium Dioxide ” Appl. Catal., B, Vol. 45, pp.293-300 (2003).
    Zielin´ska, B.and Morawski, A. W., “TiO2 Photocatalysts Promoted by Alkali Metals,” Appl. Catal., B, Vol. 55, pp.221-226 (2005).
    丁維和,“以溶膠-凝膠法製備鈦鋯酸鉛粉末”,國立中山大學材料科學研究所碩士論文 (2000).
    申永順,“以紫外線/過氧化氫程序處理含酚類有機溶液反應行為之研究”,國立台灣科技大學化學工程學研究所碩士論文 (1992).
    江明翰,“利用射頻磁控濺鍍法沉積鈦酸鋇薄膜及其特性與應用”, 大同大學光電工程研究所碩士論文 (2003).
    吳玉娟,“介穩態六方晶鈦酸鋇的缺陷分析”, 國立中山大學材料科學研究所博士論文 (2004).
    李 哲 奇,“介穩高溫六方相鈦酸鋇之微結構分析”,國立中山大學材料科學研究所博士論文 (2004).
    唐毓慧,“鈦酸鍶鋇 (Ba1-xSrxTiO3) 的電子結構”,國立中山大學物理研究所碩士論文 (2001).
    連憲聰,“鐵電材料在元件上製程整合與研究”,國立中山大學物理研究所碩士論文(2001).
    陳炳輝,“鋯鈦酸鉛薄膜及塊體陶瓷之製備、特性與應用之研究”, 國立成功大學電機工程學系研究所博士論文 (2004).
    陳慶瑩,“正方晶鈦酸鋇陶瓷的差排圈分析”, 國立中山大學材料科學研究所碩士論文 (2003).
    黃東斌,“以紫外線/光觸媒過濾薄膜程序處理染料水溶液之研究”,國立台灣科技大學化學工程學研究所碩士論文 (2005).
    黃郁翔,“層狀鈣鈦礦混成材奈米複合材料之製備與鑑定”,元智大學化學工程學研究所碩士論文 (2004).
    楊偉宏,“以脈衝雷射沉積法成長鈦酸鋇薄膜及其應用”,大同大學光電工程研究所碩士論文 (2003).

    QR CODE