簡易檢索 / 詳目顯示

研究生: 許筱愉
SIAO-YU SYU
論文名稱: 以氧化鋅奈米線材為支架之鈣鈦礦太陽能電池研究
The Study of Pervoskite Solar Cells via Zinc Oxide Nanowires Scaffold
指導教授: 陳良益
Liang-Yih Chen
口試委員: 吳季珍
Jih-Jen Wu
邱智瑋
Chih-Wei Chiu
許世杰
Shih-Chieh Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 124
中文關鍵詞: 氧化鋅奈米線有機-無機鹵素鈣鈦礦太陽能電池兩步驟連續製程旋塗法
外文關鍵詞: zinc oxide nanorods, organic-inorganic halide perovskite solar cells, two-step sequential process, spin coating
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機鹵素鈣鈦礦材料由於具有高吸收係數(1.54×104 cm-1)及可調整的能隙值,且可利用簡單的旋轉塗佈製程來進行太陽能元件製作,因此受到許多研究人員的青睞,目前最高效率已達22.1 %。一般有機-無機鹵素鈣鈦礦太陽能電池使用二氧化鈦奈米粒子做為支架。根據先前研究,電子於二氧化鈦奈米粒子內傳輸時的擴散係數較低,因此於本研究選用電子傳遞性質較佳的氧化鋅奈米線取代做為支架,來進行有機-無機鹵素鈣鈦礦太陽能電池之製備與性質分析。於本研究中,使用兩步驟連續法被覆鈣鈦礦吸光材料於氧化鋅奈米線材支架上。然而,有機-無機鹵素鈣鈦礦材料被覆於氧化鋅材料表面時,容易產生分解而導致不穩定。因此,在本研究中亦將於成長氧化鋅奈米線製程中添加聚乙基亞胺進行表面修飾,並探討其穩定鈣鈦礦材料之可行性評估,並同時調整製作太陽能電池的最適化條件。藉由掃描式電子顯微鏡影像、紫外光-可見光光譜儀與X-光繞射圖譜分析其表面形貌、光學性質與結構,並使用電流-電壓曲線探討太陽能電池的轉換效率。於本研究中利用氧化鋅奈米線為支架所製備的有機-無機鹵素鈣鈦礦太陽能電池的轉換效率最佳性質為:短路電流為22.46 mA/cm2,開環電壓為0.95 V,填充因子為0.62,轉換效率為13.45 %。


    Organic-inorganic halide perovskite (OIH-P) has been attracted by many researchers in the world due to its high absorption coefficient (~1.54x104 cm-1), tunable energy bandgap and simple preparation process for solar devices. Until now, the power conversion efficiency (PCE) has achieved 22.1%. In general, titanium dioxide (TiO2) nanoparticles were used as scaffold in OIH-P solar cell for electron transport medium. Because electron diffusion coefficient inside TiO2 nanoparticles is low, we used zinc oxide nanowires as scaffold in this study due to its good electron transport properties. For preparing OIH-P light-harvesting layer, a two-step sequential process was employed in this work. From previous studies, there are several papers reported that OIH-P layer would easily destroy when it was coated on the surface of zinc oxide. Therefore, we added polyethylenimine (PEI) in the growth solution to prepare zinc oxide nanowires and to evaluate the stability of OIH-P layer. In addition, we also search the optimal conditions for preparation of OIH-P solar cells. The surface morphologies, optical properties and structures were analyzed by scanning electron microscopy (SEM), UV-visible spectroscopy and X-ray diffraction pattern, respectively. The best performances of OIH-P solar cell in this work by using zinc oxide nanowires as scaffold are short-circuit current density (Jsc) of 22.46 mA/cm2, open-circuit voltage (Voc) of 0.95 V, fill factor (FF) of 0.62 and PCE of 13.45%.

    中文摘要 Abstract 致謝 目錄 表目錄 圖目錄 第一章、緒論 1-1、前言 1-2、研究動機與目的 第二章、理論基礎與文獻 2-1、氧化鋅的基本性質 2-2、一維氧化鋅奈米線的成長方法 2-2-1氣-液-固(vapor-liquid-solid)法 2-2-2 有機金屬化學氣相沉積(chemical vapor deposition)法 2-2-3模板輔助成長法(template-based method) 2-2-5 水熱法 (hydrothermal method) 2-3太陽能電池原理 2-3-1半導體材料 2-3-2 p-n接面(p-n junction) 2-4鈣鈦礦材料介紹 2-4-1、鈣鈦礦材料之發展與結構 2-4-2有機-無機鹵素混合鈣鈦礦材料的光伏特性 2-5鈣鈦礦太陽能電池 2-5-1元件結構及工作原理 2-5-2介觀型態結構層 2-5-3 平面式結構 2-6鈣鈦礦太陽能電池之製作發展 2-6-1 結構層厚度影響 2-6-2溶液法進行鈣鈦礦薄膜沉積 2-6-3 真空氣相沉積法 2-6-4電洞傳輸材料 2-6-5氧化鋅奈米結構鈣鈦礦太陽能電池 2-6-6 二氧化鈦奈米結構鈣鈦礦太陽能電池 第三章、實驗方法與步驟 3-1、實驗流程簡圖 3-2、實驗藥品與設備儀器 3-2-1、實驗藥品 3-2-2、實驗設備 3-2-3 分析儀器 3-3 實驗步驟 3-3-1 基板清洗及定義工作面積 3-3-2 晶種層(seed layer)的製備 3-3-3 水熱法成長氧化鋅奈米線 3-3-4 鈣鈦礦吸光層及電洞傳輸層沉積 3-3-5 蒸鍍金(Au)層作為金屬電極 3-3-6元件效率量測 第四章、結果與討論 4-1一維氧化鋅奈米線成長 4-1-1 氧化鋅奈米線長度控制與表面型態探討 4-2以氧化鋅奈米柱為支架製備鈣鈦礦薄膜太陽能電池之研究 4-2-1 氧化鋅奈米線長度對鈣鈦礦塗佈製程參數之探討 4-2-2改變碘化鉛濃度對鈣鈦礦薄膜沉積於氧化鋅奈米線性質探討 4-2-3 改變甲基胺碘濃度對鈣鈦礦吸光層探討 4-2-4時間解析螢光光譜分析 4-2-5掃描條件對太陽能電池效能之影響與分光效率光譜分析 4-3氧化鋅奈米線表面修飾對鈣鈦礦太陽能電池效能之影響 4-3-1以聚乙基亞胺修飾氧化鋅奈米柱對鈣鈦礦太陽能電池製程與效能之影響 4-3-2 磁滯效能與分光效率光譜分析 4-3-3以交流電流阻抗頻譜分析鈣鈦礦太陽能電池 第五章、結論 第六章、參考文獻 附錄

    1.邱佩冠, 全球變遷通訊雜誌第四十四期, 臺北 (2004, 12) (2004).
    2.G. Papadopoulos, L. Boivin and N. G. Tarr, Canadian Journal of Physics 69 (3-4), 479-482 (1991).
    3.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    4.NREL, http://www.nrel.gov/
    5.D. C. Look, D. C. Reynolds, J. Sizelove, R. Jones, C. W. Litton, G. Cantwell and W. Harsch, Solid State Communications 105 (6), 399-401 (1998).
    6.S.-M. Peng, Y.-K. Su, L.-W. Ji, C.-Z. Wu, W.-B. Cheng and W.-C. Chao, The Journal of Physical Chemistry C 114 (7), 3204-3208 (2010).
    7.S. P. Anthony, J. I. Lee and J. K. Kim, Applied Physics Letters 90 (10), 103107-103107 (2007).
    8.A. Kołodziejczak-Radzimska and T. Jesionowski, Materials 7 (4), 2833-2881 (2014).
    9.M. Niskanen, M. Kuisma, O. Cramariuc, V. Golovanov, T. I. Hukka, N. Tkachenko and T. T. Rantala, Physical Chemistry Chemical Physics 15 (40), 17408-17418 (2013).
    10.陳彥志, 氧化鋅奈米線材之研究及應用. (2011).
    11.Z. Fan and J. G. Lu, Journal of Nanoscience and Nanotechnology 5 (10), 1561-1573 (2005).
    12.M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Advanced Materials 13 (2), 113-116 (2001).
    13.S. Y. Li, P. Lin, C. Y. Lee and T. Y. Tseng, Journal of Applied Physics 95 (7), 3711-3716 (2004).
    14.W. I. Park, D. Kim, S.-W. Jung and G.-C. Yi, Applied Physics Letters 80 (22), 4232-4234 (2002).
    15.Z. L. Wang, Journal of Physics: Condensed Matter 16 (25), R829 (2004).
    16.M. Zheng, L. Zhang, G. Li and W. Shen, Chemical Physics Letters 363 (1), 123-128 (2002).
    17.Y. Wang, L. Zhang, G. Wang, X. Peng, Z. Chu and C. Liang, Journal of Crystal Growth 234 (1), 171-175 (2002).
    18.K. Ul Hasan, N. Alvi, J. Lu, O. Nur and M. Willander, Nanoscale research letters 6 (1), 1-6 (2011).
    19.S. Baruah and J. Dutta, Journal of Crystal Growth 311 (8), 2549-2554 (2009).
    20.J. Zhang, L. Sun, H. Pan, C. Liao and C. Yan, New J. Chem. 26 (1), 33-34 (2002).
    21.Z. Qiu, K. Wong, M. Wu, W. Lin and H. Xu, Applied Physics letters 84 (15), 2739-2741 (2004).
    22.L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, Angewandte Chemie 115 (26), 3139-3142 (2003).
    23.K. Govender, D. S. Boyle, P. B. Kenway and P. O'Brien, Journal of Materials Chemistry 14 (16), 2575-2591 (2004).
    24.L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. Yang, Inorganic Chemistry 45 (19), 7535-7543 (2006).
    25.翁敏航, 楊茹媛, 管鴻 晁成虎, 太陽能電池-原理, 元件. (2010).
    26.Energy bands of Silicon, http://www.electrical4u.com/energy-brands-in-silicon/
    27.M. De Graef and M. E. McHenry, Structure of materials: an introduction to crystallography, diffraction and symmetry. (Cambridge University Press, 2007).
    28.M. A. Green, A. Ho-Baillie and H. J. Snaith, Nature Photonics 8 (7), 506-514 (2014).
    29.D. B. Mitzi, C. Feild, W. Harrison and A. Guloy, Nature 369 (9), 467-469 (1994).
    30.V. Goldschmidt, Ber Deut Chem Ges 60, 1263-1296 (1927).
    31.J. Dance, A. Tressaud and P. Hagenmuller, Inorganic Solid Fluorides: Chemistry and Physics. (1985).
    32.D. B. Mitzi, Inorganic Chemistry 48, 1-121 (2007).
    33.C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorganic Chemistry 52 (15), 9019-9038 (2013).
    34.J. L. Knutson, J. D. Martin and D. B. Mitzi, Inorganic Chemistry 44 (13), 4699-4705 (2005).
    35.N. Onoda-Yamamuro, T. Matsuo and H. Suga, Journal of Physics and Chemistry of Solids 53 (7), 935-939 (1992).
    36.S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews and S. Mhaisalkar, Journal of Materials Chemistry A 2 (24), 9221-9225 (2014).
    37.J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale 3 (10), 4088-4093 (2011).
    38.J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Letters 13 (4), 1764-1769 (2013).
    39.N. Kitazawa, Y. Watanabe and Y. Nakamura, Journal of Materials Science 37 (17), 3585-3587 (2002).
    40.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science 338 (6107), 643-647 (2012).
    41.蔡志宏, 染料敏化太陽能電池元件結構及新型有機染料之研究. (2011).
    42.M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4 (2), 145-153 (2003).
    43.X. Liu, W. Zhao, H. Cui, Y. a. Xie, Y. Wang, T. Xu and F. Huang, Inorganic Chemistry 2 (4), 315-335 (2015).
    44.H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum and J. E. Moser, Scientific Reports 2 (2012).
    45.D.-Y. Son, J.-H. Im, H.-S. Kim and N.-G. Park, The Journal of Physical Chemistry C 118 (30), 16567-16573 (2014).
    46.H. S. Jung and N.-G. Park, Small 11 (1), 10-25 (2015).
    47.邱嘉威, 鈣鈦礦太陽能電池研究. (2015).
    48.D.-Y. Son, K.-H. Bae, H.-S. Kim and N.-G. Park, The Journal of Physical Chemistry C 119 (19), 10321-10328 (2015).
    49.K. Mahmood, B. S. Swain and A. Amassian, Nanoscale 6 (24), 14674-14678 (2014).
    50.K. Mahmood, B. S. Swain and A. Amassian, Advanced Energy Materials 5 (17), 1500568 (2015).
    51.X. Dong, H. Hu, B. Lin, J. Ding and N. Yuan, Chemical Communications 50 (92), 14405-14408 (2014).
    52.J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy & Environmental Science 6 (6), 1739-1743 (2013).
    53.H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park and J. Bisquert, Nature Communications 4 (2013).
    54.G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Advanced Functional Materials 24 (1), 151-157 (2014).
    55.Z.-L. Tseng, C.-H. Chiang and C.-G. Wu, Scientific Reports 5, 13211 (2015).
    56.Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, Energy & Environmental Science 7 (9), 2934-2938 (2014).
    57.Y. Takeoka, M. Fukasawa, T. Matsui, K. Kikuchi, M. Rikukawa and K. Sanui, Chemical Communications (3), 378-380 (2005).
    58.M. Liu, M. B. Johnston and H. J. Snaith, Nature 501 (7467), 395-398 (2013).
    59.Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, Journal of the American Chemical Society 136 (2), 622-625 (2013).
    60.J. A. Christians, R. C. Fung and P. V. Kamat, Journal of the American Chemical Society 136 (2), 758-764 (2013).
    61.P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, Nature Communications 5 (3834), 4834 (2014).
    62.T. Salim, S. Sun, Y. Abe, A. Krishna, A. C. Grimsdale and Y. M. Lam, Journal of Materials Chemistry A 3 (17), 8943-8969 (2015).
    63.Y. Jin and G. Chumanov, ACS Applied Materials & Interfaces 7 (22), 12015-12021 (2015).
    64.M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and N. Mathews, Chemical Communications 49 (94), 11089-11091 (2013).
    65.H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N.-G. Park, Nano letters 13 (6), 2412-2417 (2013).
    66.S. Do Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim and W. I. Lee, Nanoscale 7 (19), 8898-8906 (2015).
    67.J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature 499 (7458), 316-319 (2013).
    68.D. Liu and T. L. Kelly, Nature photonics 8 (2), 133-138 (2014).
    69.S.-H. Lin, Y.-H. Su, H.-W. Cho, P.-Y. Kung, W.-P. Liao and J.-J. Wu, Journal of Materials Chemistry A 4 (3), 1119-1125 (2016).
    70.Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim and T. Park, Energy & Environmental Science 7 (4), 1454-1460 (2014).
    71.J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis and T. L. Kelly, Chemistry of Materials 27 (12), 4229-4236 (2015).
    72.Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip and S.-W. Tsang, ACS Applied Materials & Interfaces 7 (36), 19986-19993 (2015).
    73.X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J.-F. Li, J. Li, X. Li and H. Lin, ACS Applied Materials & Interfaces (2016).
    74.C. Manspeaker, P. Scruggs, J. Preiss, D. A. Lyashenko and A. Zakhidov, The Journal of Physical Chemistry C 120 (12), 6377-6382 (2016).
    75.Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T. L. Andrew, M. S. Arnold and X. Wang, ACS Nano 9 (1), 564-572 (2015).
    76.Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu and Y. Yang, Nano letters 14 (7), 4158-4163 (2014).
    77.J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, Nanoscale 5 (8), 3245-3248 (2013).
    78.S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science 342 (6156), 341-344 (2013).
    79.L. Wang, C. McCleese, A. Kovalsky, Y. Zhao and C. Burda, Journal of the American Chemical Society 136 (35), 12205-12208 (2014).
    80.X. Zhao, H. Shen, Y. Zhang, X. Li, X. Zhao, M. Tai, J. Li, J. Li, X. Li and H. Lin, ACS Applied Materials & Interfaces 8 (12), 7826-7833 (2016).
    81.Y. Li, W. Yan, Y. Li, S. Wang, W. Wang, Z. Bian, L. Xiao and Q. Gong, Scientific Reports 5 (2015).
    82.J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu and H. Zhou, ACS Nano 8 (2), 1674-1680 (2014).
    83.H.-S. Kim and N.-G. Park, The journal of physical chemistry letters 5 (17), 2927-2934 (2014).
    84.A. R. Pascoe, N. W. Duffy, A. D. Scully, F. Huang and Y.-B. Cheng, The Journal of Physical Chemistry C 119 (9), 4444-4453 (2015).
    85.J. Bisquert, L. Bertoluzzi, I. Mora-Sero and G. Garcia-Belmonte, The Journal of Physical Chemistry C 118 (33), 18983-18991 (2014).

    無法下載圖示 全文公開日期 2021/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE