簡易檢索 / 詳目顯示

研究生: 蔡松諭
Sung-Yu Tsai
論文名稱: 以熱氧化金屬鋅薄膜法成長一維氧化鋅奈米結構之特性分析
Growth and characterization of one-dimensional ZnO nanostructures by thermal oxidation of metallic zinc films
指導教授: 趙良君
Liang-chiun chao
口試委員: 黃鶯聲
Ying-sheng Hung
李奎毅
Kuei-yi Lee
黃柏仁
Bohr-ran Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 氧化鋅奈米線射頻磁控濺鍍法熱氧化法
外文關鍵詞: ZnO nanowire, RF magnetron sputter, thermal oxidation
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗為利用射頻磁控濺鍍法沉積鋅薄膜,藉由調變射頻功率及靶材至基板的距離可控制鋅薄膜的結晶及表面型貌。實驗結果顯示多晶鋅薄膜在經450 ℃熱氧化可成長較多垂直於基板的氧化鋅奈米線,其平均長度約為4 m而其寬度約為~ 50 nm,氧化鋅奈米線其成長方向為[110]。室溫下氧化鋅奈米線的光激發光光譜顯示強的近能隙發光在376.8 nm,半高寬為100 meV,且有極少缺陷造成的可見光發光。場發射結果顯示氧化鋅奈米線在電流密度為0.1 μA/cm2時起始電場為4.5 V/μm,場發射增強因子為1834,且當施與場發射電場9 V/μm時,電流密度可達0.75 mA/cm2。


    ZnO nanowires have been successfully grown by thermal oxidation of polycrystalline zinc films. ZnO nanowire length, diameter and wire density were found to be dependent strongly on zinc film crystallinity, oxidation temperature and oxidation time. Experimental results show that a polycrystalline zinc film is suitable for growth of vertically aligned ZnO nanowires. The growth mechanism of the nanowire is dominated by diffusion mechanism that oxidation at 450C results ZnO nanowires with the best field emission properties. Room temperature photoluminescence study shows a strong near-band-edge emission at 376.8 nm with a full-width-at-half maximum of 100 meV and negligible deep level emission. ZnO nanowire prepared under these conditions exhibit a turn on field of 4.5 V/m and a field enhancement factor of 1834. A target current density of 0.75 mA/cm2 is achieved with a bias field less than 9 V/m.

    中文摘要......................................................................I 英文摘要......................................................................II 致謝.........................................................................III 目錄.........................................................................IV 圖目錄.......................................................................VI 表目錄.......................................................................VIII 第一章 緒論....................................................................1 1.1 氧化鋅的晶體結構與特性......................................................3 1.2 氧化鋅的發光機制...........................................................4 1.2.1紫外光發光 (UV emission)................................................4 1.2.2 綠光發光 (green emission)..............................................5 1.3 氧化鋅一微奈米結構簡........................................................6 第二章 理論基礎與文獻回顧.........................................................8 2.1電漿原理...................................................................8 2.2濺鍍原理...................................................................9 2.2.1直流濺鍍................................................................9 2.2.2射頻濺鍍................................................................10 2.2.3磁控濺鍍................................................................11 2.3薄膜沉積原理...............................................................12 2.3.1沉積現象................................................................12 2.3.2薄膜表面與截面結構........................................................14 2.4 Cabrera-Mott金屬氧化理論...................................................15 2.5文獻回顧...................................................................18 2.5.1氣態-液態-固態 成長機制 (vapor-liquid-solid growth mechanism, VLS)........18 2.5.2氣態-固態成長機制 (vapor-solid growth mechanism, VS)......................21 2.5.3 熱氧化金屬鋅薄膜製備氧化鋅一維結構..........................................23 第三章 實驗步驟與量測方法.........................................................26 3.1 實驗步驟流程圖.............................................................26 3.2 試片製備..................................................................27 3.2.1 清洗基板...............................................................27 3.2.2 實驗步驟與設備..........................................................27 3.3分析儀器介紹................................................................29 3.3.1場發射掃描式電子顯微鏡.....................................................29 3.3.2 x-ray 繞射儀...........................................................30 3.3.3穿透式電子顯微鏡..........................................................31 3.3.4光致發光................................................................32 3.3.5場發射特性量測儀器........................................................33 第四章 實驗結果與討論............................................................35 4.1場發射掃描式電子顯微鏡影像分析(傾斜30°角拍攝)....................................35 4.2 x-ray繞射分析.............................................................44 4.3穿透式電子顯微鏡分析.........................................................47 4.4光致螢光光譜分析.............................................................55 4.5場發射特性分析..............................................................57 第五章 結論....................................................................60 參考文獻.......................................................................62

    [1] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, Vol. 292, pp.1897-1899, 2001.
    [2] W. K. Hong, B. J. Kim, T. W. Kim, G. Jo, S. Song, S. S. Kwon, A. Yoon, E. A. Stach and T. Lee, “Electrical properties of ZnO nanowire field effect transistors by surface passivation,” Colloids Surf., A, Vol. 313-314, pp. 378-382, 2007.
    [3] Y. Q. Chang, X. H. Chen, H. Z. Zhang, W. J. Qiang and Y. Long, “Field emission from randomly oriented ZnO nanowires,” J. Vac. Sci. Technol. B, Vol. 25, pp. 1249-1252, 2007.
    [4] X. Wang, J. Zhou, C. Lao, J. Song, N. Xu and Z. L. Wang, ”In situ field emission of density-controlled ZnO nanowire arrays,” Adv. Mater., Vol. 19, pp. 1627-1631, 2007.
    [5] S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I. T. Han, J. H. Ha, J. P. Hong, D. J. Kang and J. M. Kim, ”Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer,” Nanotechnology, Vol. 19, pp. 235601-1 - 235601-4, 2008.
    [6] M. H. Hung, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater., Vol. 13, No. 2, pp. 113-116, 2001.
    [7] W. I. Park, D. H. Kim, S. W. Jung and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett., Vol. 80, No. 22, pp. 4232-4234, 2002.
    [8] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki and N. Usami, “Optical properties of ZnO rods formed by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, No 8, pp. 1635-1637, 2003.
    [9] Y. Chen, B. Qu, Y. A. Barnakov, Q. Tang and J. Chen, “Microstructure studies of ZnO nanoneedles,” J. Mater. Sci. – Mater. Electron, Vol. 20, pp. 328-333, 2009.
    [10] Y .F. Chen, D. M. Bagnall, Z. Q. Zhu, T. Sekiuchi, K. T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen and T. Goto, “Growth of ZnO single crystal thin films on c-plane (0001) sapphire by plasma enhanced molecular beam epitaxy,” J. Cryst. Growth, Vol. 181, pp. 165-169, 1997.
    [11] M. Kawakami, A. B. Hartanto, Y. Nakata and T. Okada, “Synthesis of ZnO nanorods by nanoparticle Assisted Pulsed-Laser Deposition,” Jpn. J. Appl. Phys. Part 2: Lett., Vol. 42, pp. L33-L35, 2003.
    [12] C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim and J. S. Ha, “Sol–gel synthesis of sub-50nm ZnO nanowires on pulse laser deposited ZnO thin films,” Appl. Surf. Sci., Vol. 253, pp. 1758-1761, 2006.
    [13] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., Vol. 4, No. 5, pp. 89-90, 1964.
    [14] Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, Vol. 291, pp. 1947-1948, 2001.
    [15] H. Rensmo, K. Keis, H. Lindstreom, S. Sodergren, A. Solbrand, A. Hagfeldt, S.E. Lindquist, L.N. Wang and M. Muhammed, “High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes,” J. Phys. Chem. B, Vol. 101, pp. 2598-2601, 1997.
    [16] P. F. Carcia, R. S. McLean, M. H. Reilly and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, ” Appl. Phys. Lett., Vol. 82, No. 7, pp. 1117-1119, 2002.
    [17] S. Cho, J. Ma, Y. Kim, Y.Sun and J. B. Ketterson, “Photoluminescence and ultra-violet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett., Vol. 75, pp. 2761-2763, 1999.
    [18] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powder ,” J. Appl. Phys., Vol.79, pp. 7983-7990, 1996.
    [19] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing condition,” J. Electrochem. Soc., Vol. 148, pp. G110-G113, 2001.
    [20] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., Vol. 84, No. 18, pp. 3654-3656, 2004.
    [21] Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources,” Carbon, Vol. 38, pp. 169-182, 1999.
    [22] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett., Vol. 83, No. 1, pp. 144-146, 2003.
    [23] K. Keem, J. Kang, C. Yoon, D. Yeom, D. Y. Jeong, B. M. Moon and S. Kim, “A fabrication technique for top-gate ZnO nanowires field-effect transistors by a photolithography process,” Microelectron. Eng., Vol. 84, pp. 1622-1626, 2007.
    [24] I. Langmuir, “The interaction of electron and positive ion space charges in cathode sheaths,” Phys. Rev., Vol. 33, pp. 954-989, 1929.
    [25] J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings,” J. Vac. Sci Technol., Vol. 12, pp. 830-835, 1975.
    [26] N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys., Vol. 12, pp. 163-184, 1949.
    [27] S. Y. Li, C. Y. Lee and T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process,” J. Cryst. Growth., Vol. 247, pp. 357-262, 2003.
    [28] Y. Ding, P. X. Gao and Z. L. Wang, “Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts : A Case of Sn / ZnO,” J. Am. Chem. Soc., Vol. 126, pp. 2066-2072, 2004.
    [29] E. A. Gulbransen and T. P. Copan, “Microtopology of the surface reactions of oxygen and water vapor with metals,” Discuss. Faraday Soc., Vol. 28, pp. 229-233, 1959.
    [30] S. Ren, Y. F. Bai, Jun Chen, S. Z. Deng, N. S. Xu, Q. B. Wu and S. Yang, “Catalyst-free synthesis of ZnO nanowire arrays on zinc substrate by low temperature thermal oxidation,” Mater. Lett., Vol. 61, pp. 666-670, 2007.
    [31] W. Yu and C. Pan, “Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism,” Mater. Chem. Phys., Vol. 115, pp. 74-79, 2009.
    [32] Y. Liu, C. Pan, Y. Dai and W. Chen, “Synthesis of one-dimensional ZnO nanoneedles using thermal oxidation process in the air and its application as filed emitters,” Mater. Lett., Vol. 62, pp. 2783-2786, 2008.
    [33] J. B. K. Law, C. B. Boothroyd and J. T. L. Thong, “Site-specific growth of ZnO nanowires from patterned Zn via compatible semiconductor processing,” J. Cryst. Growth., Vol. 310, pp. 2485-2492, 2008.
    [34] T. W. Kim, T. Kawazoe, S. Yamazaki, M. Ohtsu and T. Sekiguchi, “Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires,” Appl. Phys. Lett., Vol. 84, pp. 3358-3360, 2004.
    [35] H. J. Fan, R. Scholz, F. M. Kolb and M. Zacharias, “Two-dimensional dendritic ZnO nanowires from oxidation of Zn microcrystals,” Appl. Phys. Lett., Vol. 85, No. 18, pp. 4142-4144, 2004.
    [36] S. Rackauskas, A. G. Nasibulin, H. Jiang, Y. Tian, G. Statkute, S. D. Shandakov, H. Lipsanen and E. I. Kauppinen, “Mechanism investigation of ZnO nanowires growth,” Appl. Phys. Lett., Vol. 95, pp. 183114-1 - 183114-3, 2009.
    [37] T. L. Chou, W. Y. Wu and J. M. Ting, “Sputter deposited ZnO nanowires / thin film structures on glass substrate,” Thin Solid Films, Vol. 518, pp. 1533-1556, 2009.
    [38] A. M. B. Goncalves, L. C. Campos, A. S. Ferlauto and R. G. Lacerda, “On the growth and electrical characterization of CuO nanowires by thermal oxidation,” J. Appl. Phys., Vol. 106, pp. 034303-1- 034303-5, 2009.
    [39] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Proc. R. Soc. London A., Vol. 119, pp. 173-181, 1928.
    [40] N. Wang, K. K. Fung, S. Wang and S. Yang, “Oxide-assisted nucleation and growth of copper sulphide nanowire arrays,” J. Cryst. Growth, Vol. 233, pp. 226-232, 2001.
    [41] P. X. Gao, C. S. Lao, Y. Ding and Z. L. Wang, “Metal / semiconductors core / shell nanodisks and nanotubes,” Adv. Funct. Mater., Vol. 16, pp. 53-62, 2006.
    [42] C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu and X. Zhao, “Effect of substrate temperature on the growth and photoluminescence properties of vertically aligned ZnO nanostructures,” J. Cryst. Growth, Vol. 292, pp. 19-25, 2006.
    [43] J. B. K. Law and J. T. L. Thong, “Simple fabrication of a ZnO nanowires photodetector with a fast photoresponse time,” Appl. Phys. Lett., Vol. 88, pp. 133114-1 - 133114-3, 2006.

    無法下載圖示 全文公開日期 2013/06/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE