簡易檢索 / 詳目顯示

研究生: 殷瑀彤
Yu-Tung Yin
論文名稱: 開發高效率氧化鋅電極於染料敏化型太陽能電池應用
Development of high power conversion efficiency ZnO-based photoanode to the application of dye-sensitized solar cell
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
陳詩芸
Shih-Yun Chen
邱智瑋
Chih-Wei Chiu
李玉郎
Yun-Lang Chen
陳景翔
Ching-Hsiang Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 226
中文關鍵詞: 氧化鋅奈米線連續進料成長染料敏化型太陽能電池化學阻抗頻譜分析電子擴散係數
外文關鍵詞: ZnO nanowire arrays, continuous flow injection, dye-sensitized solar cell, electrochemical impedance spectroscopy, diffusion coefficient.
相關次數: 點閱:350下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究當中,以水熱法為主要製程方式,首先探討一維氧化鋅奈米線在不同添加物(如:聚乙烯亞胺與氨水)下的成長機制,並藉由螢光光譜與X光吸收光譜界定出缺陷與鋅、氧原子的相關性。之後,相較於傳統批次成長方式,開發連續式反應製程來製備氧化鋅奈米線以進一步控制奈米線品質。製程改善結果顯示:採連續式反應製程所製備的氧化鋅奈米線,在成長時可有效維持反應化學物濃度,提升氧化鋅奈米線材料的結晶性。隨後,利用連續式反應製程系統製備之高結晶性氧化鋅奈米線做為染料敏化型太陽能電池之光陽極並進行相關性能的探討。由研究結果發現:藉由增長長度雖可提高染料吸附量,但長度同時也影響收集效率。若電子擴散係數無法進一步提升,則單純提高奈米線長度將使得整體效率不增反減。此外,當添加氨水於反應系統中來製備氧化鋅奈米線時,除表面缺陷有效下降外,藉由拉曼光譜分析中也發現氮原子可有效進入結構中。此氮摻雜氧化鋅奈米線可使電子擴散係數大幅提升至1.2x10-2 cm2 s-1。利用此電子擴散係數提升之概念將奈米線長度提升至55 μm時,效率可進一步提升至3.92%。然而相較於奈米顆粒為基礎的光陽極系統,高傳輸速率的奈米線系統仍受限於較低的染料吸附面積。因此,在有效長度概念的前提下,於製備好具高電子傳輸性質的氧化鋅奈米線表面進行氧化鋅奈米粒子的磊晶被覆,以做為複合式的氧化鋅光陽極。以此ZnO奈米線/奈米粒子複合結構所製備的光陽極應用於染料敏化型太陽能電池中,在長度13.5 μm的光陽極中,其平均效率可達5.25 %。當長度提升至26.2 μm時,ZnO複合光陽極之最高效率可達7.53 %。最後,針對已吸附染料之複合光陽極進行表面修飾。利用4-叔丁基啶去除多餘的染料以及利用水分子之氫鍵接附於染料為完全鍵結懸鍵上,改善電子傳遞阻力,平均長度13.5 μm之複合式氧化鋅光陽極染料敏化型太陽能電池的效率可由5.25 %分別有效提升至5.71 %﹑6.30 %﹑6.59 %。


    In this study, the growth mechanism of ZnO nanowire arrays (ZnO-NWAs) via chemical solution method under different additives, such as: polyethylenimine (PEI) and ammonia (NH3), has been investigated. By using photoluminescence spectroscopy (PL) and X-ray absorption spectroscopy (XAS), the relation between PL emissions, interstitial zinc defects (Zni) interstitial oxygen defects (Oi) has been investigated. To further improve the quality of ZnO-NWAs, unlike the conventional batch process, a facile continuous flow injection (CFI) process has been conducted to synthesize high-quality ZnO-NAWs. According to the study, the concentration of zinc precursor can be maintained at a constant level in CFI process to provide a steady-state growth environment. High quality and long length ZnO-NWAs can be obtained from CFI process to be the photoanode of ZnO based dye-sensitized solar cells (DSSCs). From the results, the increment of length of ZnO-NWAs could effectively improve the dye absorption amount; however, it also influenced the electron collection efficiency (ηCC). To effectively increase the power conversion efficiency (PCE) of DSSCs with long ZnO-NWAs, the diffusion coefficient (Dn) need to improve simultaneously. In this study, NH3 was added into the chemical solution process and it could effectively reduce the surface defects and increase the diffusion coefficient achieved 1.2x10-2 cm2s-1, which was investigated by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. ZnO-NWAs with length of 55 μm was synthesized via NH3-assised CFI process to use as photoanode of DSSCs and the PCE achieved 3.92 %. To improve the performance of ZnO-based DSSCs furthermore, a low temperature chemical bath deposition (CBD) was employed to decorate ZnO nanoparticles (ZnO-NPs) on the surfaces of ZnO-NWAs photoanodes for increasing dye loading amount. The PCE of ZnO-NWAs/NPs composite DSSC could achieve 5.25 % under the thickness of 13.5 μm. When the thickness of ZnO-NWAs/NPs composite photoanode increased to 26.2 %, the PCE could achieve 7.53 %, which is the highest value in this study. Finally, we also studied the influence of photoanode surface treatment on the performance of DSSCs. In this study, 4-tert-butylpyridine (t-BP) and water vapor were employed as surface modifier. According to the results, the excess dye molecules could be removed by t-BP treatment to avoid the multilayer adsorption and the carrier transport/transfer properties could effectively be improved by water vapor. The PCE could enhanced from 5.25 % to 6.59% via t-BP and water vapor treatment under the photoanode thickness of 13.5 μm.

    Chinese Abstract Abstract Acknowledgement Contents Figures Tables Nomenclature Chapter 1. Introduction 1-1 Environment and solar energy 1-2 Nanotechnology 1-3 Metal Oxide Semiconductor (MOS) 1-4 Photovoltaic Devices 1-4-1 Overall view 1-4-2 Solar spectrum 1-4-3 p-n junction type PV cell 1-4-4 Grätzel type PV cell 1-5 Objectives and motivation of this work 1-6 Reference Chapter 2. Operating principle of dye-sensitized solar cells 2-1 Dye sensitized solar cells (DSSCs) 2-2 Analysis techniques of DSSC 2-2-1 Current-voltage measurement (I-V) 2-2-2 Incident photon-to-electrical conversion efficiency (IPCE) 2-2-3 Electrochemical Impedance Spectroscopy (EIS) for DSSCs 2-3 References Chapter 3. Experiment Section 3-1 Chemical reagents and apparatus 3-1-1 Chemical reagents 3-1-2 Apparatus 3-2 Experiment section 3-2-1 Pre-treatment of substrate (TCO substrate cleaning) 3-2-2 Seeded the ZnO seed layer preparation 3-2-3 Growth 1D ZnO nanostructure synthesis 3-2-4 Formation of ZnO composite photoanode (lateral branch NPs growth) 3-2-5 Fabrication of ZnO photoanode based DSSC 3-2-6 Surface treatment on dye-absorbed ZnO-based photoanode 3-3 Reference Chapter 4. Influence of Polyethyleneimine and Ammonium on the Growth of ZnO Nanowires by Hydrothermal Method 4-1 Introduction 4-2 Experiment Section 4-2-1 Growth Procedure of ZnO Nanowires array 4-2-2 X-ray Diffraction Analysis 4-2-3 Raman Scattering and Photoluminescence Measurements 4-2-4 X-ray Absorption Spectroscopy Measurements 4-2-5 X-ray Absorption Spectroscopy Data Analysis 4-3 Results and Discussion 4-4 Conclusion 4-5 References Chapter 5. Facile Continuous Flow Injection Process for High Quality Long ZnO Nanowire Arrays Synthesis 5-1 Introduction 5-2 Experiment section 5-2-1 Growth the ZnO nanowire arrays 5-2-2 Characteristic 5-3 Results and discussions 5-4 References Chapter 6. The Influence of Length of One-dimensional Photoanode on the Performance of Dye-sensitized Solar Cells 6-1 Introduction 6-2 Experiment section 6-2-1 Synthesis of ZnO nanowire array photoelectrodes 6-2-2 ZnO nanowire arrays solar cell construction 6-2-3 Instrumentation 6-3 Results and discussion 6-4 Conclusions 6-5 References Chapter 7. Hierarchically Assembled ZnO Nanoparticles on High Diffusion Coefficient ZnO Nanowire Arrays for High Efficiency Dye-sensitized Solar Cells 7-1 Introduction 7-2 Experiment section 7-2-1 ZnO-NWAs and ZnO composite photoanode synthesis 7-2-2 Characteristics 7-3 Results and Discussions 7-4 References Chapter 8. Promising Surface Modification Strategies for High Power Conversion Efficiency Dye Sensitized Solar Cell Based on ZnO Composite Photoanode 8-1 Introduction 8-2 Experiment 8-2-1 Synthesis of ZnO NWAs / NPs composite photoanode 8-2-2 Assembled the ZnO composite photoanode based DSSC 8-3 Results and Discussions 8-4 Reference Appendix A. Formulation of diffusion-recombination scheme in thin film

    1. United State Census Bureau - U.S. and World Population Clock. http://www.census.gov/popclock/ (accessed 09/24/14).
    2. International Energy Outlook 2014. http://www.eia.gov/.
    3. Seinfeld, J. H.; Pandis, S. N., Atmospheric chemistry and physics: from air pollution to climate change; Wiley, 1998.
    4. Ropelewski, C. F.; Halpert, M. S., Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly weather review 1987, 115, 1606-1626.
    5. Smil, V., Energy: A Beginner's Guide; Oneworld Publications, 2006.
    6. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414, 338-344.
    7. Becquerel, A.-E., Mémoire sur les effets électriques produits sous l’influence des rayons solaires. Comptes Rendus 1839, 9, 1839.
    8. Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 1905, 322, 132-148.
    9. Chapin, D.; Fuller, C.; Pearson, G., A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 1954, 25, 676-677.
    10. John, P., The Silicon Solar Cell Turns 50 National Renewable Energy Laboratory: 2004.
    11. Luque, A., Photovoltaic market and costs forecast based on a demand elasticity model. Progress in Photovoltaics: Research and Applications 2001, 9, 303-312.
    12. Shockley, W.; Queisser, H. J., Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics 1961, 32, 510-519.
    13. O’regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 1991, 353, 737-740.
    14. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4, 145-153.
    15. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical reviews 2010, 110, 6595-6663.
    16. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nature materials 2005, 4, 455-459.
    17. Yella, A.; Heiniger, L.-P.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters 2014, 14, 2591-2596.
    18. Feynman, R. P., There's plenty of room at the bottom. In Engineering and science, Caltech library: Caltech, 1959; Vol. 23, pp 22-36.
    19. The scale of things : nanometers and more. http://science.energy.gov/bes/news-and-resources/scale-of-things-chart/.
    20. Illustration demonstrating the effect of the increased surface area provided by nanostructured materials. http://www.nano.gov/nanotech-101/special (accessed 02/10/2014).
    21. Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D., Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. Journal of the American Chemical Society 2004, 126, 62-63.
    22. Wang, Y.; Chen, M.; Zhou, F.; Ma, E., High tensile ductility in a nanostructured metal. Nature 2002, 419, 912-915.
    23. Schrödinger, E., Collected Papers on Wave Mechanics: Third Edition; AMS Chelsea Pub., 1982.
    24. Eisberg, R. M.; Resnick, R., Quantum physics of atoms, molecules, solids, nuclei, and particles; Wiley, 1985.
    25. Mino, L.; Agostini, G.; Borfecchia, E.; Gianolio, D.; Piovano, A.; Gallo, E.; Lamberti, C., Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. Journal of Physics D: Applied Physics 2013, 46, 423001.
    26. Brus, L. E., Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. The Journal of chemical physics 1984, 80, 4403-4409.
    27. Kayanuma, Y., Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Physical Review B 1988, 38, 9797.
    28. Bawendi, M. G.; Steigerwald, M. L.; Brus, L. E., The quantum mechanics of larger semiconductor clusters (" quantum dots"). Annual Review of Physical Chemistry 1990, 41, 477-496.
    29. Brus, L. E., Electronic wave functions in semiconductor clusters: experiment and theory. The Journal of Physical Chemistry 1986, 90, 2555-2560.
    30. Brus, L. E., Quantum crystallites and nonlinear optics. Applied Physics A 1991, 53, 465-474.
    31. Brus, L. E., Structure and electronic states of quantum semiconductor crystallites. Nanostructured Materials 1992, 1, 71-75.
    32. Tartakovskii, A., Quantum Dots: Optics, Electron Transport and Future Applications; Cambridge University Press, 2012.
    33. Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters 2005, 5, 865-871.
    34. Bourzac, K., Quantum dots go on display. Nature 2013, 493, 283-283.
    35. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nature methods 2008, 5, 763-775.
    36. Colinge, J. P.; Colinge, C. A., Physics of Semiconductor Devices; Springer, 2005.
    37. Nicollian, E. H.; Brews, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology; Wiley, 2002.
    38. Best research cell efficiencies. In National Renewable Energy Laboratory, National Renewable Energy Laboratory: http://www.nrel.gov/ncpv/, 2014.
    39. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D., Solar cell efficiency tables (version 44). Progress in Photovoltaics: Research and Applications 2014, 22, 701-710.
    40. Materials, A. S. f. T. a., ASTM G173-03 global total spectral irradiance www.astm.org, 2012.
    41. Schock, H. W.; Noufi, R., CIGS‐based solar cells for the next millennium. Progress in Photovoltaics: Research and Applications 2000, 8, 151-160.
    42. Katagiri, H.; Jimbo, K.; Maw, W. S.; Oishi, K.; Yamazaki, M.; Araki, H.; Takeuchi, A., Development of CZTS-based thin film solar cells. Thin Solid Films 2009, 517, 2455-2460.
    43. (ASTM), A. S. f. T. a. M., ASTM G173-03 global total spectral irradiance www.astm.org, 2012.
    44. ISO, Solar energy -- Reference solar spectral irradiance at the ground at different receiving conditions -- Part 1: Direct normal and hemispherical solar irradiance for air mass 1.5. International Organization for Standardization: International Organization for Standardization, 1992; Vol. ISO 9845-1:1992.
    45. NREL Reference Solar Spectral Irradiance: ASTM G-173. http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html (accessed 2014).
    46. Nelson, J., The Physics of Solar Cells; Imperial College Press, 2003.
    47. Krane, K. S., Modern Physics; Wiley, 2012.
    48. Green, M. A., Solar cells: operating principles, technology, and system applications; Prentice-Hall, 1982.
    49. Beard, M. C.; Knutsen, K. P.; Yu, P.; Luther, J. M.; Song, Q.; Metzger, W. K.; Ellingson, R. J.; Nozik, A. J., Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters 2007, 7, 2506-2512.
    50. Rabani, E.; Baer, R., Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Letters 2008, 8, 4488-4492.
    51. Rabani, E.; Baer, R., Theory of multiexciton generation in semiconductor nanocrystals. Chemical Physics Letters 2010, 496, 227-235.
    52. Schaller, R. D.; Petruska, M. A.; Klimov, V. I., Effect of electronic structure on carrier multiplication efficiency: Comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters 2005, 87, 253102.
    53. Shabaev, A.; Efros, A. L.; Nozik, A., Multiexciton generation by a single photon in nanocrystals. Nano Letters 2006, 6, 2856-2863.
    54. Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H., Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 2009, 324, 1542-1544.
    55. Würfel, P.; Würfel, U., Physics of Solar Cells: From Basic Principles to Advanced Concepts; Wiley, 2009.
    56. Chen, G., Nanoscale Energy Transport and Conversion : A Parallel Treatment of Electrons, Molecules, Phonons, and Photons: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons; Oxford University Press, USA: Department of Mechanical Engineering MIT, 2005.
    57. Strite, S.; Morkoç, H., GaN, AlN, and InN: a review. Journal of Vacuum Science & Technology B 1992, 10, 1237-1266.
    58. Jani, O.; Ferguson, I.; Honsberg, C.; Kurtz, S., Design and characterization of GaN/ InGaN solar cells. Applied Physics Letters 2007, 91, 132117.
    59. Vetterl, O.; Finger, F.; Carius, R.; Hapke, P.; Houben, L.; Kluth, O.; Lambertz, A.; Mück, A.; Rech, B.; Wagner, H., Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells 2000, 62, 97-108.
    60. Shah, A.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Graf, U., Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar Cells 2003, 78, 469-491.
    61. Mai, Y.; Klein, S.; Carius, R.; Wolff, J.; Lambertz, A.; Finger, F.; Geng, X., Microcrystalline silicon solar cells deposited at high rates. Journal of Applied Physics 2005, 97, 114913.
    62. Carlson, D. E.; Wronski, C. R., Amorphous silicon solar cell. Applied Physics Letters 1976, 28, 671-673.
    63. King, R.; Law, D.; Edmondson, K.; Fetzer, C.; Kinsey, G.; Yoon, H.; Sherif, R.; Karam, N., 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Applied Physics Letters 2007, 90, 183516-183516-3.
    64. King, R.; Sherif, R.; Law, D.; Yen, J.; Haddad, M.; Fetzer, C.; Edmondson, K.; Kinsey, G.; Yoon, H.; Joshi, M. In New horizons in III-V multijunction terrestrial concentrator cell research, Proc. 21st European Photovoltaic Solar Energy Conference and Exhibition, 2006; pp 4-8.
    65. Zhao, Y.; Wang, L.; Byon, H. R., High-performance rechargeable lithium-iodine batteries using triiodide/iodide redox couples in an aqueous cathode. Nature communications 2013, 4, 1896.
    66. Le Bahers, T.; Pauporté, T.; Scalmani, G.; Adamo, C.; Ciofini, I., A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2009, 11, 11276-11284.
    67. Abbotto, A.; Sauvage, F.; Barolo, C.; De Angelis, F.; Fantacci, S.; Graetzel, M.; Manfredi, N.; Marinzi, C.; Nazeeruddin, M. K., Panchromatic ruthenium sensitizer based on electron-rich heteroarylvinylene π-conjugated quaterpyridine for dye-sensitized solar cells. Dalton Transactions 2011, 40, 234-242.
    68. Progress in ruthenium complexes for dye sensitised solar cells. Platinum Metals Rev 2009, 53, 216-218.
    69. Tro, N. J., Chemistry: A Molecular Approach; Pearson Education, Limited, 2013.
    70. Heine, J.; Müller-Buschbaum, K., Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chemical Society Reviews 2013, 42, 9232-9242.
    71. Meyer, T. J., Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure and Applied Chemistry 1986, 58, 1193-1206.
    72. Kalyanasundaram, K., Dye-sensitized Solar Cells; EFPL Press, 2010.
    73. Nazeeruddin, M. K.; Pechy, P.; Grätzel, M., Efficient panchromatic sensitization of nanocrystalline TiO 2 films by a black dye based on a trithiocyanato–ruthenium complex. Chemical Communications 1997, 1705-1706.
    74. O’regan, B.; Grfitzeli, M., A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 1991, 353, 737-740.
    75. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115, 6382-6390.
    76. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127, 16835-16847.
    77. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 2003, 107, 8981-8987.
    78. Kroon, J.; Bakker, N.; Smit, H.; Liska, P.; Thampi, K.; Wang, P.; Zakeeruddin, S.; Grätzel, M.; Hinsch, A.; Hore, S., Nanocrystalline dye‐sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications 2007, 15, 1-18.
    79. Evans, R. C.; Douglas, P.; Burrow, H. D., Applied Photochemistry; Springer, 2013.
    80. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M., Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals. The Journal of Physical Chemistry B 2003, 107, 14336-14341.
    81. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials 2003, 2, 402-407.
    82. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society 2004, 126, 12218-12219.
    83. Ito, S.; Zakeeruddin, S. M.; Humphry‐Baker, R.; Liska, P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H., High‐Efficiency Organic‐Dye‐Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness. Advanced Materials 2006, 18, 1202-1205.
    84. Guillén, E.; Azaceta, E.; Vega-Poot, A.; Idígoras, J.; Echeberría, J.; Anta, J. A.; Tena-Zaera, R., ZnO/ZnO core–shell nanowire array electrodes: blocking of recombination and impressive enhancement of photovoltage in dye-sensitized solar cells. The Journal of Physical Chemistry C 2013, 117, 13365-13373.
    85. Premaratne, K.; Kumara, G.; Rajapakse, R.; Karunarathne, M., Highly efficient, optically semi-transparent, ZnO-based dye-sensitized solar cells with Indoline D-358 as the dye. Journal of Photochemistry and Photobiology A: Chemistry 2012, 229, 29-32.
    86. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 242-247.
    87. Hamann, T. W.; Jensen, R. A.; Martinson, A. B.; Van Ryswyk, H.; Hupp, J. T., Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science 2008, 1, 66-78.
    88. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters 2007, 7, 69-74.
    89. Schlichthörl, G.; Park, N.; Frank, A., Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B 1999, 103, 782-791.
    90. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO Nanostructures for Dye‐Sensitized Solar Cells. Advanced Materials 2009, 21, 4087-4108.
    91. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.-i.; Murata, K., High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2003, 79, 459-469.
    92. Huang, Z.; Liu, X.; Li, K.; Li, D.; Luo, Y.; Li, H.; Song, W.; Chen, L.; Meng, Q., Application of carbon materials as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 2007, 9, 596-598.
    93. Hong, W.; Xu, Y.; Lu, G.; Li, C.; Shi, G., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochemistry Communications 2008, 10, 1555-1558.
    94. Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L., Application of microporous polyaniline counter electrode for dye-sensitized solar cells. Electrochemistry Communications 2008, 10, 1299-1302.
    95. Maiaugree, W.; Lowpa, S.; Towannang, M.; Rutphonsan, P.; Tangtrakarn, A.; Pimanpang, S.; Maiaugree, P.; Ratchapolthavisin, N.; Sang-Aroon, W.; Jarernboon, W., A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Scientific reports 2015, 5.
    96. Frank, A. J.; Kopidakis, N.; van de Lagemaat, J., Electrons in nanostructured TiO 2 solar cells: transport, recombination and photovoltaic properties. Coordination Chemistry Reviews 2004, 248, 1165-1179.
    97. Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A., Substituted polypyridine complexes of cobalt (II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. Journal of the American Chemical Society 2002, 124, 11215-11222.
    98. Daeneke, T.; Kwon, T.-H.; Holmes, A. B.; Duffy, N. W.; Bach, U.; Spiccia, L., High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature chemistry 2011, 3, 211-215.
    99. Hamann, T. W.; Farha, O. K.; Hupp, J. T., Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition. The Journal of Physical Chemistry C 2008, 112, 19756-19764.
    100. Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Durrant, J. R., Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. The Journal of Physical Chemistry C 2007, 111, 6561-6567.
    101. Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M., Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society 2003, 125, 1166-1167.
    102. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M., High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chemical Communications 2002, 2972-2973.
    103. Kawano, R.; Matsui, H.; Matsuyama, C.; Sato, A.; Susan, M. A. B. H.; Tanabe, N.; Watanabe, M., High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 87-92.
    104. Stathatos, E.; Lianos, P.; Lavrencic-Stangar, U.; Orel, B., A high-performance solid-state dye-sensitized photoelectrochemical cell employing a nanocomposite gel electrolyte made by the sol-gel route. Advanced Materials 2002, 14, 354.
    105. Peter, L., Characterization and modeling of dye-sensitized solar cells. The Journal of Physical Chemistry C 2007, 111, 6601-6612.
    106. Boschloo, G.; Hagfeldt, A., Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Accounts of Chemical Research 2009, 42, 1819-1826.
    107. Peter, L., “Sticky electrons” transport and interfacial transfer of electrons in the dye-sensitized solar cell. Accounts of Chemical Research 2009, 42, 1839-1847.
    108. Kumar, A.; Santangelo, P. G.; Lewis, N. S., Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. The Journal of Physical Chemistry 1992, 96, 834-842.
    109. Huang, S.; Schlichthörl, G.; Nozik, A.; Grätzel, M.; Frank, A., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B 1997, 101, 2576-2582.
    110. Bard, A. J.; Bocarsly, A. B.; Fan, F. R. F.; Walton, E. G.; Wrighton, M. S., The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. Journal of the American Chemical Society 1980, 102, 3671-3677.
    111. Koval, C. A.; Howard, J. N., Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chemical reviews 1992, 92, 411-433.
    112. Rosenbluth, M. L.; Lewis, N. S., " Ideal" behavior of the open circuit voltage of semiconductor/liquid junctions. The Journal of Physical Chemistry 1989, 93, 3735-3740.
    113. Adachi, M.; Sakamoto, M.; Jiu, J.; Ogata, Y.; Isoda, S., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. The Journal of Physical Chemistry B 2006, 110, 13872-13880.
    114. Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer. The Journal of Physical Chemistry B 2002, 106, 325-333.
    115. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J., Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta 2002, 47, 4213-4225.
    116. Martinson, A. B.; McGarrah, J. E.; Parpia, M. O.; Hupp, J. T., Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Physical Chemistry Chemical Physics 2006, 8, 4655-4659.
    117. Oekermann, T.; Yoshida, T.; Minoura, H.; Wijayantha, K.; Peter, L., Electron transport and back reaction in electrochemically self-assembled nanoporous ZnO/dye hybrid films. The Journal of Physical Chemistry B 2004, 108, 8364-8370.
    118. Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Seró, I., Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. Journal of the American Chemical Society 2004, 126, 13550-13559.
    119. Zaban, A.; Greenshtein, M.; Bisquert, J., Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open‐Circuit Voltage Decay Measurements. ChemPhysChem 2003, 4, 859-864.
    120. Simon M. Sze, K. K. N., Physics of Semiconductor Devices; Wiley, 2006.
    121. McEvoy, A.; Markvart, T.; Castañer, L.; Markvart, T.; Castaner, L., Practical handbook of photovoltaics: fundamentals and applications; Elsevier, 2003.
    122. So, F., Organic Electronics: Materials, Processing, Devices and Applications; CRC Press, 2009.
    123. Orazem, M. E.; Tribollet, B., Electrochemical Impedance Spectroscopy; Wiley, 2011.
    124. Lasia, A., Electrochemical impedance spectroscopy and its applications. In Modern Aspects of Electrochemistry, Springer: 2002; pp 143-248.
    125. Ramasamy, E.; Lee, W. J.; Lee, D. Y.; Song, J. S., Spray coated multi-wall carbon nanotube counter electrode for tri-iodide reduction in dye-sensitized solar cells. Electrochemistry Communications 2008, 10, 1087-1089.
    126. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications; Wiley, 2000.
    127. Barsoukov, E.; Macdonald, J. R., Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley, 2005.
    128. Crabtree, R. H., Energy Production and Storage: Inorganic Chemical Strategies for a Warming World; Wiley, 2013.
    129. Rubinson, J. F.; Kayinamura, Y. P., Charge transport in conducting polymers: insights from impedance spectroscopy. Chemical Society Reviews 2009, 38, 3339-3347.
    130. Hildebrand, F. B., Advanced Calculus for Applications; Prentice-Hall, 1976.
    131. Grzybowski, B. A., Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology; Wiley, 2009.
    132. Reinhardt, K. A.; Reidy, R. F., Handbook for Cleaning for Semiconductor Manufacturing: Fundamentals and Applications; Wiley, 2011, p 590.
    133. King, S.; Barnak, J.; Bremser, M.; Tracy, K.; Ronning, C.; Davis, R.; Nemanich, R., Cleaning of AlN and GaN surfaces. Journal of Applied Physics 1998, 84, 5248-5260.
    134. Shrotriya, V.; Li, G.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., Accurate measurement and characterization of organic solar cells. Advanced Functional Materials 2006, 16, 2016-2023.
    135. Park, J.; Koo, H.-J.; Yoo, B.; Yoo, K.; Kim, K.; Choi, W.; Park, N.-G., On the I–V measurement of dye-sensitized solar cell: effect of cell geometry on photovoltaic parameters. Solar Energy Materials and Solar Cells 2007, 91, 1749-1754.
    136. Lee, W. J.; Ramasamy, E.; Lee, D. Y., Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells 2009, 93, 1448-1451.
    137. Lee, G.-W.; Kim, D.; Ko, M. J.; Kim, K.; Park, N.-G., Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells. Solar Energy 2010, 84, 418-425.
    138. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W., Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room‐Temperature Ultraviolet Laser. Advanced Materials 2003, 15, 1911-1914.
    139. Hong, Y. J.; Jung, H. S.; Yoo, J.; Kim, Y. J.; Lee, C. H.; Kim, M.; Yi, G. C., Shape‐Controlled Nanoarchitectures Using Nanowalls. Advanced Materials 2009, 21, 222-226.
    140. Frenzel, H.; Lajn, A.; von Wenckstern, H.; Lorenz, M.; Schein, F.; Zhang, Z.; Grundmann, M., Recent Progress on ZnO‐Based Metal‐Semiconductor Field‐Effect Transistors and Their Application in Transparent Integrated Circuits. Advanced Materials 2010, 22, 5332-5349.
    141. Vayssieres, L., Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials 2003, 15, 464-466.
    142. Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A., Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B 2001, 105, 3350-3352.
    143. Könenkamp, R.; Boedecker, K.; Lux-Steiner, M. C.; Poschenrieder, M.; Zenia, F.; Levy-Clement, C.; Wagner, S., Thin film semiconductor deposition on free-standing ZnO columns. Applied Physics Letters 2000, 77, 2575-2577.
    144. Yu, H.; Zhang, Z.; Han, M.; Hao, X.; Zhu, F., A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. Journal of the American Chemical Society 2005, 127, 2378-2379.
    145. Wong, M.; Berenov, A.; Qi, X.; Kappers, M.; Barber, Z.; Illy, B.; Lockman, Z.; Ryan, M.; MacManus-Driscoll, J., Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil. Nanotechnology 2003, 14, 968.
    146. Fan, H. J.; Lotnyk, A.; Scholz, R.; Yang, Y.; Kim, D. S.; Pippel, E.; Senz, S.; Hesse, D.; Zacharias, M., Surface Reaction of ZnO Nanowires with Electron-Beam Generated Alumina Vapor. The Journal of Physical Chemistry C 2008, 112, 6770-6774.
    147. Song, T.; Choung, J. W.; Park, J.-G.; Park, W. I.; Rogers, J. A.; Paik, U., Surface polarity and shape-controlled synthesis of ZnO nanostructures on GaN thin films based on catalyst-free metalorganic vapor phase epitaxy. Adv. Mater 2008, 20, 4464-4469.
    148. Chen, L.-Y.; Wu, S.-H.; Yin, Y.-T., Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process. The Journal of Physical Chemistry C 2009, 113, 21572-21576.
    149. Li, D.; Leung, Y.; Djurišić, A.; Liu, Z.; Xie, M.; Shi, S.; Xu, S.; Chan, W., Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods. Applied Physics Letters 2004, 85, 1601-1603.
    150. Uedono, A.; Koida, T.; Tsukazaki, A.; Kawasaki, M.; Chen, Z.; Chichibu, S.; Koinuma, H., Defects in ZnO thin films grown on ScAlMgO4 substrates probed by a monoenergetic positron beam. Journal of Applied Physics 2003, 93, 2481-2485.
    151. Tam, K.; Cheung, C.; Leung, Y.; Djurišic, A.; Ling, C.; Beling, C.; Fung, S.; Kwok, W.; Chan, W.; Phillips, D., Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B 2006, 110, 20865-20871.
    152. Ahmad, M.; Zhu, J., ZnO based advanced functional nanostructures: synthesis, properties and applications. Journal of Materials Chemistry 2011, 21, 599-614.
    153. Kohan, A.; Ceder, G.; Morgan, D.; Van de Walle, C. G., First-principles study of native point defects in ZnO. Physical Review B 2000, 61, 15019.
    154. Liu, M.; Kitai, A.; Mascher, P., Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. Journal of Luminescence 1992, 54, 35-42.
    155. Djurišić, A. B.; Leung, Y. H., Optical properties of ZnO nanostructures. small 2006, 2, 944-961.
    156. Vanheusden, K.; Seager, C.; Warren, W. t.; Tallant, D.; Voigt, J., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Applied Physics Letters 1996, 68, 403-405.
    157. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.-E., Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials 2001, 13, 4395-4398.
    158. Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, P., General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Letters 2005, 5, 1231-1236.
    159. Zhou, Y.; Wu, W.; Hu, G.; Wu, H.; Cui, S., Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Materials Research Bulletin 2008, 43, 2113-2118.
    160. Tak, Y.; Yong, K., Controlled growth of well-aligned ZnO nanorod array using a novel solution method. The Journal of Physical Chemistry B 2005, 109, 19263-19269.
    161. Lu, J.; Zhang, Y.; Ye, Z.; Wang, L.; Zhao, B.; Huang, J., p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters 2003, 57, 3311-3314.
    162. Baruah, S.; Dutta, J., Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials 2009, 10, 013001.
    163. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P., Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angewandte Chemie International Edition 2003, 42, 3031-3034.
    164. IXS Standards and Criteria Subcommittee Reports. http://ixs.iit.edu/subcommittee_reports/sc/.
    165. Stern, E.; Newville, M.; Ravel, B.; Yacoby, Y.; Haskel, D., The UWXAFS analysis package: philosophy and details. Physica B: Condensed Matter 1995, 208, 117-120.
    166. Zabinsky, S.; Rehr, J.; Ankudinov, A.; Albers, R.; Eller, M., Multiple-scattering calculations of X-ray-absorption spectra. Physical Review B 1995, 52, 2995.
    167. Ashkenov, N.; Mbenkum, B.; Bundesmann, C.; Riede, V.; Lorenz, M.; Spemann, D.; Kaidashev, E.; Kasic, A.; Schubert, M.; Grundmann, M., Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics 2003, 93, 126-133.
    168. Xing, Y.; Xi, Z.; Xue, Z.; Zhang, X.; Song, J.; Wang, R.; Xu, J.; Song, Y.; Zhang, S.; Yu, D., Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Applied Physics Letters 2003, 83, 1689-1691.
    169. Gomi, M.; Oohira, N.; Ozaki, K.; Koyano, M., Photoluminescent and structural properties of precipitated ZnO fine particles. Japanese journal of applied physics 2003, 42, 481.
    170. Djurišić, A.; Leung, Y.; Tam, K.; Ding, L.; Ge, W.; Chen, H.; Gwo, S., Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Applied Physics Letters 2006, 88, 103107.
    171. Cross, R.; De Souza, M.; Narayanan, E. S., A low temperature combination method for the production of ZnO nanowires. Nanotechnology 2005, 16, 2188.
    172. Liu, X.; Wu, X.; Cao, H.; Chang, R., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2004, 95, 3141-3147.
    173. Heo, Y.; Norton, D.; Pearton, S., Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. Journal of Applied Physics 2005, 98, 073502.
    174. Sekiguchi, T.; Miyashita, S.; Obara, K.; Shishido, T.; Sakagami, N., Hydrothermal growth of ZnO single crystals and their optical characterization. Journal of Crystal Growth 2000, 214, 72-76.
    175. Pal, U.; Santiago, P., Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. The Journal of Physical Chemistry B 2005, 109, 15317-15321.
    176. Ong, H.; Du, G., The evolution of defect emissions in oxygen-deficient and-surplus ZnO thin films: the implication of different growth modes. Journal of Crystal Growth 2004, 265, 471-475.
    177. Romero-Gómez, P.; Toudert, J.; Sánchez-Valencia, J. R.; Borrás, A.; Barranco, A.; Gonzalez-Elipe, A. n. R., Tunable nanostructure and photoluminescence of columnar ZnO films grown by plasma deposition. The Journal of Physical Chemistry C 2010, 114, 20932-20940.
    178. Oba, F.; Nishitani, S. R.; Isotani, S.; Adachi, H.; Tanaka, I., Energetics of native defects in ZnO. Journal of Applied Physics 2001, 90, 824-828.
    179. Zhang, S.; Wei, S.-H.; Zunger, A., Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B 2001, 63, 075205.
    180. Tuomisto, F.; Saarinen, K.; Look, D. C.; Farlow, G. C., Introduction and recovery of point defects in electron-irradiated ZnO. Physical Review B 2005, 72, 085206.
    181. Erhart, P.; Albe, K., Diffusion of zinc vacancies and interstitials in zinc oxide. Applied Physics Letters 2006, 88, 201918.
    182. Janotti, A.; Van de Walle, C. G., New insights into the role of native point defects in ZnO. Journal of Crystal Growth 2006, 287, 58-65.
    183. Huang, G.-Y.; Wang, C.-Y.; Wang, J.-T., First-principles study of diffusion of zinc vacancies and interstitials in ZnO. Solid State Communications 2009, 149, 199-204.
    184. Kim, Y.; Kim, Y.; Kang, S., Surface Photoluminescence Emission of ZnO Nanorod Arrays: Experimental and First-Principles Investigation. The Journal of Physical Chemistry C 2010, 114, 17894-17898.
    185. Moreira, N. H.; Aradi, B.; Rosa, A. L. d.; Frauenheim, T., Native defects in ZnO nanowires: atomic relaxations, relative stability, and defect healing with organic acids. The Journal of Physical Chemistry C 2010, 114, 18860-18865.
    186. De Angelis, F.; Armelao, L., Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation. Physical Chemistry Chemical Physics 2011, 13, 467-475.
    187. Waychunas, G.; Fuller, C.; Davis, J.; Rehr, J., Surface complexation and precipitate geometry for aqueous Zn (II) sorption on ferrihydrite: II. XANES analysis and simulation. Geochimica et Cosmochimica Acta 2003, 67, 1031-1043.
    188. Kelly, R. A.; Andrews, J. C.; DeWitt, J. G., An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture. Microchemical journal 2002, 71, 231-245.
    189. Yoshida, H.; Shimizu, T.; Murata, C.; Hattori, T., Highly dispersed zinc oxide species on silica as active sites for photoepoxidation of propene by molecular oxygen. Journal of Catalysis 2003, 220, 226-232.
    190. Larcheri, S.; Armellini, C.; Rocca, F.; Kuzmin, A.; Kalendarev, R.; Dalba, G.; Graziola, R.; Purans, J.; Pailharey, D.; Jandard, F., X-ray studies on optical and structural properties of ZnO nanostructured thin films. Superlattices and microstructures 2006, 39, 267-274.
    191. Chaboy, J.; Boada, R.; Piquer, C.; Laguna-Marco, M.; García-Hernández, M.; Carmona, N.; Llopis, J.; Ruíz-González, M.; González-Calbet, J.; Fernández, J., Evidence of intrinsic magnetism in capped ZnO nanoparticles. Physical Review B 2010, 82, 064411.
    192. Zhang, P.; Sham, T., X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Physical review letters 2003, 90, 245502.
    193. Öztekin, N.; Alemdar, A.; Güngör, N.; Erim, F. B., Adsorption of polyethyleneimine from aqueous solutions on bentonite clays. Materials Letters 2002, 55, 73-76.
    194. Degen, A.; Kosec, M., Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. Journal of the European Ceramic Society 2000, 20, 667-673.
    195. Wang, Z. L., Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16, R829.
    196. Park, W. I.; Yi, G. C., Electroluminescence in n‐ZnO Nanorod Arrays Vertically Grown on p‐GaN. Advanced Materials 2004, 16, 87-90.
    197. Park, T.-Y.; Choi, Y.-S.; Kim, S.-M.; Jung, G.-Y.; Park, S.-J.; Kwon, B.-J.; Cho, Y.-H., Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN. Applied Physics Letters 2011, 98, 251111.
    198. Ng, H. T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y. P.; Meyyappan, M., Single crystal nanowire vertical surround-gate field-effect transistor. Nano Letters 2004, 4, 1247-1252.
    199. Yang, J.; Lee, M. S.; Lee, H.-J.; Kim, H., Hybrid ZnO nanowire networked field-effect transistor with solution-processed InGaZnO film. Applied Physics Letters 2011, 98, 253106.
    200. Liang, H.; Yu, S.; Yang, H., Directional and controllable edge-emitting ZnO ultraviolet random laser diodes. Applied Physics Letters 2010.
    201. Xiong, P.; Jia, T.; Jia, X.; Feng, D.; Zhang, S.; Ding, L.; Sun, Z.; Qiu, J.; Xu, Z., Ultraviolet luminescence enhancement of ZnO two-dimensional periodic nanostructures fabricated by the interference of three femtosecond laser beams. New Journal of Physics 2011, 13, 023044.
    202. Konovalov, I.; Hesse, R., Band alignment at SrCu2O2/ZnO heterointerface. Journal of Applied Physics 2009, 106, 6102.
    203. Barreca, D.; Bekermann, D.; Comini, E.; Devi, A.; Fischer, R. A.; Gasparotto, A.; Maccato, C.; Sberveglieri, G.; Tondello, E., 1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical 2010, 149, 1-7.
    204. Rahman, M. M.; Jamal, A.; Khan, S. B.; Faisal, M., CuO codoped ZnO based nanostructured materials for sensitive chemical sensor applications. ACS applied materials & interfaces 2011, 3, 1346-1351.
    205. Martinson, A. B.; Hamann, T. W.; Pellin, M. J.; Hupp, J. T., New Architectures for Dye‐Sensitized Solar Cells. Chemistry-A European Journal 2008, 14, 4458-4467.
    206. Xu, C.; Shin, P.; Cao, L.; Gao, D., Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. The Journal of Physical Chemistry C 2009, 114, 125-129.
    207. Lyu, S. C.; Zhang, Y.; Lee, C. J.; Ruh, H.; Lee, H. J., Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chemistry of Materials 2003, 15, 3294-3299.
    208. Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien, J. A.; Lee, C. S.; Lifshitz, Y.; Lee, S. T., Well‐Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates. Advanced Functional Materials 2004, 14, 589-594.
    209. George, A.; Kumari, P.; Soin, N.; Roy, S.; McLaughlin, J., Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Materials Chemistry and Physics 2010, 123, 634-638.
    210. Lin, B.-C.; Shen, P.; Chen, S.-Y., ZnO and ε-Zn (OH) 2 Composite Nanoparticles by Pulsed Laser Ablation on Zn in Water. The Journal of Physical Chemistry C 2010.
    211. Yuan, D.; Guo, R.; Wei, Y.; Wu, W.; Ding, Y.; Wang, Z. L.; Das, S., Heteroepitaxial patterned growth of vertically aligned and periodically distributed ZnO nanowires on GaN using laser interference ablation. Advanced Functional Materials 2010, 20, 3484-3489.
    212. Ma, Q.; Saraswati, T. E.; Ogino, A.; Nagatsu, M., Improvement of UV emission from highly crystalline ZnO nanoparticles by pulsed laser ablation under O-2/He glow discharge. Applied Physics Letters 2011, 98, 051908.
    213. Kar, S.; Dev, A.; Chaudhuri, S., Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. The Journal of Physical Chemistry B 2006, 110, 17848-17853.
    214. Anthony, S. P.; Lee, J. I.; Kim, J. K., Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition. Applied Physics Letters 2007, 90, 3107.
    215. Cui, J.; Soo, Y.; Chen, T.; Gibson, U., Low-temperature growth and characterization of Cl-doped ZnO nanowire arrays. The Journal of Physical Chemistry C 2008, 112, 4475-4479.
    216. Tak, Y.; Park, D.; Yong, K., Characterization of ZnO nanorod arrays fabricated on Si wafers using a low-temperature synthesis method. Journal of Vacuum Science & Technology B 2006, 24, 2047-2052.
    217. Qiu, J.; Li, X.; Zhuge, F.; Gan, X.; Gao, X.; He, W.; Park, S.-J.; Kim, H.-K.; Hwang, Y.-H., Solution-derived 40 µm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology 2010, 21, 195602.
    218. Xu, C.; Wu, J.; Desai, U. V.; Gao, D., Multilayer assembly of nanowire arrays for dye-sensitized solar cells. Journal of the American Chemical Society 2011, 133, 8122-8125.
    219. Ito, K.; Shiraishi, K., Preparation conditions of CdS thin films by flowed liquid film method. Solar Energy Materials and Solar Cells 1994, 35, 179-184.
    220. Ito, K.; Nakamura, K., Preparation of ZnO thin films using the flowing liquid film method. Thin Solid Films 1996, 286, 35-36.
    221. McPeak, K. M.; Baxter, J. B., ZnO nanowires grown by chemical bath deposition in a continuous flow microreactor. Crystal Growth & Design 2009, 9, 4538-4545.
    222. Chen, Z.; Kawasuso, A.; Xu, Y.; Naramoto, H.; Yuan, X.; Sekiguchi, T.; Suzuki, R.; Ohdaira, T., Production and recovery of defects in phosphorus-implanted ZnO. Journal of Applied Physics 2005, 97, 13528-13528.
    223. Xu, X.; Lau, S.; Chen, J.; Chen, G.; Tay, B., Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. Journal of Crystal Growth 2001, 223, 201-205.
    224. Exarhos, G. J.; Sharma, S. K., Influence of processing variables on the structure and properties of ZnO films. Thin Solid Films 1995, 270, 27-32.
    225. Kopidakis, N.; Schiff, E.; Park, N.-G.; Van de Lagemaat, J.; Frank, A., Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2. The Journal of Physical Chemistry B 2000, 104, 3930-3936.
    226. Park, N.-G.; Van de Lagemaat, J.; Frank, A., Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B 2000, 104, 8989-8994.
    227. Wong, D. K. P.; Ku, C. H.; Chen, Y. R.; Chen, G. R.; Wu, J. J., Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye‐Sensitized Solar Cells. ChemPhysChem 2009, 10, 2698-2702.
    228. Gonzalez-Valls, I.; Lira-Cantu, M., Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review. Energy & Environmental Science 2009, 2, 19-34.
    229. Schmidt-Mende, L.; MacManus-Driscoll, J. L., ZnO–nanostructures, defects, and devices. Materials today 2007, 10, 40-48.
    230. Galoppini, E.; Rochford, J.; Chen, H.; Saraf, G.; Lu, Y.; Hagfeldt, A.; Boschloo, G., Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. The Journal of Physical Chemistry B 2006, 110, 16159-16161.
    231. Meulenkamp, E. A., Electron transport in nanoparticulate ZnO films. The Journal of Physical Chemistry B 1999, 103, 7831-7838.
    232. Van de Lagemaat, J.; Frank, A., Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. The Journal of Physical Chemistry B 2001, 105, 11194-11205.
    233. Wu, C.-T.; Liao, W.-P.; Wu, J.-J., Three-dimensional ZnO nanodendrite/nanoparticle composite solar cells. Journal of Materials Chemistry 2011, 21, 2871-2876.
    234. Greene, L. E.; Yuhas, B. D.; Law, M.; Zitoun, D.; Yang, P., Solution-grown zinc oxide nanowires. Inorganic chemistry 2006, 45, 7535-7543.
    235. Baxter, J. B.; Walker, A.; Van Ommering, K.; Aydil, E., Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 2006, 17, S304.
    236. Chen, L.-Y.; Yin, Y.-T., Facile continuous flow injection process for high quality long ZnO nanowire arrays synthesis. Crystal Growth & Design 2012, 12, 1055-1059.
    237. Kaschner, A.; Haboeck, U.; Strassburg, M.; Strassburg, M.; Kaczmarczyk, G.; Hoffmann, A.; Thomsen, C.; Zeuner, A.; Alves, H.; Hofmann, D., Nitrogen-related local vibrational modes in ZnO: N. Applied Physics Letters 2002, 80, 1909-1911.
    238. Kerr, L. L.; Li, X.; Canepa, M.; Sommer, A. J., Raman analysis of nitrogen doped ZnO. Thin Solid Films 2007, 515, 5282-5286.
    239. Bisquert, J., Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Physical Chemistry Chemical Physics 2003, 5, 5360-5364.
    240. Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D.; Zakeeruddin, S. M.; Grätzel, M., Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. The Journal of Physical Chemistry C 2007, 111, 6550-6560.
    241. Mahpeykar, S.; Koohsorkhi, J.; Ghafoori-Fard, H., Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application. Nanotechnology 2012, 23, 165602.
    242. Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.; Westermark, K.; Rensmo, H.; Siegbahn, H., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry 2002, 148, 57-64.
    243. Horiuchi, H.; Katoh, R.; Hara, K.; Yanagida, M.; Murata, S.; Arakawa, H.; Tachiya, M., Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3-Zn2+) aggregate formation. The Journal of Physical Chemistry B 2003, 107, 2570-2574.
    244. Westermark, K.; Rensmo, H.; Siegbahn, H.; Keis, K.; Hagfeldt, A.; Ojamäe, L.; Persson, P., PES studies of Ru (dcbpyH2) 2 (NCS) 2 adsorption on nanostructured ZnO for solar cell applications. The Journal of Physical Chemistry B 2002, 106, 10102-10107.
    245. Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H., The fabrication of an upright‐standing zinc oxide nanosheet for use in dye‐sensitized solar cells. Advanced Materials 2005, 17, 2091-2094.
    246. Xu, F.; Dai, M.; Lu, Y.; Sun, L., Hierarchical ZnO nanowire− nanosheet architectures for high power conversion efficiency in dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114, 2776-2782.
    247. McCune, M.; Zhang, W.; Deng, Y., High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with “caterpillar-like” structure. Nano Letters 2012, 12, 3656-3662.
    248. Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 2011, 334, 629-634.
    249. Chen, L.-Y.; Yin, Y.-T., The influence of length of one-dimensional photoanode on the performance of dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22, 24591-24596.
    250. Benkstein, K. D.; Kopidakis, N.; Van de Lagemaat, J.; Frank, A., Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. The Journal of Physical Chemistry B 2003, 107, 7759-7767.
    251. Yan, F.; Huang, L.; Zheng, J.; Huang, J.; Lin, Z.; Huang, F.; Wei, M., Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells. Langmuir 2010, 26, 7153-7156.
    252. Yang, J.; Lin, Y.; Meng, Y., Effects of dye etching on the morphology and performance of ZnO nanorod dye-sensitized solar cells. Korean Journal of Chemical Engineering 2013, 30, 2026-2029.
    253. Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G., Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. The Journal of Physical Chemistry C 2007, 111, 1035-1041.
    254. Cheng, H.-M.; Hsieh, W.-F., High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode. Energy & Environmental Science 2010, 3, 442-447.
    255. Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M., Acid-base equilibria of (2, 2'-bipyridyl-4, 4'-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic chemistry 1999, 38, 6298-6305.
    256. Chiu, W.-H.; Lee, C.-H.; Cheng, H.-M.; Lin, H.-F.; Liao, S.-C.; Wu, J.-M.; Hsieh, W.-F., Efficient electron transport in tetrapod-like ZnO metal-free dye-sensitized solar cells. Energy & Environmental Science 2009, 2, 694-698.
    257. Lin, C.-Y.; Lai, Y.-H.; Chen, H.-W.; Chen, J.-G.; Kung, C.-W.; Vittal, R.; Ho, K.-C., Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy & Environmental Science 2011, 4, 3448-3455.
    258. Minoura, H.; Yoshida, T., Electrodeposition of ZnO/dye hybrid thin films for dye-sensitized solar cells. Electrochemistry 2008, 76, 109-117.
    259. Hosono, E.; Mitsui, Y.; Zhou, H., Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency. Dalton Transactions 2008, 5439-5441.
    260. Chen, D.-W.; Wang, T.-C.; Liao, W.-P.; Wu, J.-J., Synergistic Effect of Dual Interfacial Modifications with Room-Temperature-Grown Epitaxial ZnO and Adsorbed Indoline Dye for ZnO Nanorod Array/P3HT Hybrid Solar Cell. ACS applied materials & interfaces 2013, 5, 8359-8365.
    261. Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B., Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons. Journal of the American Chemical Society 2008, 130, 13364-13372.
    262. Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L.; Ponomarev, E.; Redmond, G.; Shaw, N.; Uhlendorf, I., Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. The Journal of Physical Chemistry B 1997, 101, 10281-10289.
    263. Fisher, A.; Peter, L.; Ponomarev, E.; Walker, A.; Wijayantha, K., Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B 2000, 104, 949-958.
    264. Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M., Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. The Journal of Physical Chemistry B 2003, 107, 7536-7539.
    265. Franco, G.; Gehring, J.; Peter, L.; Ponomarev, E.; Uhlendorf, I., Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. The Journal of Physical Chemistry B 1999, 103, 692-698.
    266. Tornow, J.; Schwarzburg, K., Transient electrical response of dye-sensitized ZnO nanorod solar cells. The Journal of Physical Chemistry C 2007, 111, 8692-8698.
    267. Wu, J.-J.; Chen, G.-R.; Yang, H.-H.; Ku, C.-H.; Lai, J.-Y., Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells. Applied Physics Letters 2007, 90, 213109.
    268. Cheng, H.-M.; Chiu, W.-H.; Lee, C.-H.; Tsai, S.-Y.; Hsieh, W.-F., Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. The Journal of Physical Chemistry C 2008, 112, 16359-16364.
    269. Yang, Z.; Xu, T.; Ito, Y.; Welp, U.; Kwok, W. K., Enhanced electron transport in dye-sensitized solar cells using short ZnO nanotips on a rough metal anode. The Journal of Physical Chemistry C 2009, 113, 20521-20526.
    270. Li, Z.; Zhou, Y.; Xue, G.; Yu, T.; Liu, J.; Zou, Z., Fabrication of hierarchically assembled microspheres consisting of nanoporous ZnO nanosheets for high-efficiency dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22, 14341-14345.
    271. Puyoo, E.; Rey, G.; Appert, E.; Consonni, V.; Bellet, D., Efficient dye-sensitized solar cells made from ZnO nanostructure composites. The Journal of Physical Chemistry C 2012, 116, 18117-18123.
    272. Ku, C.-H.; Yang, H.-H.; Chen, G.-R.; Wu, J.-J., Wet-chemical route to ZnO nanowire-layered basic zinc acetate/ZnO nanoparticle composite film. Crystal Growth and Design 2007, 8, 283-290.
    273. Poul, L.; Jouini, N.; Fiévet, F., Layered hydroxide metal acetates (metal= zinc, cobalt, and nickel): elaboration via hydrolysis in polyol medium and comparative study. Chemistry of Materials 2000, 12, 3123-3132.
    274. Hosono, E.; Fujihara, S.; Kimura, T.; Imai, H., Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films. Journal of colloid and interface science 2004, 272, 391-398.
    275. Park, N.-G.; Schlichthörl, G.; Van de Lagemaat, J.; Cheong, H.; Mascarenhas, A.; Frank, A., Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. The Journal of Physical Chemistry B 1999, 103, 3308-3314.
    276. Peng, W.; Han, L., Hexagonal TiO 2 microplates with superior light scattering for dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22, 20773-20777.
    277. Higashino, T.; Imahori, H., Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton Transactions 2015, 44, 448-463.
    278. Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. The Journal of Physical Chemistry B 2003, 107, 8607-8611.
    279. Baxter, J. B.; Aydil, E. S., Nanowire-based dye-sensitized solar cells. Applied Physics Letters 2005, 86, 053114.
    280. Baxter, J. B.; Aydil, E. S., Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Solar Energy Materials and Solar Cells 2006, 90, 607-622.
    281. Chen, L.-Y.; Yin, Y.-T., Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale 2013, 5, 1777-1780.
    282. Chen, L.-Y.; Yin, Y.-T., Efficient electron transport in ZnO nanowire/nanoparticle dye-sensitized solar cells via continuous flow injection process. RSC Advances 2013, 3, 8480-8488.
    283. Ku, C.-H.; Wu, J.-J., Electron transport properties in ZnO nanowire array/nanoparticle composite dye-sensitized solar cells. Applied Physics Letters 2007, 91, 093117.
    284. Mishra, A.; Fischer, M. K.; Bäuerle, P., Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition 2009, 48, 2474-2499.
    285. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells. Angewandte Chemie International Edition 2006, 45, 2338-2345.
    286. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry 2003, 27, 783-785.
    287. Chou, T. P.; Zhang, Q.; Cao, G., Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells. The Journal of Physical Chemistry C 2007, 111, 18804-18811.
    288. Wang, Z.-S.; Kawauchi, H.; Kashima, T.; Arakawa, H., Significant influence of TiO 2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews 2004, 248, 1381-1389.
    289. Ferber, J.; Luther, J., Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells 1998, 54, 265-275.
    290. Siegbahn, P. E.; Eisenstein, O.; Rheingold, A. L.; Koetzle, T. F., A New Intermolecular Interaction: UnconventionalHydrogen Bonds with Element− Hydride Bonds as ProtonAcceptor. Accounts of Chemical Research 1996, 29, 348-354.
    291. Streetman, B. G.; Banerjee, S., Solid State Electronic Devices; Pearson Prentice Hall, 2006.
    292. Karamcheti, K., Vector analysis and cartesian tensors: with selected applications; Holden-Day, 1967.
    293. Fick, A., Ueber diffusion. Annalen der Physik 1855, 170, 59-86.
    294. Fick, A., V. On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1855, 10, 30-39.
    295. Mehrer, H., Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes; Springer Science & Business Media, 2007; Vol. 155.
    296. Bisquert, J.; Compte, A., Theory of the electrochemical impedance of anomalous diffusion. Journal of Electroanalytical Chemistry 2001, 499, 112-120.
    297. Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santiago, F.; Bueno, P. R., Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion. Journal of Electroanalytical Chemistry 1999, 475, 152-163.
    298. Blakemore, J. S., Solid State Physics; Cambridge University Press, 1985.
    299. Vetter, K. J., Electrochemical Kinetics: Theoretical Aspects; Elsevier Science, 2013.
    300. Bisquert, J., Interpretation of electron diffusion coefficient in organic and inorganic semiconductors with broad distributions of states. Physical Chemistry Chemical Physics 2008, 10, 3175-3194.
    301. Jamnik, J.; Maier, J., Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Physical Chemistry Chemical Physics 2001, 3, 1668-1678.
    302. Fabregat-Santiago, F.; Barea, E. M.; Bisquert, J.; Mor, G. K.; Shankar, K.; Grimes, C. A., High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. Journal of the American Chemical Society 2008, 130, 11312-11316.
    303. Hess, K., Advanced Theory of Semiconductor Devices; Wiley, 2000.
    304. Barker, G., Aperiodic equivalent electrical circuits for the electrolyte solution The ideally polarizable electrode and the ion and its atmosphere. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1973, 41, 201-211.
    305. Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santiago, F.; Ferriols, N. S.; Bogdanoff, P.; Pereira, E. C., Doubling exponent models for the analysis of porous film electrodes by impedance. Relaxation of TiO2 nanoporous in aqueous solution. The Journal of Physical Chemistry B 2000, 104, 2287-2298.
    306. Bisquert, J., Influence of the boundaries in the impedance of porous film electrodes. Physical Chemistry Chemical Physics 2000, 2, 4185-4192.
    307. Fabregat-Santiago, F.; Garcia-Belmonte, G.; Mora-Seró, I.; Bisquert, J., Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics 2011, 13, 9083-9118.

    無法下載圖示 全文公開日期 2021/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE