簡易檢索 / 詳目顯示

研究生: Abebe Tedla Mengstie
Abebe - Tedla Mengstie
論文名稱: Synthesis and Study of Unconventional Electrolytes for Dye Sensitized Solar Cells
Synthesis and Study of Unconventional Electrolytes for Dye Sensitized Solar Cells
指導教授: 戴龑
Yian Tai
口試委員: 何郡軒
Jinn-Hsuan Ho
朱智謙
Chih-Chien Chu
王澤元
Olivier TY Wang
楊重光
Thomas C.-K. Yang
江志強
J.C Jiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 135
中文關鍵詞: ElectrolyteDye sensitized solar cellhole transporting materialsbinary solvent system
外文關鍵詞: Electrolyte, Dye sensitized solar cell, hole transporting materials, binary solvent system
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis work focuses on unconventional electrolytes for both solid and liquid state DSSCs. The first part provides emphasis on the solvents of liquid electrolytes. Binary solvent system (a mixture of BMIMBr and Acetonitrile) was used to dissolve the electrolyte components in the DSSCs, aiming to combine the advantages of both solvents for the development of highly stable DSSC devices with comparable performance. Three types of electrolytes namely AY2, Z959 and a conventional one were prepared using the binary solvents with varied volume of ratio of BMIMBr. DSSC devices based on these electrolytes were fabricated. It has been found that those devices containing ionic liquid demonstrated good stabilities compared to devices composed of pure acetonitrile as a result of the substantially lower vapor pressure of the binary solvent system. The fill factor and open circuit voltage of devices with BMIMBr have shown enhancement in case of all types of electrolytes. However, short current density and conversion efficiency decreased as the amount of ionic liquid proportion increased which could be ascribed to the slow diffusion of ions.
    The second part of this thesis focuses on electrolytes in the solid state DSSCs. New conducting conjugated polymers (Poly(SNS-BBN, coded P2 and Poly(SNS-BBB), coded P1), that could be used as hole transporting material in ss-DSSCs, were synthesized. Devices based on these conjugated polymers were fabricated and characterized. Especially device with poly(SNS-BBB) showed reasonable open circuit voltage (0.8 V) with comparable conversion efficiency to initially reported performance of PEDOT and P3HT. Therefore, the properties and the preliminary result of these new polymers demonstrate that they are promising candidate for hole transporting material in solid state dye sensitized solar cell.


    This thesis work focuses on unconventional electrolytes for both solid and liquid state DSSCs. The first part provides emphasis on the solvents of liquid electrolytes. Binary solvent system (a mixture of BMIMBr and Acetonitrile) was used to dissolve the electrolyte components in the DSSCs, aiming to combine the advantages of both solvents for the development of highly stable DSSC devices with comparable performance. Three types of electrolytes namely AY2, Z959 and a conventional one were prepared using the binary solvents with varied volume of ratio of BMIMBr. DSSC devices based on these electrolytes were fabricated. It has been found that those devices containing ionic liquid demonstrated good stabilities compared to devices composed of pure acetonitrile as a result of the substantially lower vapor pressure of the binary solvent system. The fill factor and open circuit voltage of devices with BMIMBr have shown enhancement in case of all types of electrolytes. However, short current density and conversion efficiency decreased as the amount of ionic liquid proportion increased which could be ascribed to the slow diffusion of ions.
    The second part of this thesis focuses on electrolytes in the solid state DSSCs. New conducting conjugated polymers (Poly(SNS-BBN, coded P2 and Poly(SNS-BBB), coded P1), that could be used as hole transporting material in ss-DSSCs, were synthesized. Devices based on these conjugated polymers were fabricated and characterized. Especially device with poly(SNS-BBB) showed reasonable open circuit voltage (0.8 V) with comparable conversion efficiency to initially reported performance of PEDOT and P3HT. Therefore, the properties and the preliminary result of these new polymers demonstrate that they are promising candidate for hole transporting material in solid state dye sensitized solar cell.

    CONTENTS ABSTRACT i ACKNOWLEDGMENTS ii LIST OF ABBREVIATIONS iii LIST OF FIGURES viii LIST OF TABLES xiii CHAPTER-ONE INTRODUCTION 1 1.1 Background 2 1.2 Working principle of Dye-sensitized solar cells 6 CHAPTER-TWO REVIEW LITERATURE 10 2.1 Developmental overview of Dye-sensitized solar cells 10 2.2. Components of Dye-sensitized solar cells 12 2.2.1 Dyes/sensitizers 12 2.2.2. Photoelectrode (Semiconductor oxides) 17 2.2.3. Counter Electrodes 18 2.2.4 Electrolytes for Dye-Sensitized Solar Cells 19 CHAPTER-THREE EXPERIMENTAL SECTION 31 3.1.1 Materials and Methods 31 3.1.2 Procedure for the synthesis of BMIMBr 32 3.1.3 Preparation of Electrolytes 32 3.1.4 Fabrication of Photoanodes 33 3.1.5 Device Fabrication 35 3.1.6 Synthesis of monomers and polymers 36 3.2 Characterization Techniques 38 3.2.1. Ultraviolet-visible spectrophotometer 40 3.2.2 Field Emission Scanning Electron Microscopy 41 3.2.3 X-Ray Diffractometer 43 3.2.4 Measurements of Quantum Efficiency 44 3.2.5 Current-Voltage Characterization 46 3.2.6 AC-2 Measurement 47 3.2.7 Electrochemical impedance spectroscopy (EIS) 49 3.3 Basic parameters for evaluation of DSSC performance 50 3.4 Aim of This Thesis 54 CHAPTER FOUR IONIC LIQUID AS ELECTROLYTE SOLVENT 55 4.1.1 Device with Conventional Electrolytes 59 4.1.2 Device with AY2 Electrolytes 65 4.1.3 Device with Z959 Electrolytes 70 4.1.4 Stability of DSSC devices with different electrolytes 75 4.2 Synthesis of conducting polymer for HTM 84 4.2.1 Hole Transporting Polymer as Electrolytes 84 4.2.2 Synthesis of polymers 85 4.2.2 Optical properties of monomers and polymers 90 4.2.3 Device Fabrication and characterization 93 CHAPTER FIVE CONCLUSION 109 5.2 Future perspectives 110 APPENDIX 114 REFERENCES 122

    REFERENCES

    1. Li, B., L. Wang, B. Kang, P. Wang, and Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2006. 90(5): p. 549-573.
    2. Gratzel, M., Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry, 2005. 44(20): p. 6841-6851.
    3. Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 38). Progress in Photovoltaics: Research and Applications, 2011. 19(5): p. 565-572.
    4. Badawy, W.A., A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Research, 2014, DOI: 10.1016/j.jare.2013.10.001.
    5. Hoppe, H. and N.S. Sariciftci, Organic solar cells: An overview. Journal of Materials Research, 2004. 19(07): p. 1924-1945.
    6. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510-519.
    7. Ardo, S. and G.J. Meyer, Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chemical Society Reviews, 2009. 38(1): p. 115-164.
    8. Yum, J.-H., E. Baranoff, S. Wenger, M.K. Nazeeruddin, and M. Gratzel, Panchromatic engineering for dye-sensitized solar cells. Energy & Environmental Science, 2011. 4(3): p. 842-857.
    9. Jena, A., S.P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H.K. Narula, S. Mallick, and P. Bhargava, Dye Sensitized Solar Cells: A Review. Transactions of the Indian Ceramic Society, 2012. 71(1): p. 1-16.
    10. Nazeeruddin, M.K., E. Baranoff, and M. Gratzel, Dye-sensitized solar cells: A brief overview. Solar Energy, 2011. 85(6): p. 1172-1178.
    11. Gerischer, H. and H. Tributsch, Elektrochemische Untersuchungen zur spektralen Sensibilisierung von ZnO-Einkristallen. Berichte der Bunsengesellschaft fur physikalische Chemie, 1968. 72(3): p. 437-445.
    12. Tributsch, H. and H. Gerischer, Elektrochemische Untersuchungen uber den Mechanismus der Sensibilisierung und ubersensibilisierung an ZnO-Einkristallen. Berichte der Bunsengesellschaft fur physikalische Chemie, 1969. 73(3): p. 251-260.
    13. Gerischer, H., M.E. Michel-Beyerle, F. Rebentrost, and H. Tributsch, Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta, 1968. 13(6): p. 1509-1515.
    14. Clark, W.D.K. and N. Sutin, Spectral sensitization of n-type titanium dioxide electrodes by polypyridineruthenium(II) complexes. Journal of the American Chemical Society, 1977. 99(14): p. 4676-4682.
    15. Anderson, S., E.C. Constable, M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, K.R. Seddon, and R.D. Wright, Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser [4]. Nature, 1979. 280(5723): p. 571-573.
    16. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
    17. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
    18. Nazeeruddin, M.K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 1993. 115(14): p. 6382-6390.
    19. Pechy, P., T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, and M. Gratzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society, 2001. 123(8): p. 1613-1624.
    20. Nazeeruddin, M.K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005. 127(48): p. 16835-16847.
    21. Ahmed, S., A. Du Pasquier, D.P. Birnie, and T. Asefa, Self-Assembled TiO2 with Increased Photoelectron Production, and Improved Conduction and Transfer: Enhancing Photovoltaic Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011. 3(8): p. 3002-3010.
    22. Mathew, S., A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, and M. Gratzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014. 6(3): p. 242-247.
    23. Kuang, D., P. Wang, S. Ito, S.M. Zakeeruddin, and M. Gratzel, Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte. Journal of the American Chemical Society, 2006. 128(24): p. 7732-7733.
    24. Yum, J.-H., P. Chen, M. Gratzel, and M.K. Nazeeruddin, Recent Developments in Solid-State Dye-Sensitized Solar Cells. ChemSusChem, 2008. 1(8-9): p. 699-707.
    25. Zhang, W., Y. Cheng, X. Yin, and B. Liu, Solid-State Dye-Sensitized Solar Cells with Conjugated Polymers as Hole-Transporting Materials. Macromolecular Chemistry and Physics, 2011. 212(1): p. 15-23.
    26. Jeon, N.J., H.G. Lee, Y.C. Kim, J. Seo, J.H. Noh, J. Lee, and S.I. Seok, o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Journal of the American Chemical Society, 2014. 136(22): p. 7837-7840.
    27. Wang, Y., Recent research progress on polymer electrolytes for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1167-1175.
    28. Liang, M. and J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chemical Society Reviews, 2013. 42(8): p. 3453-3488.
    29. Nazeeruddin, M.K., S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, and M. Gratzel, Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 1999. 38(26): p. 6298-6305.
    30. Jiang, K.-J., N. Masaki, J.-b. Xia, S. Noda, and S. Yanagida, A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl-conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells. Chemical Communications, 2006(23): p. 2460-2462.
    31. Chen, C.-Y., S.-J. Wu, C.-G. Wu, J.-G. Chen, and K.-C. Ho, A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angewandte Chemie International Edition, 2006. 45(35): p. 5822-5825.
    32. Hagfeldt, A., G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Dye-Sensitized Solar Cells. Chemical Reviews, 2010. 110(11): p. 6595-6663.
    33. Yella, A., H. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, C. Yeh, S.M. Zakeeruddin, and M. Gratzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334(6056): p. 629-34.
    34. Mishra, A., M.K.R. Fischer, and P. Bauerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angewandte Chemie International Edition, 2009. 48(14): p. 2474-2499.
    35. Snaith, H.J., A. Petrozza, S. Ito, H. Miura, and M. Gratzel, Charge Generation and Photovoltaic Operation of Solid-State Dye-Sensitized Solar Cells Incorporating a High Extinction Coefficient Indolene-Based Sensitizer. Advanced Functional Materials, 2009. 19(11): p. 1810-1818.
    36. Cappel, U.B., T. Daeneke, and U. Bach, Oxygen-Induced Doping of Spiro-MeOTAD in Solid-State Dye-Sensitized Solar Cells and Its Impact on Device Performance. Nano Letters, 2012. 12(9): p. 4925-4931.
    37. Unger, E.L., A. Morandeira, M. Persson, B. Zietz, E. Ripaud, P. Leriche, J. Roncali, A. Hagfeldt, and G. Boschloo, Contribution from a hole-conducting dye to the photocurrent in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011. 13(45): p. 20172-20177.
    38. Burschka, J., A. Dualeh, F. Kessler, E. Baranoff, N.-L. Cevey-Ha, C. Yi, M.K. Nazeeruddin, and M. Gratzel, Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011. 133(45): p. 18042-18045.
    39. Cai, N., S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, and M. Graetzel, An Organic D-pi-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells. Nano Letters, 2011. 11: p. 1452-1456.
    40. Uchiyama, T., T.N. Murakami, N. Yoshii, Y. Uemura, N. Koumura, N. Masaki, M. Kimura, and S. Mori, An Increase in Energy Conversion Efficiency by Decreasing Cobalt Redox Electrolyte Diffusion Resistance in Dye-sensitized Solar Cells. Chemistry Letters, 2013. 42(4): p. 453-454.
    41. Xiang, W., W. Huang, U. Bach, and L. Spiccia, Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte. Chemical Communications, 2013. 49(79): p. 8997-8999.
    42. Kakiage, K., Y. Aoyama, T. Yano, T. Otsuka, T. Kyomen, M. Unno, and M. Hanaya, An achievement of over 12 percent efficiency in an organic dye-sensitized solar cell. Chemical Communications, 2014. 50(48): p. 6379-6381.
    43. Jun, H.K., M.A. Careem, and A.K. Arof, Quantum dot-sensitized solar cells—perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers. Renewable and Sustainable Energy Reviews, 2013. 22(0): p. 148-167.
    44. Lee, H., H.C. Leventis, S.-J. Moon, P. Chen, S. Ito, S.A. Haque, T. Torres, F. Nuesch, T. Geiger, S.M. Zakeeruddin, M. Gratzel, and M.K. Nazeeruddin, PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”. Advanced Functional Materials, 2009. 19(17): p. 2735-2742.
    45. Ardalan, P., T.P. Brennan, H.-B.-R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, and S.F. Bent, Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells. ACS Nano, 2011. 5(2): p. 1495-1504.
    46. Brennan, T.P., P. Ardalan, H.-B.-R. Lee, J.R. Bakke, I.K. Ding, M.D. McGehee, and S.F. Bent, Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells. Advanced Energy Materials, 2011. 1(6): p. 1169-1175.
    47. Lee, H., M. Wang, P. Chen, D.R. Gamelin, S.M. Zakeeruddin, M. Gratzel, and M.K. Nazeeruddin, Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Letters, 2009. 9(12): p. 4221-4227.
    48. Li, T.-L., Y.-L. Lee, and H. Teng, High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy & Environmental Science, 2012. 5(1): p. 5315-5324.
    49. Keis, K., C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, and H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 57-64.
    50. Stergiopoulos, T., I.M. Arabatzis, H. Cachet, and P. Falaras, Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex: Solid-state solar cell assembling by incorporating a composite polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 155(1–3): p. 163-170.
    51. Fitzmaurice, D.J. and H. Frei, Transient near-infrared spectroscopy of visible light sensitized oxidation of iodide at colloidal titania. Langmuir, 1991. 7(6): p. 1129-1137.
    52. Hara, K., T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells, 2000. 64(2): p. 115-134.
    53. Heimer, T.A., S.T. D'Arcangelis, F. Farzad, J.M. Stipkala, and G.J. Meyer, An Acetylacetonate-Based Semiconductor−Sensitizer Linkage. Inorganic Chemistry, 1996. 35(18): p. 5319-5324.
    54. Nuesch, F., J.E. Moser, V. Shklover, and M. Gratzel, Merocyanine Aggregation in Mesoporous Networks. Journal of the American Chemical Society, 1996. 118(23): p. 5420-5431.
    55. Xin, X., M. Scheiner, M. Ye, and Z. Lin, Surface-Treated TiO2 Nanoparticles for Dye-Sensitized Solar Cells with Remarkably Enhanced Performance. Langmuir, 2011. 27(23): p. 14594-14598.
    56. Zhang, Q. and G. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011. 6(1): p. 91-109.
    57. Thomas, S., T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, and A.S. Nair, A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014. 2(13): p. 4474-4490.
    58. Papageorgiou, N., W.F. Maier, and M. Gratzel, An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media. Journal of the Electrochemical Society, 1997. 144(3): p. 876-884.
    59. Saito, Y., T. Kitamura, Y. Wada, and S. Yanagida, Application of Poly(3,4-ethylenedioxythiophene) to Counter Electrode in Dye-Sensitized Solar Cells. Chemistry Letters, 2002. 31(10): p. 1060-1061.
    60. Saito, Y., W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2004. 164(1–3): p. 153-157.
    61. Kay, A. and M. Gratzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 1996. 44(1): p. 99-117.
    62. Lindstrom, H., A. Holmberg, E. Magnusson, S.-E. Lindquist, L. Malmqvist, and A. Hagfeldt, A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates. Nano Letters, 2001. 1(2): p. 97-100.
    63. Imoto, K., K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, and K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2003. 79(4): p. 459-469.
    64. Bach, U., D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583-585.
    65. Snaith, H.J., A.J. Moule, C. Klein, K. Meerholz, R.H. Friend, and M. Gratzel, Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Letters, 2007. 7(11): p. 3372-3376.
    66. Yu, Z., N. Vlachopoulos, M. Gorlov, and L. Kloo, Liquid electrolytes for dye-sensitized solar cells. Dalton Transactions, 2011. 40(40): p. 10289-10303.
    67. Zhang, Z., S. Ito, J.-E. Moser, S.M. Zakeeruddin, and M. Gratzel, Influence of Iodide Concentration on the Efficiency and Stability of Dye-Sensitized Solar Cell Containing Non-Volatile Electrolyte. ChemPhysChem, 2009. 10(11): p. 1834-1838.
    68. Grunwald, R. and H. Tributsch, Mechanisms of Instability in Ru-Based Dye Sensitization Solar Cells. The Journal of Physical Chemistry B, 1997. 101(14): p. 2564-2575.
    69. Macht, B., M. Turrion, A. Barkschat, P. Salvador, K. Ellmer, and H. Tributsch, Patterns of efficiency and degradation in dye sensitization solar cells measured with imaging techniques. Solar Energy Materials and Solar Cells, 2002. 73(2): p. 163-173.
    70. Thorsmolle, V.K., G. Rothenberger, D. Topgaard, J.C. Brauer, D.-B. Kuang, S.M. Zakeeruddin, B. Lindman, M. Gratzel, and J.-E. Moser, Extraordinarily Efficient Conduction in a Redox-Active Ionic Liquid. ChemPhysChem, 2011. 12(1): p. 145-149.
    71. Wang, P., S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, and M. Graetzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [Erratum to document cited in CA139:182793]. Nature Materials, 2003. 2(7): p. 498.
    72. Papageorgiou, N., Y. Athanassov, M. Armand, P. Bonho⁁te, H. Pettersson, A. Azam, and M. Gratzel, The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications. Journal of the Electrochemical Society, 1996. 143(10): p. 3099-3108.
    73. Kubo, W., K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells:  Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. The Journal of Physical Chemistry B, 2001. 105(51): p. 12809-12815.
    74. Gorlov, M. and L. Kloo, Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Transactions, 2008(20): p. 2655-2666.
    75. Bai, Y., Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S.M. Zakeeruddin, and M. Gratzel, High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials, 2008. 7(8): p. 626-630.
    76. Shi, D., N. Pootrakulchote, R. Li, J. Guo, Y. Wang, S.M. Zakeeruddin, M. Gratzel, and P. Wang, New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes. The Journal of Physical Chemistry C, 2008. 112(44): p. 17046-17050.
    77. Yu, Q., Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano, 2010. 4(10): p. 6032-6038.
    78. Sauvage, F., S. Chhor, A. Marchioro, J.-E. Moser, and M. Graetzel, Butyronitrile-Based Electrolyte for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2011. 133(33): p. 13103-13109.
    79. Liu, Y., A. Hagfeldt, X.-R. Xiao, and S.-E. Lindquist, Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell. Solar Energy Materials and Solar Cells, 1998. 55(3): p. 267-281.
    80. Stathatos, E., P. Lianos, S.M. Zakeeruddin, P. Liska, and M. Gratzel, A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol−Gel Nanocomposite Electrolyte Containing Ionic Liquid. Chemistry of Materials, 2003. 15(9): p. 1825-1829.
    81. Watson, D.F. and G.J. Meyer, Cation effects in nanocrystalline solar cells. Coordination Chemistry Reviews, 2004. 248(13–14): p. 1391-1406.
    82. Haque, S.A., E. Palomares, B.M. Cho, A.N.M. Green, N. Hirata, D.R. Klug, and J.R. Durrant, Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:  the Minimization of Kinetic Redundancy. Journal of the American Chemical Society, 2005. 127(10): p. 3456-3462.
    83. Schlichthorl, G., S.Y. Huang, J. Sprague, and A.J. Frank, Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells:  A Study by Intensity Modulated Photovoltage Spectroscopy. The Journal of Physical Chemistry B, 1997. 101(41): p. 8141-8155.
    84. Huang, S.Y., G. Schlichthorl, A.J. Nozik, M. Gratzel, and A.J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. The Journal of Physical Chemistry B, 1997. 101(14): p. 2576-2582.
    85. Boschloo, G., L. Haggman, and A. Hagfeldt, Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. The Journal of Physical Chemistry B, 2006. 110(26): p. 13144-13150.
    86. Zakeeruddin, S.M. and M. Gratzel, Solvent-Free Ionic Liquid Electrolytes for Mesoscopic Dye-Sensitized Solar Cells. Advanced Functional Materials, 2009. 19(14): p. 2187-2202.
    87. Wang, P., S.M. Zakeeruddin, J.-E. Moser, and M. Gratzel, A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2003. 107(48): p. 13280-13285.
    88. Boschloo, G., H. Lindstrom, E. Magnusson, A. Holmberg, and A. Hagfeldt, Optimization of dye-sensitized solar cells prepared by compression method. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 11-15.
    89. Teng, C., X. Yang, C. Yuan, C. Li, R. Chen, H. Tian, S. Li, A. Hagfeldt, and L. Sun, Two Novel Carbazole Dyes for Dye-Sensitized Solar Cells with Open-Circuit Voltages up to 1 V Based on Br−/Br3− Electrolytes. Organic Letters, 2009. 11(23): p. 5542-5545.
    90. Oskam, G., B.V. Bergeron, G.J. Meyer, and P.C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells. The Journal of Physical Chemistry B, 2001. 105(29): p. 6867-6873.
    91. Hara, K., T. Horiguchi, T. Kinoshita, K. Sayama, and H. Arakawa, Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells, 2001. 70(2): p. 151-161.
    92. Wang, P., S.M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Gratzel, A Solvent-Free, SeCN-/(SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Nanocrystalline Solar Cells. Journal of the American Chemical Society, 2004. 126(23): p. 7164-7165.
    93. Bergeron, B.V., A. Marton, G. Oskam, and G.J. Meyer, Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators. The Journal of Physical Chemistry B, 2004. 109(2): p. 937-943.
    94. Nusbaumer, H., J.-E. Moser, S.M. Zakeeruddin, M.K. Nazeeruddin, and M. Gratzel, CoII(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. The Journal of Physical Chemistry B, 2001. 105(43): p. 10461-10464.
    95. Sapp, S.A., C.M. Elliott, C. Contado, S. Caramori, and C.A. Bignozzi, Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2002. 124(37): p. 11215-11222.
    96. Gibson, E.A., A.L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt, and L. Hammarstrom, A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Angewandte Chemie International Edition, 2009. 48(24): p. 4402-4405.
    97. Wang, P., S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, and M. Gratzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals. The Journal of Physical Chemistry B, 2003. 107(51): p. 14336-14341.
    98. Zhang, M., J. Liu, Y. Wang, D. Zhou, and P. Wang, Redox couple related influences of [small pi]-conjugation extension in organic dye-sensitized mesoscopic solar cells. Chemical Science, 2011. 2(7): p. 1401-1406.
    99. Tennakone, K., G.R.R.A. Kumara, A.R. Kumarasinghe, K.G.U. Wijayantha, and P.M. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell. Semiconductor Science and Technology, 1995. 10(12): p. 1689.
    100. Feldt, S.M., U.B. Cappel, E.M.J. Johansson, G. Boschloo, and A. Hagfeldt, Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple. The Journal of Physical Chemistry C, 2010. 114(23): p. 10551-10558.
    101. Snaith, H.J. and L. Schmidt-Mende, Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells. Advanced Materials, 2007. 19(20): p. 3187-3200.
    102. Meng, Q.B., K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, and M. Uragami, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell. Langmuir, 2003. 19(9): p. 3572-3574.
    103. Sirimanne, P.M., T. Jeranko, P. Bogdanoff, S. Fiechter, and H. Tributsch, On the photo-degradation of dye sensitized solid-state TiO 2 |dye|CuI cells. Semiconductor Science and Technology, 2003. 18(7): p. 708.
    104. O'Regan, B., F. Lenzmann, R. Muis, and J. Wienke, A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN:  Analysis of Pore Filling and IV Characteristics. Chemistry of Materials, 2002. 14(12): p. 5023-5029.
    105. Snaith, H.J. and M. Gratzel, Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Advanced Materials, 2007. 19(21): p. 3643-3647.
    106. Zhang, W., R. Zhu, F. Li, Q. Wang, and B. Liu, High-Performance Solid-State Organic Dye Sensitized Solar Cells with P3HT as Hole Transporter. The Journal of Physical Chemistry C, 2011. 115(14): p. 7038-7043.
    107. Yang, L., B. Xu, D. Bi, H. Tian, G. Boschloo, L. Sun, A. Hagfeldt, and E.M.J. Johansson, Initial Light Soaking Treatment Enables Hole Transport Material to Outperform Spiro-OMeTAD in Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2013. 135(19): p. 7378-7385.
    108. Saito, Y., N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor. Electrochemistry Communications, 2004. 6(1): p. 71-74.
    109. Xia, J., N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang, and S. Yanagida, Influence of Doped Anions on Poly(3,4-ethylenedioxythiophene) as Hole Conductors for Iodine-Free Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008. 130(4): p. 1258-1263.
    110. Liu, X., W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, An Efficient Organic-Dye-Sensitized Solar Cell with in situ Polymerized Poly(3,4-ethylenedioxythiophene) as a Hole-Transporting Material. Advanced Materials, 2010. 22(20): p. E150-E155.
    111. Sahin, E., E. Sahmetlioglu, I.M. Akhmedov, C. Tanyeli, and L. Toppare, Synthesis and characterization of a new soluble conducting polymer and its electrochromic devices. Organic Electronics, 2006. 7(5): p. 351-362.
    112. Wang, Y., Y. Sun, B. Song, and J. Xi, Ionic liquid electrolytes based on 1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008. 92(6): p. 660-666.
    113. Kern, R., R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochimica Acta, 2002. 47(26): p. 4213-4225.
    114. Tian, H., L. Hu, C. Zhang, W. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, and S. Dai, Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO2 Solar Cells. The Journal of Physical Chemistry C, 2010. 114(3): p. 1627-1632.
    115. Zistler, M., P. Wachter, C. Schreiner, M. Fleischmann, D. Gerhard, P. Wasserscheid, A. Hinsch, and H.J. Gores, Temperature Dependent Impedance Analysis of Binary Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2007. 154(9): p. B925-B930.
    116. Koide, N., A. Islam, Y. Chiba, and L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. Journal of Photochemistry and Photobiology A: Chemistry, 2006. 182(3): p. 296-305.
    117. Han, L., N. Koide, Y. Chiba, A. Islam, and T. Mitate, Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie, 2006. 9(5–6): p. 645-651.
    118. Yu, Z., N. Vlachopoulos, A. Hagfeldt, and L. Kloo, Incompletely solvated ionic liquid mixtures as electrolyte solvents for highly stable dye-sensitized solar cells. RSC Advances, 2013. 3(6): p. 1896-1901.
    119. Kumar, D. and R.C. Sharma, Advances in conductive polymers. European Polymer Journal, 1998. 34(8): p. 1053-1060.
    120. Toshima, N. and S. Hara, Direct synthesis of conducting polymers from simple monomers. Progress in Polymer Science, 1995. 20(1): p. 155-183.
    121. Okada, T., T. Ogata, and M. Ueda, Synthesis and Characterization of Regiocontrolled Poly(2,5-di-n-butoxy-1,4-phenylene) by Oxovanadium-Catalyzed Oxidative Coupling Polymerization. Macromolecules, 1996. 29(24): p. 7645-7650.
    122. Baughman, R.H., J.L. Bredas, R.R. Chance, R.L. Elsenbaumer, and L.W. Shacklette, Structural basis for semiconducting and metallic polymer dopant systems. Chemical Reviews, 1982. 82(2): p. 209-222.
    123. Shi, W., S. Fan, F. Huang, W. Yang, R. Liu, and Y. Cao, Synthesis of novel triphenylamine-based conjugated polyelectrolytes and their application as hole-transport layers in polymeric light-emitting diodes. Journal of Materials Chemistry, 2006. 16(24): p. 2387-2394.
    124. Wynberg, H. and J. Metselaar, A Convenient Route To Polythiophenes. Synthetic Communications, 1984. 14(1): p. 1-9.
    125. Merz, A. and F. Ellinger, Convenient Synthesis of α-Terthienyl and α-Quinquethienyl via a Friedel-Crafts Route. Synthesis, 1991. 1991(06): p. 462-464.
    126. Wu, H.-Y., K.-L. Wang, D.-J. Liaw, K.-R. Lee, and J.-Y. Lai, Electrochromic material containing unsymmetrical substituted N,N,N′,N′-tetraaryl-1,4-phenylenediamine: Synthesis and their optical, electrochemical, and electrochromic properties. Journal of Polymer Science Part A: Polymer Chemistry, 2010. 48(7): p. 1469-1476.
    127. Nakazaki, J., I. Chung, M.M. Matsushita, T. Sugawara, R. Watanabe, A. Izuoka, and Y. Kawada, Design and preparation of pyrrole-based spin-polarized donors. Journal of Materials Chemistry, 2003. 13(5): p. 1011-1022.
    128. Nie, G., L. Qu, J. Xu, and S. Zhang, Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochimica Acta, 2008. 53(28): p. 8351-8358.
    129. Yue, G., J. Wu, Y. Xiao, J. Lin, M. Huang, and Z. Lan, Application of Poly(3,4-ethylenedioxythiophene):Polystyrenesulfonate/Polypyrrole Counter Electrode for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 2012. 116(34): p. 18057-18063.
    130. Sommeling, P.M., B.C. O'Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, and J.A.M. van Roosmalen, Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B, 2006. 110(39): p. 19191-19197.
    131. Marchioro, A., A. Dualeh, A. Punzi, M. Gratzel, and J.-E. Moser, Effect of Posttreatment of Titania Mesoscopic Films by TiCl4 in Solid-State Dye-Sensitized Solar Cells: A Time-Resolved Spectroscopy Study. The Journal of Physical Chemistry C, 2012. 116(51): p. 26721-26727.

    無法下載圖示 全文公開日期 2019/08/04 (校內網路)
    全文公開日期 2024/08/04 (校外網路)
    全文公開日期 2019/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE