簡易檢索 / 詳目顯示

研究生: 蔡柏揚
Bo-Yang Tsai
論文名稱: 利用聚乙二醇基高分子黏著劑作為正極材料應用於全固態硫化物電池
Utilizing PEO-based binder for composite cathodes in all-solid-state sulfide batteries
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 146
中文關鍵詞: 高分子固態電解質硫化物固態電解質複合正極全固態電池介面反應混合導體
外文關鍵詞: Solid polymer electrolyte, sulfide solid electrolyte, composite cathode, all-solid-state battery, interface reaction, mixed conductor
相關次數: 點閱:491下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全固態電池(All-solid-state battery, ASSB)與傳統的鋰離子電池(Lithium-ion battery, LIB)相比更安全,且具有更高的能量密度和更廣的工作溫度範圍,使其成為未來的前景。具有層狀結構的富鎳過渡金屬氧化物(LiNi0.8Mn0.1Co0.1O2, NCM 811)是具有高能量密度和高充電電壓等有前途的正極活性材料。為了製備全固態電池中的複合正極,添加了硫化物顆粒以降低正極和固態電解質之間的介面阻抗。然而,硫化物由於其窄的電化學窗口和活性材料之間會產生介面反應,使得介面阻抗增加而不夠穩定。
    本實驗將克服這些挑戰,使用具有不同摩爾比的PEO聚合物與雙(三氟甲基磺醯)氨基鋰(LiTFSI),分別應用於LiNbO3@NCM811高電壓正極材料與LiFePO4低電位正極材料,PEO-LiTFSI可以在複合正極中形成離子傳遞路徑並作為黏著劑。第一部份應用於LNO@NCM811正極材料上,通過濕式混漿法塗布厚度約為80 μm的複合正極。由PEO-LiTFSI和NCM811組成的複合正極透過交流阻抗與不鏽鋼對稱電池進行導離子與導電子率的量測,90 vol.% NCM811和10 vol.% PEO-LiTFSI 的複合正極膜於60℃時的導離子與導電子率分別為2.84 × 10-4 S/cm和3.76 × 10-3 S/cm。以Li6PS5Cl硫化物電解質和銦金屬作為負極所組成的混合型全固態電池,電位區間為2~3.9 V(Li-In/Li+),其第三循環的放電電容量和庫侖效率分別為90.09 mAh/g和81.24%,雖然電容維持率並不是很優異,但是在前五圈的放電電容量是高於硫化物全固態電池。
    第二部份應用於LiFePO4正極材料上,同樣使用PEO-LiTFSI導離子性高分子黏著劑進行複合正極膜的製備,此時充放電的電位區間比較適合PEO-LiTSFI為2.4~3.1 V(Li-In/Li+),首圈的放電電容量和庫倫效率為51.79 mAh/g 和61.8%,其電容維持率不是很好,因為來自銦金屬負極的衰退,還有LiFePO4與Li6PS5Cl間的化學反應造成正極介面阻抗增加。兩個部份在電容維持率上都還有很大的進步空間,不過我們建立了電池衰退的分析方法是可以更清楚改進的方向。


    All-solid-state batteries (ASSBs) are safer and have higher energy density and a larger operating temperature window than conventional Li-ion batteries, making them a future perspective. Nickel-rich lithium transition metal oxides (LiNi0.8Mn0.1Co0.1O2, NMC811) with the layered structure are promising cathode candidates for high energy density and high charging voltage. To prepare a composite cathode, sulfide-based particles have been added to reduce the interfacial resistance between the cathode and solid-state electrolyte. However, sulfide is not stable enough due to its narrow electrochemical window and interfacial resistance between active materials.
    The strategies to overcome these challenges are utilizing PEO-based polymers with different molar ratios of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). It can also form an ionic conducting pathway in the composite cathode and act as a binder to fabricate a sheet-type electrode. We will divide it into two parts, LNO@NCM811, and LiFePO4 cathode active materials are contained. For the first part, a composite cathode film including NCM811 cathode active materials and PEO-LiTFSI with a thickness of 80 μm is coated by the slurry-coating process. The composite cathodes consisting of PEO-LiTFSI and NCM811 are assessed by AC impedance techniques with symmetric ion-blocking cells. The ionic and electronic conductivities of the composite with 90 vol.% of NMC811and 10 vol.% PEO-LiTFSI were determined as 2.84 × 10-4 S/cm and 3.76 × 10-3 S/cm at 60℃ respectively. With the condition of the potential range from 2 to 3.9 V(vs. Li-In/Li+), the 3rd cycle of discharge capacity and coulombic efficiency of ASSBs with pellet-type LPSC sulfide electrolyte and indium metal as an anode is 90.09 mAh/g and 81.24%, respectively. Although the capacity retention is not quite good, the discharge capacity
    The second part is combined LiFePO4 cathode active material and PEO-LiTFSI ion-conducting binder for the preparation of the composite cathode film. With the condition of the potential range from 2.4 to 3.1 V(vs. Li-In/Li+), the discharge capacity and coulombic efficiency of the first cycle are 51.79 mAh/g and 61.8%. Its capacity retention is also not good, because of the decay from the indium as anode, and the chemical reaction between LiFePO4 and Li6PS5Cl causes the interface resistance between cathode and electrolyte increase. There is still a lot of space for improvement in the capacity retention of this two parts. However, the analysis method for the reason of battery aging is established and the direction for improvement can be more clearly identified.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XXIV 第 1 章 緒論 1 1.1 前言 1 1.2 商業化鋰離子二次電池 2 1.3 全固態電池 3 1.4 全固態電池的未來發展及挑戰 5 第 2 章 全固態電池的電極設計 11 2.1 正極材料 11 2.2 固態電解質 19 2.2.1 高分子電解質 19 2.2.2 硫化物電解質 23 2.3 複合正極 28 2.3.1 導離子率和導電子率的量測 28 2.3.2 複合正極中之分解反應 31 2.4 固態電池之介面改善 38 2.5 合金型態之負極 42 2.6 研究動機與目的 44 第 3 章 實驗方法 47 3.1 儀器設備 47 3.2 實驗藥品 48 3.3 實驗步驟及實驗儀器 49 3.3.1 黏著劑配製 49 3.3.2 複合正極塗布 50 3.3.3 KP cell固態電池 51 3.4 電化學測試 52 3.4.1 充放電測試 52 3.4.2 交流阻抗分析 53 3.4.3 線性掃描伏安法分析 53 3.5 儀器分析與原理 54 3.5.1 X-ray繞射分析(XRD) 54 3.5.2 拉曼散射光譜分析儀(Raman spectroscopy) 54 3.5.3 X光射線光電子光譜(X-ray photon spectroscopy, XPS) 55 3.5.4 X光射線吸收光譜(X-ray absorption spectroscopy, XAS) 55 第 4 章 高分子複合正極平台建立及優化 59 4.1 導離子性高分子黏著劑 59 4.1.1 NCM811複合正極膜製程優化 59 4.1.2 全固態電池阻抗分析 63 4.2複合正極中導離子與導電子率 69 4.2.1高分子固態電解質特性 69 4.2.2導離子與導電子率分析 71 4.3 NCM811高分子複合正極應用混合型全固態電池 79 4.3.1 混合型全固態電池組裝優化 79 4.3.2 電化學與老化分析 80 4.3.3 XPS表面鑑定分析 86 4.4 LiFePO4高分子複合正極應用混合型全固態電池 93 4.4.1 混合型全固態電池優化 93 4.4.2 電化學與老化分析 94 4.4.3 XRF與XAS介面鑑定分析 97 第 5 章 結論 107 第 6 章 未來工作 111 參考資料 113

    1. Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P., Strategy of enhancing the volumetric energy density for lithium–sulfur batteries. Advanced Materials 2021, 33 (8), 2003955.
    2. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
    3. Whittingham, M. S., Lithium batteries and cathode materials. Chemical reviews 2004, 104 (10), 4271-4302.
    4. Suzuki, K.; Sakuma, M.; Hori, S.; Nakazawa, T.; Nagao, M.; Yonemura, M.; Hirayama, M.; Kanno, R., Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ionics 2016, 288, 229-234.
    5. Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F. H.; Nan, C.-W., Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. Journal of Materiomics 2021, 7 (2), 209-218.
    6. Zhang, J.-G., Anode-less. Nature Energy 2019, 4 (8), 637-638.
    7. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    8. Xia, H.; Meng, S. Y.; Lu, L.; Ceder, G., Electrochemical Behavior and Li Diffusion Study of LiCoO₂ Thin Film Electrodes Prepared by PLD. 2007.
    9. Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L., Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Advanced Energy Materials 2021, 11 (1), 2002689.
    10. https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=18151.
    11. https://technews.tw/2019/10/29/2035-solid-state-battery-increase-1114-times/.
    12. Tan, D. H.; Banerjee, A.; Chen, Z.; Meng, Y. S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature nanotechnology 2020, 15 (3), 170-180.
    13. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nature materials 2019, 18 (12), 1278-1291.
    14. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
    15. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical reviews 2020, 120 (14), 6878-6933.
    16. Pang, M.-C.; Yang, K.; Brugge, R.; Zhang, T.; Liu, X.; Pan, F.; Yang, S.; Aguadero, A.; Wu, B.; Marinescu, M., Interactions are important: Linking multi-physics mechanisms to the performance and degradation of solid-state batteries. Materials Today 2021, 49, 145-183.
    17. Tan, D. H.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Letters 2019, 4 (10), 2418-2427.
    18. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    19. Daniel, C.; Mohanty, D.; Li, J.; Wood, D. L. In Cathode materials review, AIP Conference Proceedings, American Institute of Physics: 2014; pp 26-43.
    20. Liu, Y.; Peng, H.; Su, H.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., Ultrafast Synthesis of I‐Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials 2021, 2107346.
    21. Reed, J.; Ceder, G., Charge, Potential, and Phase Stability of Layered Li (Ni0. 5Mn0. 5) O 2. Electrochemical and solid-state letters 2002, 5 (7), A145.
    22. Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G., Phase transitions in the LiNi0. 5Mn0. 5O2 system with temperature. Chemistry of Materials 2007, 19 (7), 1790-1800.
    23. Luo, S.; Wang, Z.; Li, X.; Liu, X.; Wang, H.; Ma, W.; Zhang, L.; Zhu, L.; Zhang, X., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nature communications 2021, 12 (1), 1-10.
    24. Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy 2022, 1-11.
    25. Aurbach, D.; Levi, M.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources 1999, 81, 472-479.
    26. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
    27. Ge, Y.; Yan, X.; Liu, J.; Zhang, X.; Wang, J.; He, X.; Wang, R.; Xie, H., An optimized Ni doped LiFePO4/C nanocomposite with excellent rate performance. Electrochimica Acta 2010, 55 (20), 5886-5890.
    28. Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X., An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life. Journal of Materials Chemistry A 2017, 5 (32), 16984-16993.
    29. Zhang, J.; Zhao, J.; Yue, L.; Wang, Q.; Chai, J.; Liu, Z.; Zhou, X.; Li, H.; Guo, Y.; Cui, G., Safety‐reinforced poly (propylene carbonate)‐based All‐solid‐state polymer electrolyte for ambient‐temperature solid polymer lithium batteries. Advanced Energy Materials 2015, 5 (24), 1501082.
    30. Tan, D. H.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B., Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373 (6562), 1494-1499.
    31. Nie, K.; Hong, Y.; Qiu, J.; Li, Q.; Yu, X.; Li, H.; Chen, L., Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives. Frontiers in chemistry 2018, 616.
    32. Wang, C.; Adair, K.; Sun, X., All-Solid-State Lithium Metal Batteries with Sulfide Electrolytes: Understanding Interfacial Ion and Electron Transport. Accounts of Materials Research 2021.
    33. Zhao, Y.; Tao, R.; Fujinami, T., Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate. Electrochimica acta 2006, 51 (28), 6451-6455.
    34. Brooks, D. J.; Merinov, B. V.; Goddard III, W. A.; Kozinsky, B.; Mailoa, J., Atomistic description of ionic diffusion in PEO–LiTFSI: Effect of temperature, molecular weight, and ionic concentration. Macromolecules 2018, 51 (21), 8987-8995.
    35. Fan, L. Z.; Hu, Y. S.; Bhattacharyya, A. J.; Maier, J., Succinonitrile as a versatile additive for polymer electrolytes. Advanced Functional Materials 2007, 17 (15), 2800-2807.
    36. Ramesh, S.; Ng, H., An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics 2011, 192 (1), 2-5.
    37. Liang, B.; Tang, S.; Jiang, Q.; Chen, C.; Chen, X.; Li, S.; Yan, X., Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochimica Acta 2015, 169, 334-341.
    38. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
    39. Ren, W.; Ding, C.; Fu, X.; Huang, Y., Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Materials 2021, 34, 515-535.
    40. Tachez, M.; Malugani, J.-P.; Mercier, R.; Robert, G., Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics 1984, 14 (3), 181-185.
    41. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous β-Li3PS4. Journal of the American Chemical Society 2013, 135 (3), 975-978.
    42. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
    43. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses. Advanced Materials 2005, 17 (7), 918-921.
    44. Lian, P.-J.; Zhao, B.-S.; Zhang, L.-Q.; Xu, N.; Wu, M.-T.; Gao, X.-P., Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. Journal of Materials Chemistry A 2019, 7 (36), 20540-20557.
    45. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
    46. De Klerk, N. J.; Rosłoń, I.; Wagemaker, M., Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chemistry of Materials 2016, 28 (21), 7955-7963.
    47. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Accounts of Chemical Research 2021, 54 (12), 2717-2728.
    48. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J. r.; Zeier, W. G., Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X= Cl, Br, I). Journal of the American Chemical Society 2017, 139 (31), 10909-10918.
    49. Asano, T.; Yubuchi, S.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Electronic and ionic conductivities of LiNi1/3Mn1/3Co1/3O2-Li3PS4 positive composite electrodes for all-solid-state lithium batteries. Journal of The Electrochemical Society 2017, 164 (14), A3960.
    50. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J., Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. Journal of Power Sources 2018, 393, 75-82.
    51. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. r., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
    52. Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D., Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. Journal of Materials Chemistry A 2019, 7 (40), 22967-22976.
    53. Walther, F.; Randau, S.; Schneider, Y.; Sann, J.; Rohnke, M.; Richter, F. H.; Zeier, W. G.; Janek, J. r., Influence of carbon additives on the decomposition pathways in cathodes of lithium thiophosphate-based all-solid-state batteries. Chemistry of Materials 2020, 32 (14), 6123-6136.
    54. Tan, D. H.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S., Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
    55. Zuo, T.-T.; Rueß, R.; Pan, R.; Walther, F.; Rohnke, M.; Hori, S.; Kanno, R.; Schröder, D.; Janek, J., A mechanistic investigation of the Li10GeP2S12| LiNi1-x-yCoxMnyO2 interface stability in all-solid-state lithium batteries. Nature communications 2021, 12 (1), 1-10.
    56. Wurster, V.; Engel, C.; Graebe, H.; Ferber, T.; Jaegermann, W.; Hausbrand, R., Characterization of the interfaces in LiFePO4/PEO-LiTFSI composite cathodes and to the adjacent layers. Journal of The Electrochemical Society 2019, 166 (3), A5410.
    57. Wang, C.; Liang, J.; Hwang, S.; Li, X.; Zhao, Y.; Adair, K.; Zhao, C.; Li, X.; Deng, S.; Lin, X., Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy 2020, 72, 104686.
    58. Doux, J. M.; Nguyen, H.; Tan, D. H.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries. Advanced Energy Materials 2020, 10 (1), 1903253.
    59. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J., Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102-112.
    60. Sun, M.; Liu, T.; Yuan, Y.; Ling, M.; Xu, N.; Liu, Y.; Yan, L.; Li, H.; Liu, C.; Lu, Y., Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Letters 2021, 6 (2), 451-458.
    61. Huggins, R. A., Lithium alloy negative electrodes. Journal of Power Sources 1999, 81, 13-19.
    62. Santhosha, A.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P., The indium− lithium electrode in solid‐state lithium‐ion batteries: phase formation, redox potentials, and interface stability. Batteries & Supercaps 2019, 2 (6), 524-529.
    63. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
    64. Sakuma, M.; Suzuki, K.; Hirayama, M.; Kanno, R., Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M= Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016, 285, 101-105.
    65. Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D., Favorable Interfacial Chemomechanics Enables Stable Cycling of High-Li-Content Li–In/Sn Anodes in Sulfide Electrolyte-Based Solid-State Batteries. Chemistry of Materials 2021, 33 (15), 6029-6040.
    66. Zhang, W.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J. r., Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS applied materials & interfaces 2018, 10 (26), 22226-22236.
    67. Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y., Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nature materials 2020, 19 (4), 428-435.
    68. Simon, F. J.; Hanauer, M.; Richter, F. H.; Janek, J. r., Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Applied Materials & Interfaces 2020, 12 (10), 11713-11723.
    69. Seidl, L.; Grissa, R.; Zhang, L.; Trabesinger, S.; Battaglia, C., Unraveling the Voltage‐Dependent Oxidation Mechanisms of Poly (Ethylene Oxide)‐Based Solid Electrolytes for Solid‐State Batteries. Advanced Materials Interfaces 2022, 9 (8), 2100704.
    70. Chen, Y.; Li, W.; Sun, C.; Jin, J.; Wang, Q.; Chen, X.; Zha, W.; Wen, Z., Sustained release‐driven formation of ultrastable sei between Li6PS5Cl and lithium anode for sulfide‐based solid‐state batteries. Advanced Energy Materials 2021, 11 (4), 2002545.
    71. Zou, C.; Yang, L.; Luo, K.; Liu, L.; Tao, X.; Yi, L.; Liu, X.; Luo, Z.; Wang, X., Preparation and performances of poly (ethylene oxide)-Li6PS5Cl composite polymer electrolyte for all-solid-state lithium batteries. Journal of Electroanalytical Chemistry 2021, 900, 115739.
    72. Zou, C.; Yang, L.; Luo, K.; Liu, L.; Tao, X.; Yi, L.; Liu, X.; Luo, Z.; Wang, X., Performance Improvement of Li6PS5Cl Solid Electrolyte Modified by Poly (ethylene oxide)-Based Composite Polymer Electrolyte with ZSM-5 Molecular Sieves. ACS Applied Energy Materials 2022, 5 (2), 2356-2365.
    73. Banerjee, A.; Tang, H.; Wang, X.; Cheng, J.-H.; Nguyen, H.; Zhang, M.; Tan, D. H.; Wynn, T. A.; Wu, E. A.; Doux, J.-M., Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS applied materials & interfaces 2019, 11 (46), 43138-43145.

    無法下載圖示 全文公開日期 2027/08/22 (校內網路)
    全文公開日期 2027/08/22 (校外網路)
    全文公開日期 2027/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE