簡易檢索 / 詳目顯示

研究生: Bereket Woldegbreal Taklu
Bereket Woldegbreal Taklu
論文名稱: 固態硫化物和液態電解質中的界⾯電化學⽤於鋰⾦屬電池
Interface Electrochemistry in Solid Sulfide and Liquid Electrolyte for Lithium Metal Batteries
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 劉如熹
Ru-Shi Liu
張仍奎
Jeng-Kuei Chang
王迪彥
Di-Yan Wang
吳溪煌
She-Huang Wu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 264
中文關鍵詞: 全固態電池鋰硫銀鍺礦⿄化物固態電解質熏碘鋰⾦屬相容性鋰枝晶抑制離⼦電導率實際電化學窗⼝⽔分穩定性氣體摻雜多重SEI形成界⾯化學熱解成本效益原位光學顯微鏡測量原位拉曼光譜
外文關鍵詞: All-solid-state batteries, Lithium argyrodite, Halide solid electrolyte, Fumy iodine, Lithium-metal compatibility, Dendrite suppression, Ionic conductivity, Practical potential window, Moisture stability, Gas doping, Multiple SEI formation, Interface chemistry, Thermal pyrolysis, Cost effective, In-situ optical microscopic measurement, In-situ raman spectroscopy
相關次數: 點閱:570下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全固體鋰金屬電池因其兼具高能量密度與安全性等優點而逐漸受到關注,而Li-argyrodite硫化物固態電解質具有優秀的延展性、高導離、低成本、多樣的合成方法等優勢在全固態電池的應用中嶄露頭角。其與"聖盃"鋰金屬陽極搭配更是實現固態與液態電池卓越能量密度的關鍵,與傳統的鋰金屬、鋰離子電池相比,全固態鋰金屬電池在高能量電網與電動汽車的應用上,更有潛力帶來革命性的發展進化。
    Li-argyrodite硫化物固態電解質因諸多優良特性在全固態鋰金屬電池中備受矚目,但其與鋰金屬陽極界面卻有嚴重的不相容性,鋰枝晶的雜亂生長與氣相不穩定性阻礙了其應用,因此,我們提出了一種無球磨的CuCl雙摻雜合成法來克服此問題,將CuCl摻雜於Li-argyrodite硫化物超導體 (Li6+3xP1-xCuxS5-xCl1+x)中,以複合電極與平面電極對此Li6.3P0.9Cu0.1S4.9Cl1.1 (LPSC-1)進行測試,室溫下Li+離子最大導離率可達4.34 mS cm-1且具有極佳的電壓穩定性8 V vs. Li/Li+,此外,經測試在50 °C下以3 mA cm-2的電流密度進行測試後發現,其亦能抑制鋰枝晶的生長。在0.1與1 mA cm-2的電流密度下進行對稱電池循環測試,此電解質在超過2400小時與400小時的測試中幾乎沒有發現過電位的產生,表示出其顯著的可逆性。後使用XPS與交流阻抗分析證明此方法確實有效的增進了鋰金屬與固態電解質間的介面穩定性,且實現了3 mA cm-2的臨界電流密度,更有趣的是,我們發現將此Li6.3P0.9Cu0.1S4.9Cl1.1 (LPSC-1)與軟酸Cu結合後,其空氣穩定性獲得了提升且將H2S的生成降低至原先的1/2,最後,將LPSC-1暴露於空氣前後的XRD證實了此硫化物固態電解質的確實降低了親氧性。
    在我們第二項工作中,我們提出一款碘化氯氧化的argyrodite,此碘化氯氧化的argyrodite在充放電時能同時形成含有堅固LiI與Li2O的SEI,這能有效的緩解阻抗界面的增長、提升氧化穩定性、降低氧親合力。此外,藉由犧牲碘產生的誘導效應,我們實現了10mA cm-2的高臨界電流密度,而在截止電容高達10 mAh cm-2與10 mA cm-2的電流密度條件下測試260小時發現,其具有超高鋰兼容性,耐久度測試方面,分別以0.1、2、6 mA cm-2的電流密度循環11000、1000、460 小時進行測試,且從逐步CV的結果我們可以得知,實際電化學窗口的穩定性提升至了3.42 V vs. Li/Li+。以Li6PS4.8O0.2Cl-5 wt% I2搭配鋰銦陽極的條件下,分別進行1C與3C的充放電測試,在200圈與300圈後個別電容保持率可達89.6%與89.9%,在0.4C下發現,其與鋰金屬具有極為優異的循環穩定性且初始放電電容量達137.27 mAh g-1,最後,通過耦合原位拉曼量測證實,其提升了與水的耐受性並抑制了H2S氣體的生成。
    在最後的工作中,我們發表了一款新型人造鈍化層來穩定鋰金屬,藉由NH4F鹽類的熱解反應來產生HF(g)與NH3(g),利用"聖盃"鋰金屬的熱力學不穩定性與會生長枝晶的特性,將其暴露在NH4F鹽類生成的氣體中即可產生自發反應,形成與NH4F鹽類相關的多種成分的SEI如: LiF、Li3N、Li2NH、LiNH2、與LiH等。這種表面上含有人工保護層的鋰金屬(AF-Li) ,在Li||Li對稱電池中可以持續穩定鋰的沉積與剝離,減少枝晶的生成;而在Li||Cu與Li||MCMB等半電池系統中,我們更進一步闡述此膜優異的保護特性,此外,其與正極氧化物間具有相當好的相容性、展示了相當優異的電容維持率,與LFP在0.5 mA cm-2的電流密度下循環280圈後CR仍有90.6%、與NMC532在3 mA cm-2的電流密度下循環410圈後CR仍有58.7%。重要的是,使用此款NH4F鹽類生層的人造層能同時間生成多種成分的SEI,且製程簡便、價格具競爭力,這使得其在眾多改良方法中極具競爭力。


    All-solid-state lithium metal batteries, with ultimate safety and high energy density, are receiving increasing attention. The Li-argyrodite sulfide solid electrolyte, with decent ductility, high ionic conductivity, low cost, and versatility in synthesis methods, shows promise for use in all-solid-state lithium batteries. Integration with the "Holy Grail" lithium metal anode is pivotal in achieving superior energy density in both solid and liquid electrolyte systems. All-solid-state lithium metal batteries have the potential to revolutionize high grid and EV use when compared to traditional LMBs and LIBs in the near future.
    The Li-argyrodite sulfide solid electrolyte with versatile properties makes promising for all-solid-state lithium metal batteries. However, its serious interfacial incompatibility with Li anode, dendrite growth, and intrinsic air instability impedes its practicability. Herein, we report a CuCl dual doped Li-argyrodite sulfide superb-conductor (Li6+3xP1-xCuxS5-xCl1+x) prepared to overcome these issues via ball-mill free synthesis approach. The maximum Li+ conductivity of 4.34 mS cm-1 at room temperature with ultrawide voltage stability up to 8 V vs. Li/Li+ was achieved in Li6.3P0.9Cu0.1S4.9Cl1.1 (LPSC-1) via a both composite and planar electrode system and can suppress dendrite formation at a current density of 3 mA cm-2 at 50 оC. The symmetrical cell cycled at 0.1 and 1 mA cm-2 also demonstrates remarkable reversibility with negligible overpotential alteration for more than 2400 h and 400 h. An ex-situ XPS and AC impedance analysis proved enhanced interfacial compatibility at Li | SE and achieved a critical current density of 3 mA cm-2. More interestingly, incorporating soft acid Cu in LPSC-1 boosts the air stability and suppresses H2S generation by two-folds. The XRD for the LPSC-1 before and after air exposure proves the decrease in the oxophilicity of the sulfide solid electrolyte.
    In our second work, we report iodized-oxychloride argyrodite with robust SEI containing in-situ formed LiI and Li2O upon treating the sulfide via fumy iodine to mitigate the growth of resistive interphase, limited oxidative stability, and highly-oxophilic nature of sulfide solid electrolyte. Sacrificial iodine-induced dendrite suppression capability up to 21 mA cm-2 was achieved. Ultrahigh-lithium compatibility with a high cutoff-capacity of 10 mAh cm-2 was cycled at 10 mA cm-2 for 260 h. Moreover, durable cycling was performed at 0.1 mA cm-2 for 11000 h, 2 mA cm-2 for 1000 h, and 6 mA cm-2 for 460 h. Stepwise CV measurement demonstrates enhanced “True practical potential window” stability up to 3.42 V vs. Li/Li+. Cell performance of Li6PS4.8O0.2Cl-5 wt% I2 with Li-In at 1 C and 3 C has achieved capacity retention of 89.6 % and 89.9 % after 200 and 300 cycles. Outstanding cyclability with Li-metal at 0.4 C with an initial-discharge capacity of 137.27 mAh g-1 was achieved. Enhanced tolerance to moisture with suppressed H2S gas generation was proven by coupling in-situ Raman measurements.
    In the final work, we report a novel artificial stabilization of lithium metal was carried out via the thermal pyrolysis of NH4F salt, which generates HF(g) and NH3(g). The use of the "Holy Grail" lithium metal anode faces practical challenges originating from thermodynamic instability of lithium metal and dendrite growth. Herein, an exposure of lithium metal to the generated gas induces a spontaneous reaction that leads to the formation of multiple SEI components, such as LiF, Li3N, Li2NH, LiNH2, and LiH, from a single salt. The artificially protected layer on lithium metal (AF-Li) sustains stable lithium stripping/plating and endures Li dendrite under Li||Li. The half-cell Li||Cu and Li||MCMB systems depicted the attributions of the protective layer. We demonstrate the treasure of AF-Li, coupled with the oxide cathode, delivered outstanding capacity retention (CR). LFP showed a CR of 90.6% at 0.5 mA cm-2 after 280 cycles, and NCM523 showed a CR of 58.7% at 3 mA cm-2 after 410 cycles. The formulation of the artificial protective layer, with simultaneous formation of multiple SEI components, is facile and cost-effective from NH4F as a single salt, making the system competent.

    中文摘要……… i Abstract.……… iv Acknowledgment vii Table of contents ix List of figures… xiii List of units and abbreviations xxxiii Chapter 1: Introduction 1 1.1 Energy source and renewability 1 1.2 Electrochemistry of lithium batteries 6 Components in electrochemical cells 8 1.3.1 Electrode 8 1.3.2 Separator 8 1.3.3 Electrolyte 9 1.3.4 Current collectors 12 Chapter 2: All solid-state lithium metal batteries and its challenges 13 2.1 Solid electrolyte superconductors 13 2.2 Advantages of all solid-state lithium batteries 15 2.2.1 Safety 15 2.2.2 Energy density 15 2.2.3 Cycle life 16 2.3 Challenges in solid-state lithium batteries 16 2.4 Categories of sulfide solid electrolyte 18 2.4.1 Glasses 19 2.4.2 Glass-ceramic 20 2.4.3 Thio-LISICON 20 2.4.4 LGPS-type 21 2.4.5 Argyrodite type 21 2.5 Ion-transport mechanisms in solid electrolyte 22 2.5.1 Polymer electrolytes 22 2.5.2 Inorganic solid electrolytes 24 2.6 Synthesis approach in sulfide solid electrolyte 28 2.6.1 Solid-state synthesis 29 2.6.2 Solution / liquid-based synthesis 30 2.6.3 Mechanical synthesis 32 2.7 Electrochemical potential window stability 33 2.8 Interfacial phenomena at electrode / solid-electrolyte interface 34 2.8.1 Cathode electrolyte interface and chemomechanical properties on cell performance 34 2.8.2 Anode-electrolyte interface 36 2.9 Dendrite growth and propagation mechanism in SSE 38 2.10 Gas phase lithium metal treatment for lithium metal batteries 41 2.11 Hydrolysis of sulfide solid electrolyte and moisture stabilization approaches 42 2.12 Motivation and objectives of the study 48 2.12.1 Motivation 48 2.12.2 Objectives 49 Chapter 3: Experimental section and characterization 51 3.1 Chemicals and reagents 51 3.2 Electrode fabrication 52 3.3 Solid electrolyte synthesis and optimization conditions 53 3.3.1 Dual CuCl doped argyrodite sulfide synthesis and optimization conditions 54 3.3.2 Oxygen doped argyrodite sulfide synthesis and optimization 55 3.3.3 Synthesis of oxygen doped-iodized argyrodite sulfide and optimization conditions 56 3.4 Moisture stability and hydrogen sulfide (H2S) measurement 58 3.5 Computational details for lithium/sulfide solid electrolyte interface chemistry 60 3.6 Gas phase treatment of lithium metal anode 60 3.7 Characterizing techniques 61 3.7.1 Structural analysis via XRD diffraction 62 3.7.2 Structural analysis via Raman spectroscopy 63 3.7.3 Morphological characterization 64 3.7.4 Surface chemistry and compositional analysis 65 3.8 Electrochemical characterization techniques 66 3.8.1 Electrochemical Impedance Spectroscopy 66 3.8.2 Cyclic voltammetry and linear sweep voltammetry 67 3.8.3 Galvanostatic charge-discharge cell performance 68 Chapter 4: Dual CuCl doped argyrodite superconductor to boost the interfacial capability and air stability of all solid-state lithium metal batteries 71 4.1 Introduction 71 4.2 Results and discussion 73 4.2.1 Structure characterizations of sulfide solid electrolytes 73 4.2.2 Effect of CuCl dual doping ionic conductivity and lithium diffusivity 79 4.2.3 Practical electrochemical potential window 83 4.2.4 Lithium compatibility and dendrite suppression in sulfide solid electrolyte 87 4.2.5 Interface chemistry and post-mortem analysis 98 4.2.6 Moisture stability and structural alterations 101 4.3 Summary 104 Chapter 5: Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries 107 5.1 Introduction 107 5.2 Results and discussion 110 5.2.1 Structural characterization of Li6PS5-xOxCl and Li6PS4.8O0.2Cl-y wt% I2 110 5.2.2 Ionic conductivity and optimation conditions 112 5.2.3 Practical electrochemical potential window of sulfide solid electrolytes 116 5.2.4 Lithium compatibility and dendrite suppression capability 124 5.2.5 Surface chemistry of sulfide solid electrolytes 138 5.2.7 Electrochemical cell performance 144 5.2.8 Moisture stability and compositional alteration via in-situ Raman measurement 147 5.3 Summary 151 Chapter 6: Mechanistic study on artificial stabilization of lithium-metal anode via thermal pyrolysis of NH4F in lithium metal batteries 153 6.1 Introduction 153 6.2 Results and discussion 154 6.2.1 Reaction mechanism and structural material characterizations 154 6.2.2 Artificial lithium protection and suppression of lithium dendrite 159 6.2.3 Half-cell electrochemical performance with Cu and MCMB substrate 163 6.2.4 Electrochemical performance in full-cell configurations 170 6.3 Summary 174 Chapter 7: Conclusions and future outlooks 175 7.1 Conclusions 175 7.2 Future outlooks 178 References……. 181 List of publication 218 Conference presentation 221 Appendix..…….. 222

    1. Liang, Y.; Zhao, C.-Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.-Q.; Yu, D.; Liu, Y.; Titirici, M.-M.; Chueh, Y.-L.; Yu, H.; Zhang, Q., A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
    2. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 16103.
    3. Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y., Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A 2019, 7 (7), 2942-2964.
    4. Kebede, A. A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M., A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews 2022, 159, 112213.
    5. Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    6. Alliance, G. B. In A vision for a sustainable battery value chain in 2030: Unlocking the full potential to power sustainable development and climate change mitigation, Geneva, Switzerland: World Economic Forum, 2019; pp 1-52.
    7. Lutsey, N., Global climate change mitigation potential from a transition to electric vehicles. The International Council on Clean Transportation 2015, 5.
    8. Collett, K. A.; Hirmer, S. A.; Dalkmann, H.; Crozier, C.; Mulugetta, Y.; McCulloch, M. D., Can electric vehicles be good for Sub-Saharan Africa? Energy Strategy Reviews 2021, 38, 100722.
    9. Lutsey, N.; Cui, H.; Yu, R., Evaluating electric vehicle costs and benefits in China in the 2020–2035 time frame. International Council for Clean Transportation 2021.
    10. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R., Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy 2021, 6 (2), 123-134.
    11. Eshetu, G. G.; Zhang, H.; Judez, X.; Adenusi, H.; Armand, M.; Passerini, S.; Figgemeier, E., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nature Communications 2021, 12 (1), 5459.
    12. Fernholm, A., They developed the world’s most powerful battery. The Royal Swedish Academy of Sciences 2019.
    13. Yada, C.; Lee, C. E.; Laughman, D. M.; Hannah, L.; Iba, H.; Hayden, B. E., A High-Throughput Approach Developing Lithium-Niobium-Tantalum Oxides as Electrolyte/Cathode Interlayers for High-Voltage All-Solid-State Lithium Batteries. Journal of The Electrochemical Society 2015, 162.
    14. Winter, M.; Barnett, B.; Xu, K., Before Li Ion Batteries. Chemical Reviews 2018, 118 (23), 11433-11456.
    15. Zhang, J.-G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews 2020, 120 (24), 13312-13348.
    16. Tripathi, A. M.; Su, W.-N.; Hwang, B. J., In situ analytical techniques for battery interface analysis. Chemical Society Reviews 2018, 47 (3), 736-851.
    17. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9), 16141.
    18. Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y.; Hood, Z. D.; Rupp, J. L. M., Processing thin but robust electrolytes for solid-state batteries. Nature Energy 2021, 6 (3), 227-239.
    19. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117 (15), 10403-10473.
    20. Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; Dörfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S. A., Current status and future perspectives of lithium metal batteries. Journal of Power Sources 2020, 480, 228803.
    21. Heubner, C.; Maletti, S.; Auer, H.; Hüttl, J.; Voigt, K.; Lohrberg, O.; Nikolowski, K.; Partsch, M.; Michaelis, A., From Lithium-Metal toward Anode-Free Solid-State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials 2021, 31 (51), 2106608.
    22. Mekonnen, Y.; Sundararajan, A.; Sarwat, A. I., A review of cathode and anode materials for lithium-ion batteries. SoutheastCon 2016 2016, 1-6.
    23. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
    24. Chawla, N.; Bharti, N.; Singh, S., Recent Advances in Non-Flammable Electrolytes for Safer Lithium-Ion Batteries. Batteries 2019, 5 (1), 19.
    25. Whittingham, M. S., Lithium Batteries and Cathode Materials. Chemical Reviews 2004, 104 (10), 4271-4302.
    26. Li, W.; Song, B.; Manthiram, A., High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews 2017, 46 (10), 3006-3059.
    27. Obrovac, M. N.; Chevrier, V. L., Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews 2014, 114 (23), 11444-11502.
    28. Demirocak, D. E.; Srinivasan, S. S.; Stefanakos, E. K., A review on nanocomposite materials for rechargeable Li-ion batteries. Applied sciences 2017, 7 (7), 731.
    29. Lee, H.; Yanilmaz, M.; Toprakci, O.; Fu, K.; Zhang, X., A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science 2014, 7 (12), 3857-3886.
    30. Palacín, M. R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575.
    31. Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.-C.; Wei, F.; Mai, L., Interfaces in solid-state lithium batteries. Joule 2018, 2 (10), 1991-2015.
    32. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14), 6820-6877.
    33. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nature Materials 2019, 18 (12), 1278-1291.
    34. Zhu, P.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E., A review of current collectors for lithium-ion batteries. Journal of Power Sources 2021, 485, 229321.
    35. Jeong, H.; Jang, J.; Jo, C., A review on current collector coating methods for next-generation batteries. Chemical Engineering Journal 2022, 446, 136860.
    36. Owens, B. B., Solid state electrolytes: overview of materials and applications during the last third of the Twentieth Century. Journal of Power Sources 2000, 90 (1), 2-8.
    37. Reuter, B.; Hardel, K., Über die Hochtemperaturmodifikation von Silbersulfidjodid. Die Naturwissenschaften 1961, 48 (6), 161.
    38. Bradley, J. N.; Greene, P. D., Potassium iodide+silver iodide phase diagram: High ionic conductivity of KAg4I5. Transactions of the Faraday Society 1966, 62, 2069-2075.
    39. Owens, B. B.; Argue, G. R., High-conductivity solid electrolytes: MAg4I5. Science 1967, 157 (3786), 308-310.
    40. Takahashi, T.; Yamamoto, O., Polarization of the solid-electrolyte cell Ag/Ag3SI/I2. Electrochimica Acta 1966, 11 (7), 911-917.
    41. Xiao, Y.; Jun, K.; Wang, Y.; Miara, L. J.; Tu, Q.; Ceder, G., Lithium Oxide Superionic Conductors Inspired by Garnet and NASICON Structures. Advanced Energy Materials 2021, 11 (37), 2101437.
    42. Sun, J.; Kang, S.; Kim, J.; Min, K., Accelerated Discovery of Novel Garnet-Type Solid-State Electrolyte Candidates via Machine Learning. ACS Applied Materials & Interfaces 2023, 15 (4), 5049-5057.
    43. Cheng, J.; Hou, G.; Chen, Q.; Li, D.; Li, K.; Yuan, Q.; Wang, J.; Ci, L., Sheet-like garnet structure design for upgrading PEO-based electrolyte. Chemical Engineering Journal 2022, 429, 132343.
    44. Din, M. M. U.; Häusler, M.; Fischer, S. M.; Ratzenböck, K.; Chamasemani, F. F.; Hanghofer, I.; Henninge, V.; Brunner, R.; Slugovc, C.; Rettenwander, D., Role of Filler Content and Morphology in LLZO/PEO Membranes. Frontiers in Energy Research 2021, 9.
    45. Tao, B.; Ren, C.; Li, H.; Liu, B.; Jia, X.; Dong, X.; Zhang, S.; Chang, H., Thio-/LISICON and LGPS-Type Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. Advanced Functional Materials 2022, 32 (34), 2203551.
    46. Liu, H.; Liang, Y.; Wang, C.; Li, D.; Yan, X.; Nan, C.-W.; Fan, L.-Z., Priority and Prospect of Sulfide-Based Solid-Electrolyte Membrane. Advanced Materials n/a (n/a), 2206013.
    47. Pang, B.; Gan, Y.; Xia, Y.; Huang, H.; He, X.; Zhang, W., Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Frontiers in Chemistry 2022, 10.
    48. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Materials 2018, 14, 58-74.
    49. Zhao, F.; Zhang, S.; Li, Y.; Sun, X., Emerging Characterization Techniques for Electrode Interfaces in Sulfide-Based All-Solid-State Lithium Batteries. Small Structures 2022, 3 (1), 2100146.
    50. Wang, Y.; Zhong, W.-H., Development of Electrolytes towards Achieving Safe and High-Performance Energy-Storage Devices: A Review. ChemElectroChem 2015, 2 (1), 22-36.
    51. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
    52. Bai, X.; Yu, T.; Ren, Z.; Gong, S.; Yang, R.; Zhao, C., Key issues and emerging trends in sulfide all solid state lithium battery. Energy Storage Materials 2022, 51, 527-549.
    53. Xian, C.; Wang, Q.; Xia, Y.; Cao, F.; Shen, S.; Zhang, Y.; Chen, M.; Zhong, Y.; Zhang, J.; He, X.; Xia, X.; Zhang, W.; Tu, J., Solid-State Electrolytes in Lithium–Sulfur Batteries: Latest Progresses and Prospects. 2023, 19 (24), 2208164.
    54. Inoue, T.; Mukai, K., Are all-solid-state lithium-ion batteries really safe?–verification by differential scanning calorimetry with an all-inclusive microcell. ACS Applied Materials & Interfaces 2017, 9 (2), 1507-1515.
    55. Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C., Thermal runaway caused fire and explosion of lithium ion battery. Journal of power sources 2012, 208, 210-224.
    56. Wang, H.; Zhu, Y.; Kim, S. C.; Pei, A.; Li, Y.; Boyle, D. T.; Wang, H.; Zhang, Z.; Ye, Y.; Huang, W., Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the National Academy of Sciences 2020, 117 (47), 29453-29461.
    57. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1: 16030. 2016.
    58. Janek, J.; Zeier, W., A solid future for battery development. Nat Energy 1: 16141. 2016.
    59. Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21, 1939-1964.
    60. Pieczonka, N. P.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H., Understanding transition-metal dissolution behavior in LiNi0. 5Mn1. 5O4 high-voltage spinel for lithium ion batteries. The Journal of Physical Chemistry C 2013, 117 (31), 15947-15957.
    61. Shin, B. R.; Jung, Y. S., All-solid-state rechargeable lithium batteries using LiTi2 (PS4) 3 cathode with Li2S-P2S5 solid electrolyte. Journal of the Electrochemical Society 2013, 161 (1), A154.
    62. Luntz, A. C.; Voss, J.; Reuter, K., Interfacial challenges in solid-state Li ion batteries. ACS Publications: 2015; Vol. 6, pp 4599-4604.
    63. Raj, V.; Aetukuri, N. P. B.; Nanda, J., Solid state lithium metal batteries – Issues and challenges at the lithium-solid electrolyte interface. Current Opinion in Solid State and Materials Science 2022, 26 (4), 100999.
    64. Byeon, Y.-W.; Kim, H., Review on Interface and Interphase Issues in Sulfide Solid-State Electrolytes for All-Solid-State Li-Metal Batteries. Electrochem 2021, 2 (3), 452-471.
    65. Liang, Y.; Liu, H.; Wang, G.; Wang, C.; Ni, Y.; Nan, C.-W.; Fan, L.-Z., Challenges, interface engineering, and processing strategies toward practical sulfide-based all-solid-state lithium batteries. InfoMat 2022, 4 (5), e12292.
    66. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J., Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science 2022.
    67. Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T., Preparation of Li2S–P2S5 amorphous solid electrolytes by mechanical milling. Journal of the American Ceramic Society 2001, 84 (2), 477-79.
    68. Dietrich, C.; Weber, D. A.; Sedlmaier, S. J.; Indris, S.; Culver, S. P.; Walter, D.; Janek, J.; Zeier, W. G., Lithium ion conductivity in Li2S–P2S5 glasses – building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7. Journal of Materials Chemistry A 2017, 5 (34), 18111-18119.
    69. Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P., Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses. Materials Research Bulletin 1983, 18 (2), 189-193.
    70. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics 2006, 177 (26-32), 2721-2725.
    71. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178 (15-18), 1163-1167.
    72. Hayashi, A.; Tatsumisago, M., Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electronic Materials Letters 2012, 8, 199-207.
    73. Kanno, R.; Murayama, M., Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society 2001, 148 (7), A742.
    74. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
    75. Sun, Y.; Suzuki, K.; Hara, K.; Hori, S.; Yano, T.-a.; Hara, M.; Hirayama, M.; Kanno, R., Oxygen substitution effects in Li10GeP2S12 solid electrolyte. Journal of Power Sources 2016, 324, 798-803.
    76. Pogodin, A.; Filep, M.; Izai, V. Y.; Kokhan, O.; Kúš, P., Crystal growth and electrical conductivity of Ag7PS6 and Ag8GeS6 argyrodites. Journal of Physics and Chemistry of Solids 2022, 168, 110828.
    77. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
    78. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ x P1–x Ge x S5I for all-solid-state batteries. Journal of the American Chemical Society 2018, 140 (47), 16330-16339.
    79. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting solid‐state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angewandte Chemie International Edition 2019, 58 (26), 8681-8686.
    80. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chemistry of Materials 2020, 33 (1), 146-157.
    81. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F., New family of argyrodite thioantimonate lithium superionic conductors. Journal of the American Chemical Society 2019, 141 (48), 19002-19013.
    82. Lu, P.; Xia, Y.; Huang, Y.; Li, Z.; Wu, Y.; Wang, X.; Sun, G.; Shi, S.; Sha, Z.; Chen, L.; Li, H.; Wu, F., Wide-Temperature, Long-Cycling, and High-Loading Pyrite All-Solid-State Batteries Enabled by Argyrodite Thioarsenate Superionic Conductor. 2023, 33 (8), 2211211.
    83. Ma, Y.; Wan, J.; Xu, X.; Sendek, A. D.; Holmes, S. E.; Ransom, B.; Jiang, Z.; Zhang, P.; Xiao, X.; Zhang, W.; Xu, R.; Liu, F.; Ye, Y.; Kaeli, E.; Reed, E. J.; Chueh, W. C.; Cui, Y., Experimental Discovery of a Fast and Stable Lithium Thioborate Solid Electrolyte, Li6+2x[B10S18]Sx (x ≈ 1). ACS Energy Letters 2023, 2762-2771.
    84. An, Y.; Han, X.; Liu, Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S.; Yu, J.; Yamauchi, Y., Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small 2022, 18 (3), 2103617.
    85. Xue, Z.; He, D.; Xie, X., Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    86. Fu, J.; Li, Z.; Zhou, X.; Guo, X., Ion transport in composite polymer electrolytes. Materials Advances 2022.
    87. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    88. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
    89. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nature Materials 2011, 10 (9), 682-686.
    90. Li, Y.; Daikuhara, S.; Hori, S.; Sun, X.; Suzuki, K.; Hirayama, M.; Kanno, R., Oxygen Substitution for Li–Si–P–S–Cl Solid Electrolytes toward Purified Li10GeP2S12-Type Phase with Enhanced Electrochemical Stabilities for All-Solid-State Batteries. Chemistry of Materials 2020, 32 (20), 8860-8867.
    91. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S.; Wu, S.-H.; Hwang, B. J., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90, 106542.
    92. Baktash, A.; Reid, J. C.; Roman, T.; Searles, D. J., Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes. npj Computational Materials 2020, 6 (1), 162.
    93. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1–xGexS5I for All-Solid-State Batteries. Journal of the American Chemical Society 2018, 140 (47), 16330-16339.
    94. Huang, W.; Cheng, L.; Hori, S.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R., Ionic conduction mechanism of a lithium superionic argyrodite in the Li–Al–Si–S–O system. Materials Advances 2020, 1 (3), 334-340.
    95. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Accounts of Chemical Research 2021, 54 (12), 2717-2728.
    96. Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S., Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries. Advanced Energy Materials 2018, 8 (18), 1800035.
    97. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angewandte Chemie International Edition 2019, 58 (26), 8681-8686.
    98. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 627-631.
    99. Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H., Sulfide-Based Solid-State Electrolytes: Synthesis, Stability, and Potential for All-Solid-State Batteries. Advanced Materials 2019, 31 (44), 1901131.
    100. Miura, A.; Rosero-Navarro, N. C.; Sakuda, A.; Tadanaga, K.; Phuc, N. H. H.; Matsuda, A.; Machida, N.; Hayashi, A.; Tatsumisago, M., Liquid-phase syntheses of sulfide electrolytes for all-solid-state lithium battery. Nature Reviews Chemistry 2019, 3 (3), 189-198.
    101. Xu, J.; Liu, L.; Yao, N.; Wu, F.; Li, H.; Chen, L., Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Materials Today Nano 2019, 8, 100048.
    102. Rosero-Navarro, N. C.; Niwa, H.; Miura, A.; Tadanaga, K., Two-step liquid-phase synthesis of argyrodite Li6PS5Cl solid electrolyte using nonionic surfactant. Boletín de la Sociedad Española de Cerámica y Vidrio.
    103. Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K., Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process. RSC Advances 2017, 7 (73), 46499-46504.
    104. Maniwa, R.; Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Tadanaga, K., Synthesis of sulfide solid electrolytes from Li2S and P2S5 in anisole. Journal of Materials Chemistry A 2021, 9 (1), 400-405.
    105. Hwang, S.-H.; Seo, S.-D.; Kim, D.-W., A Novel Time-Saving Synthesis Approach for Li-Argyrodite Superionic Conductor. n/a (n/a), 2301707.
    106. Tatsumisago, M.; Yamashita, H.; Hayashi, A.; Morimoto, H.; Minami, T., Preparation and structure of amorphous solid electrolytes based on lithium sulfide. Journal of Non-Crystalline Solids 2000, 274 (1), 30-38.
    107. Jiang, Z.; Peng, H.; Liu, Y.; Li, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., A Versatile Li6.5In0.25P0.75S5I Sulfide Electrolyte Triggered by Ultimate-Energy Mechanical Alloying for All-Solid-State Lithium Metal Batteries. Advanced Energy Materials 2021, 11 (36), 2101521.
    108. Wang, Z.; Jiang, Y.; Wu, J.; Jiang, Y.; Huang, S.; Zhao, B.; Chen, Z.; Zhang, J., Reaction mechanism of Li2S-P2S5 system in acetonitrile based on wet chemical synthesis of Li7P3S11 solid electrolyte. Chemical Engineering Journal 2020, 393, 124706.
    109. Schwietert, T. K.; Vasileiadis, A.; Wagemaker, M., First-Principles Prediction of the Electrochemical Stability and Reaction Mechanisms of Solid-State Electrolytes. JACS Au 2021, 1 (9), 1488-1496.
    110. Zhu, Y.; He, X.; Mo, Y., Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Applied Materials & Interfaces 2015, 7 (42), 23685-23693.
    111. Chen, X.; Xie, J.; Zhao, X.; Zhu, T., Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review. Advanced Energy and Sustainability Research 2021, 2 (5), 2000101.
    112. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603.
    113. Wang, C.; Liang, J.; Kim, J. T.; Sun, X., Prospects of halide-based all-solid-state batteries: From material design to practical application. 2022, 8 (36), eadc9516.
    114. Wei, R.; Chen, S.; Gao, T.; Liu, W., Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries. 2021, 2 (12), 2256-2274.
    115. Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J.; Zeier, W. G., Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials 2019, 31 (20), 8328-8337.
    116. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C., Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials 2016, 6 (8), 1501590.
    117. Banerjee, A.; Tang, H.; Wang, X.; Cheng, J.-H.; Nguyen, H.; Zhang, M.; Tan, D. H.; Wynn, T. A.; Wu, E. A.; Doux, J.-M., Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS applied materials & interfaces 2019, 11 (46), 43138-43145.
    118. Zheng, X.; Fu, E.-D.; Chen, P.; Liu, S.; Li, G.-R.; Gao, X.-P., Li3InCl6-coated LiCoO2 for high-performance all solid-state batteries. Applied Physics Letters 2022, 121 (3), 033902.
    119. Wang, K.; Ren, Q.; Gu, Z.; Duan, C.; Wang, J.; Zhu, F.; Fu, Y.; Hao, J.; Zhu, J.; He, L.; Wang, C.-W.; Lu, Y.; Ma, J.; Ma, C., A cost-effective and humidity-tolerant chloride solid electrolyte for lithium batteries. Nature Communications 2021, 12 (1), 4410.
    120. Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Sun, X., Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie International Edition 2019, 58 (46), 16427-16432.
    121. Tian, J.; Chen, Z.; Zhao, Y., Review on Modeling for Chemo-mechanical Behavior at Interfaces of All-Solid-State Lithium-Ion Batteries and Beyond. ACS Omega 2022, 7 (8), 6455-6462.
    122. Doux, J.-M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries. Advanced Energy Materials 2020, 10 (1), 1903253.
    123. Hänsel, C.; Kumar, P. V.; Kundu, D., Stack Pressure Effect in Li3PS4 and Na3PS4 Based Alkali Metal Solid-State Cells: The Dramatic Implication of Interlayer Growth. Chemistry of Materials 2020, 32 (24), 10501-10510.
    124. Wood, K. N.; Steirer, K. X.; Hafner, S. E.; Ban, C.; Santhanagopalan, S.; Lee, S.-H.; Teeter, G., Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nature communications 2018, 9 (1), 2490.
    125. Wang, S.; Fang, R.; Li, Y.; Liu, Y.; Xin, C.; Richter, F. H.; Nan, C.-W., Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. Journal of Materiomics 2021, 7 (2), 209-218.
    126. Lewis, J. A.; Cortes, F. J. Q.; Liu, Y.; Miers, J. C.; Verma, A.; Vishnugopi, B. S.; Tippens, J.; Prakash, D.; Marchese, T. S.; Han, S. Y.; Lee, C.; Shetty, P. P.; Lee, H.-W.; Shevchenko, P.; De Carlo, F.; Saldana, C.; Mukherjee, P. P.; McDowell, M. T., Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nature Materials 2021, 20 (4), 503-510.
    127. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q., Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters 2020, 5 (3), 833-843.
    128. Narayanan, S.; Ulissi, U.; Gibson, J. S.; Chart, Y. A.; Weatherup, R. S.; Pasta, M., Effect of current density on the solid electrolyte interphase formation at the lithium∣Li6PS5Cl interface. Nature Communications 2022, 13 (1), 7237.
    129. Tian, H.-K.; Liu, Z.; Ji, Y.; Chen, L.-Q.; Qi, Y., Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes. Chemistry of Materials 2019, 31 (18), 7351-7359.
    130. Lu, Y.; Zhao, C.-Z.; Yuan, H.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q., Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials 2021, 31 (18), 2009925.
    131. Lu, Y.; Zhao, C.-Z.; Hu, J.-K.; Sun, S.; Yuan, H.; Fu, Z.-H.; Chen, X.; Huang, J.-Q.; Ouyang, M.; Zhang, Q., The void formation behaviors in working solid-state Li metal batteries. Science Advances 2022, 8 (45), eadd0510.
    132. Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K.-H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P., Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility. Matter 2020, 2 (4), 1025-1048.
    133. Wu, C.; Lou, J.; Zhang, J.; Chen, Z.; Kakar, A.; Emley, B.; Ai, Q.; Guo, H.; Liang, Y.; Lou, J.; Yao, Y.; Fan, Z., Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy 2021, 87, 106081.
    134. Lu, Y.; Zhao, C.-Z.; Yuan, H.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q., Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies. 2021, 31 (18), 2009925.
    135. Moon, S.; Park, H.; Yoon, G.; Lee, M. H.; Park, K.-Y.; Kang, K., Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials 2017, 29 (21), 9182-9191.
    136. Jiang, S.-K.; Yang, S.-C.; Huang, W.-H.; Sung, H.-Y.; Lin, R.-Y.; Li, J.-N.; Tsai, B.-Y.; Agnihotri, T.; Nikodimos, Y.; Wang, C.-H. J. J. o. M. C. A., Enhancing the interfacial stability between argyrodite sulfide-based solid electrolytes and lithium electrodes through CO2 adsorption. 2023.
    137. Taklu, B. W.; Nikodimos, Y.; Bezabh, H. K.; Lakshmanan, K.; Hagos, T. M.; Nigatu, T. A.; Merso, S. K.; Sung, H.-Y.; Yang, S.-C.; Wu, S.-H. J. N. E., Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries. 2023, 112, 108471.
    138. Samarasingha, P. B.; Lee, M.-T.; Valvo, M., Reactive surface coating of metallic lithium and its role in rechargeable lithium metal batteries. Electrochimica Acta 2021, 397, 139270.
    139. Li, Y.; Sun, Y.; Pei, A.; Chen, K.; Vailionis, A.; Li, Y.; Zheng, G.; Sun, J.; Cui, Y., Robust Pinhole-free Li3N Solid Electrolyte Grown from Molten Lithium. ACS Central Science 2018, 4 (1), 97-104.
    140. Lin, Y.; Wen, Z.; Liu, J.; Wu, D.; Zhang, P.; Zhao, J. J. J. o. E. C., Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. 2021, 55, 129-135.
    141. Lin, D.; Liu, Y.; Chen, W.; Zhou, G.; Liu, K.; Dunn, B.; Cui, Y., Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. Nano Letters 2017, 17 (6), 3731-3737.
    142. Lu, P.; Wu, D.; Chen, L.; Li, H.; Wu, F., Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochemical Energy Reviews 2022, 5 (3), 3.
    143. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. Journal of Materials Chemistry A 2013, 1 (21), 6320-6326.
    144. Lee, D.; Park, K.-H.; Kim, S. Y.; Jung, J. Y.; Lee, W.; Kim, K.; Jeong, G.; Yu, J.-S.; Choi, J.; Park, M.-S.; Cho, W., Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. Journal of Materials Chemistry A 2021, 9 (32), 17311-17316.
    145. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J., Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy & Environmental Science 2022, 15 (3), 991-1033.
    146. Sahu, G.; Lin, Z.; Li, J.; Liu, Z.; Dudney, N.; Liang, C., Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4. Energy & Environmental Science 2014, 7 (3), 1053-1058.
    147. Wang, Y.; Lü, X.; Zheng, C.; Liu, X.; Chen, Z.; Yang, W.; Lin, J.; Huang, F., Chemistry design towards a stable sulfide‐based superionic conductor Li4Cu8Ge3S12. Angewandte Chemie 2019, 131 (23), 7755-7759.
    148. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S. J. N. E., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. 2021, 90, 106542.
    149. Zhu, Y.; Mo, Y. J. A. C. I. E., Materials design principles for air‐stable lithium/sodium solid electrolytes. 2020, 59 (40), 17472-17476.
    150. Jones, L. H., The Infrared Spectra and Structure of LiOH, LiOH·H2O and the Deuterium Species. Remark on Fundamental Frequency of OH‐. The Journal of Chemical Physics 1954, 22 (2), 217-219.
    151. Takeuchi, M.; Kurosawa, R.; Ryu, J.; Matsuoka, M., Hydration of LiOH and LiCl─Near-Infrared Spectroscopic Analysis. ACS Omega 2021, 6 (48), 33075-33084.
    152. Morino, Y.; Sano, H.; Kawamoto, K.; Fukui, K.-i.; Takeuchi, M.; Sakuda, A.; Hayashi, A. J. S. S. I., Degradation of an argyrodite-type sulfide solid electrolyte by a trace of water: A spectroscopic analysis. 2023, 392, 116162.
    153. Lu, P.; Liu, L.; Wang, S.; Xu, J.; Peng, J.; Yan, W.; Wang, Q.; Li, H.; Chen, L.; Wu, F., Superior All-Solid-State Batteries Enabled by a Gas-Phase-Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials 2021, 33 (32), 2100921.
    154. Wilson, R. E., Humidity Control by Means of Sulfuric Acid Solutions, with Critical Compilation of Vapor Pressure Data. Journal of Industrial & Engineering Chemistry 1921, 13 (4), 326-331.
    155. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica acta 2002, 47 (9), 1423-1439.
    156. Blöchl, P. E., Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
    157. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b 1999, 59 (3), 1758.
    158. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
    159. Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 2017, 21 (7), 1939-1964.
    160. Ding, Z.; Li, J.; Li, J.; An, C., Interfaces: Key Issue to Be Solved for All Solid-State Lithium Battery Technologies. Journal of The Electrochemical Society 2020, 167 (7), 070541-070561.
    161. Kwak, H.; Park, K. H.; Han, D.; Nam, K.-W.; Kim, H.; Jung, Y. S., Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. Journal of Power Sources 2020, 446, 227338-227345.
    162. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9), 1-4.
    163. Wang, H.; Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Wagemaker, M., A lithium argyrodite Li6PS5Cl0.5Br0.5 electrolyte with improved bulk and interfacial conductivity. Journal of Power Sources 2019, 412, 29-36.
    164. Zhang, Z.; Zhang, L.; Yan, X.; Wang, H.; Liu, Y.; Yu, C.; Cao, X.; van Eijck, L.; Wen, B., All-in-one improvement toward Li6PS5Br-Based solid electrolytes triggered by compositional tune. Journal of Power Sources 2019, 410-411, 162-170.
    165. Liu, G.; Xie, D.; Wang, X.; Yao, X.; Chen, S.; Xiao, R.; Li, H.; Xu, X., High air-stability and superior lithium ion conduction of Li3+3xP1-xZnxS4-xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Materials 2019, 17, 266-274.
    166. Fu, K.; Gong, Y.; Liu, B.; Zhu, Y.; Xu, S.; Yao, Y.; Luo, W.; Wang, C.; Lacey, S. D.; Dai, J.; Chen, Y.; Mo, Y.; Wachsman, E.; Hu, L., Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 2017, 3 (4), 1-11.
    167. Zhou, L.; Park, K.-H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L. F., Solvent-Engineered Design of Argyrodite Li6PS5X (X = Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Lett. 2019, 4 (1), 265-270.
    168. Chida, S.; Miura, A.; Rosero-Navarro, N. C.; Higuchi, M.; Phuc, N. H. H.; Muto, H.; Matsuda, A.; Tadanaga, K., Liquid-phase synthesis of Li6PS5Br using ultrasonication and application to cathode composite electrodes in all-solid-state batteries. Ceramics International 2018, 44 (1), 742-746.
    169. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting solid‐state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angew.Chem. Int.Ed. 2019, 58 (26), 8681-8686.
    170. Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858.
    171. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J. Am. Chem. Soc. 2017, 139 (31), 10909-10918.
    172. Rao, R. P.; Sharma, N.; Peterson, V. K.; Adams, S., Formation and conductivity studies of lithium argyrodite solid electrolytes using in-situ neutron diffraction. Solid State Ionics 2013, 230, 72-76.
    173. Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
    174. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). Journal of the American Chemical Society 2017, 139 (31), 10909-10918.
    175. Xu, Z.; Chen, X.; Chen, R.; Li, X.; Zhu, H., Anion charge and lattice volume dependent lithium ion migration in compounds with fcc anion sublattices. npj Computational Materials 2020, 6 (1), 47-59.
    176. Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S., Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. J Solid State Electrochem 2012, 16 (5), 1807-1813.
    177. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed. 2008, 120 (4), 767-770.
    178. Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K. R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M. N.; Li, R.; Huang, H.; Zhang, L.; Yang, R.; Lu, S.; Huang, Y.; Sun, X., Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy 2020, 69, 104396-104407.
    179. Zhang, J.; Li, L.; Zheng, C.; Xia, Y.; Gan, Y.; Huang, H.; Liang, C.; He, X.; Tao, X.; Zhang, W., Silicon-Doped Argyrodite Solid Electrolyte Li6PS5I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2020, 12 (37), 41538-41545.
    180. Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy 2019, 4 (3), 187-196.
    181. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. Journal of Materials Science 2013, 48 (11), 4137-4142.
    182. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M= Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 2013, 1 (21), 6320-6326.
    183. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Suppression of H2S gas generation from the 75Li2S· 25P2S5 glass electrolyte by additives. J Mater Sci. 2013, 48 (11), 4137-4142.
    184. Hikima, K.; Huy Phuc, N. H.; Tsukasaki, H.; Mori, S.; Muto, H.; Matsuda, A., High ionic conductivity of multivalent cation doped Li6PS5Cl solid electrolytes synthesized by mechanical milling. RSC Adv. 2020, 10 (38), 22304-22310.
    185. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. 2019, 58 (26), 8681-8686.
    186. Huang, W.; Yoshino, K.; Hori, S.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R., Superionic lithium conductor with a cubic argyrodite-type structure in the Li–Al–Si–S system. Journal of Solid State Chemistry 2019, 270, 487-492.
    187. Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G., Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chem. Mater. 2017, 29 (7), 3029-3037.
    188. Zhou, Y.; Doerrer, C.; Kasemchainan, J.; Bruce, P. G.; Pasta, M.; Hardwick, L. J., Observation of Interfacial Degradation of Li6PS5Cl against Lithium Metal and LiCoO2 via In Situ Electrochemical Raman Microscopy. Batteries & Supercaps 2020, 3 (7), 647-652.
    189. Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. Journal of Power Sources 2015, 293, 941-945.
    190. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1–xGexS5I for All-Solid-State Batteries. J. Am. Chem. Soc. 2018, 140 (47), 16330-16339.
    191. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Physical review B 1993, 47 (1), 558.
    192. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
    193. Blöchl, P. E., Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953.
    194. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W., A Versatile Sn Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries. Adv. Energy Mater. 2020, 10 (9), 1903422.
    195. Xu, R.-c.; Xia, X.-h.; Wang, X.-l.; Xia, Y.; Tu, J.-p., Tailored Li2S–P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries. J. Mater. Chem. A 2017, 5 (6), 2829-2834.
    196. Swamy, T.; Chen, X.; Chiang, Y.-M., Electrochemical Redox Behavior of Li Ion Conducting Sulfide Solid Electrolytes. Chemistry of Materials 2019, 31 (3), 707-713.
    197. Wang, Y.; Lü, X.; Zheng, C.; Liu, X.; Chen, Z.; Yang, W.; Lin, J.; Huang, F., Chemistry Design Towards a Stable Sulfide-Based Superionic Conductor Li4Cu8Ge3S12. Angew. Chem. Int. Ed. 2019, 58 (23), 7673-7677.
    198. Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. J. N. E., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. 2019, 4 (3), 187-196.
    199. Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K.-H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P. J. M., Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. 2020, 2 (4), 1025-1048.
    200. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C. J. A. E. L., Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. 2020, 5 (4), 1035-1043.
    201. Golozar, M.; Paolella, A.; Demers, H.; Savoie, S.; Girard, G.; Delaporte, N.; Gauvin, R.; Guerfi, A.; Lorrmann, H.; Zaghib, K. J. S. r., Direct observation of lithium metal dendrites with ceramic solid electrolyte. 2020, 10 (1), 1-11.
    202. Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J. J. J. o. t. A. C. S., Nucleation and growth mechanism of lithium metal electroplating. 2019, 141 (46), 18612-18623.
    203. Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G. O.; Marrow, J.; Bruce, P. G. J. N. m., Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. 2019, 18 (10), 1105-1111.
    204. Bai, Y.; Zhao, Y.; Li, W.; Meng, L.; Bai, Y.; Chen, G., New Insight for Solid Sulfide Electrolytes LSiPSI by Using Si/P/S as the Raw Materials and I Doping. ACS Sustainable Chem. Eng. 2019, 7 (15), 12930-12937.
    205. Han, F.; Yue, J.; Zhu, X.; Wang, C., Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation. Adv. Energy Mater. 2018, 8 (18), 1-6.
    206. Chen, T.; Zhang, L.; Zhang, Z.; Li, P.; Wang, H.; Yu, C.; Yan, X.; Wang, L.; Xu, B., Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping. ACS Appl. Mater. Interfaces 2019, 11 (43), 40808-40816.
    207. Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X., Densified Li6PS5Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. Nano Lett. 2020, 20 (9), 6660-6665.
    208. Auvergniot, J.; Cassel, A.; Foix, D.; Viallet, V.; Seznec, V.; Dedryvère, R. J. S. S. I., Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study. 2017, 300, 78-85.
    209. Tan, D. H.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S. J. A. E. L., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. 2019, 4 (10), 2418-2427.
    210. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J. J. S. S. I., Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. 2018, 318, 102-112.
    211. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. J. o. M. C. A., Improvement of chemical stability of Li 3 PS 4 glass electrolytes by adding M x O y (M= Fe, Zn, and Bi) nanoparticles. 2013, 1 (21), 6320-6326.
    212. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. J. S. S. I., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. 2011, 182 (1), 116-119.
    213. Zhang, Z.; Zhang, J.; Sun, Y.; Jia, H.; Peng, L.; Zhang, Y.; Xie, J. J. J. o. E. C., Li4-xSbxSn1-xS4 solid solutions for air-stable solid electrolytes. 2020, 41, 171-176.
    214. Pearson, R. G. J. J. o. t. A. C. s., Hard and soft acids and bases. 1963, 85 (22), 3533-3539.
    215. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K. J. J. o. M. S., Suppression of H 2 S gas generation from the 75Li 2 S· 25P 2 S 5 glass electrolyte by additives. 2013, 48, 4137-4142.
    216. Wang, Y.; Lü, X.; Zheng, C.; Liu, X.; Chen, Z.; Yang, W.; Lin, J.; Huang, F. J. A. C., Chemistry design towards a stable sulfide‐based superionic conductor Li4Cu8Ge3S12. 2019, 131 (23), 7755-7759.
    217. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews 2020, 120 (14), 6878-6933.
    218. Ye, L.; Li, X., A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593 (7858), 218-222.
    219. Su, Y.; Ye, L.; Fitzhugh, W.; Wang, Y.; Gil-González, E.; Kim, I.; Li, X., A more stable lithium anode by mechanical constriction for solid state batteries. Energy & Environmental Science 2020, 13 (3), 908-916.
    220. Santhosha, A. L.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P., The Indium−Lithium Electrode in Solid-State Lithium-Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. 2019, 2 (6), 524-529.
    221. Han, F.; Yue, J.; Zhu, X.; Wang, C., Suppressing Li Dendrite Formation in Li2S-P2S5 Solid Electrolyte by LiI Incorporation. 2018, 8 (18), 1703644.
    222. Liu, Y.; Su, H.; Li, M.; Xiang, J.; Wu, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A 2021, 9 (23), 13531-13539.
    223. Ji, X.; Hou, S.; Wang, P.; He, X.; Piao, N.; Chen, J.; Fan, X.; Wang, C., Solid-State Electrolyte Design for Lithium Dendrite Suppression. 2020, 32 (46), 2002741.
    224. Jiang, Z.; Li, Z.; Wang, X.; Gu, C.; Xia, X.; Tu, J., Robust Li6PS5I Interlayer to Stabilize the Tailored Electrolyte Li9.95SnP2S11.95F0.05/Li Metal Interface. ACS Applied Materials & Interfaces 2021, 13 (26), 30739-30745.
    225. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C., Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes. 2016, 6 (8), 1501590.
    226. Banik, A.; Liu, Y.; Ohno, S.; Rudel, Y.; Jiménez-Solano, A.; Gloskovskii, A.; Vargas-Barbosa, N. M.; Mo, Y.; Zeier, W. G., Can Substitutions Affect the Oxidative Stability of Lithium Argyrodite Solid Electrolytes? ACS Applied Energy Materials 2022, 5 (2), 2045-2053.
    227. Peng, L.; Chen, S.; Yu, C.; Wei, C.; Liao, C.; Wu, Z.; Wang, H.-L.; Cheng, S.; Xie, J., Enhancing Moisture and Electrochemical Stability of the Li5.5PS4.5Cl1.5 Electrolyte by Oxygen Doping. ACS Applied Materials & Interfaces 2022, 14 (3), 4179-4185.
    228. Xu, H.; Cao, G.; Shen, Y.; Yu, Y.; Hu, J.; Wang, Z.; Shao, G., Enabling Argyrodite Sulfides as Superb Solid-State Electrolyte with Remarkable Interfacial Stability Against Electrodes. 0 (1-13).
    229. Taklu, B. W.; Nikodimos, Y.; Bezabh, H. K.; Lakshmanan, K.; Hagos, T. M.; Nigatu, T. A.; Merso, S. K.; Sung, H.-Y.; Yang, S.-C.; Wu, S.-H. J. N. E., Air-stable iodized-oxychloride argyrodite sulfide and anionic swap on the practical potential window for all-solid-state lithium-metal batteries. 2023, 108471.
    230. Chen, T.; Zhang, L.; Zhang, Z.; Li, P.; Wang, H.; Yu, C.; Yan, X.; Wang, L.; Xu, B., Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Capability Realized by ZnO Co-Doping. ACS Applied Materials & Interfaces 2019, 11 (43), 40808-40816.
    231. Liu, D.; Wang, Q.; Ma, X.; Liu, Q.; Zhou, X.; Lei, Z., Li10Sn0.95P2S11.9−xOx: A new sulfide solid electrolyte for all-solid-state batteries. Journal of Alloys and Compounds 2022, 926, 166731.
    232. Sun, Z.; Lai, Y.; lv, N.; Hu, Y.; Li, B.; Jiang, L.; Wang, J.; Yin, S.; Li, K.; Liu, F., Insights on the Properties of the O-Doped Argyrodite Sulfide Solid Electrolytes (Li6PS5–xClOx, x=0 – 1). ACS Applied Materials & Interfaces 2021, 13 (46), 54924-54935.
    233. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chemistry of Materials 2016, 28 (1), 266-273.
    234. Hakari, T.; Deguchi, M.; Mitsuhara, K.; Ohta, T.; Saito, K.; Orikasa, Y.; Uchimoto, Y.; Kowada, Y.; Hayashi, A.; Tatsumisago, M., Structural and Electronic-State Changes of a Sulfide Solid Electrolyte during the Li Deinsertion–Insertion Processes. Chemistry of Materials 2017, 29 (11), 4768-4774.
    235. Qin, F.; Zhang, K.; Fang, J.; Lai, Y.; Li, Q.; Zhang, Z.; Li, J., High performance lithium sulfur batteries with a cassava-derived carbon sheet as a polysulfides inhibitor. New Journal of Chemistry 2014, 38 (9), 4549-4554.
    236. Park, C.-M.; Sohn, H.-J., Black Phosphorus and its Composite for Lithium Rechargeable Batteries. 2007, 19 (18), 2465-2468.
    237. Guo, W.; Zhang, W.; Si, Y.; Wang, D.; Fu, Y.; Manthiram, A., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nature Communications 2021, 12 (1), 3031.
    238. Sun, Z.; Lai, Y.; lv, N.; Hu, Y.; Li, B.; Jiang, L.; Wang, J.; Yin, S.; Li, K.; Liu, F., Insights on the Properties of the O-Doped Argyrodite Sulfide Solid Electrolytes (Li6PS5–xClOx, x=0–1). ACS Applied Materials & Interfaces 2021, 13 (46), 54924-54935.
    239. Zeng, D.; Yao, J.; Zhang, L.; Xu, R.; Wang, S.; Yan, X.; Yu, C.; Wang, L., Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nature Communications 2022, 13 (1), 1909.
    240. Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy 2019, 4 (3), 187-196.
    241. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C.; Li, X.; Li, X.; Xia, W.; Li, R.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Lett. 2020, 5 (4), 1035-1043.
    242. Liu, Y.; Peng, H.; Su, H.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., Ultrafast Synthesis of I-Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. 2022, 34 (3), 2107346.
    243. Takahashi, M.; Watanabe, T.; Yamamoto, K.; Ohara, K.; Sakuda, A.; Kimura, T.; Yang, S.; Nakanishi, K.; Uchiyama, T.; Kimura, M.; Hayashi, A.; Tatsumisago, M.; Uchimoto, Y., Investigation of the Suppression of Dendritic Lithium Growth with a Lithium-Iodide-Containing Solid Electrolyte. Chemistry of Materials 2021, 33 (13), 4907-4914.
    244. Wang, C.; Deng, T.; Fan, X.; Zheng, M.; Yu, R.; Lu, Q.; Duan, H.; Huang, H.; Wang, C.; Sun, X., Identifying soft breakdown in all-solid-state lithium battery. Joule 2022, 6 (8), 1770-1781.
    245. Xu, R.; Han, F.; Ji, X.; Fan, X.; Tu, J.; Wang, C., Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy 2018, 53, 958-966.
    246. Jiang, Z.; Liang, T.; Liu, Y.; Zhang, S.; Li, Z.; Wang, D.; Wang, X.; Xia, X.; Gu, C.; Tu, J., Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li7P3S11-Based Solid Electrolytes Triggered by Nb and O Cosubstitution. ACS Applied Materials & Interfaces 2020, 12 (49), 54662-54670.
    247. Chen, T.; Zeng, D.; Zhang, L.; Yang, M.; Song, D.; Yan, X.; Yu, C., Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance. Journal of Energy Chemistry 2021, 59, 530-537.
    248. Xu, H.; Cao, G.; Shen, Y.; Yu, Y.; Hu, J.; Wang, Z.; Shao, G., Enabling Argyrodite Sulfides as Superb Solid-State Electrolyte with Remarkable Interfacial Stability Against Electrodes. Energy & Environmental Materials 2023, 5 (3), 852-864.
    249. Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X., Densified Li6PS5Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. Nano Letters 2020, 20 (9), 6660-6665.
    250. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W.; Deng, S.; Li, R.; Huang, Y.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., A Versatile Sn-Substituted Argyrodite Sulfide Electrolyte for All-Solid-State Li Metal Batteries. 2020, 10 (9), 1903422.
    251. Carboni, M.; Marrani, A. G.; Spezia, R.; Brutti, S., Degradation of LiTfO/TEGME and LiTfO/DME Electrolytes in Li-O2 Batteries. Journal of The Electrochemical Society 2018, 165 (2), A118-A125.
    252. Merwin, A.; Phillips, W. C.; Williamson, M. A.; Willit, J. L.; Motsegood, P. N.; Chidambaram, D., Presence of Li Clusters in Molten LiCl-Li. Scientific Reports 2016, 6 (1), 25435.
    253. Popović, L.; Manoun, B.; de Waal, D.; Nieuwoudt, M. K.; Comins, J. D., Raman spectroscopic study of phase transitions in Li3PO4. Journal of Raman Spectroscopy 2003, 34 (1), 77-83.
    254. Tuncer, M.; Bakan, F.; Gocmez, H.; Erdem, E., Capacitive behaviour of nanocrystalline octacalcium phosphate (OCP) (Ca8H2(PO4)6·5H2O) as an electrode material for supercapacitors: biosupercaps. Nanoscale 2019, 11 (39), 18375-18381.
    255. Varghese, S.; Hariharan, K., Influence of quenching on the structural and conduction characteristics of lithium sulfate. Ionics 2018, 24 (9), 2591-2599.
    256. Weber, G.; Sciora, E.; Guichard, J.; Bouyer, F.; Bezverkhyy, I.; Marcos Salazar, J.; Dirand, C.; Bernard, F.; Lecoq, H.; Besnard, R.; Bellat, J.-P., Investigation of hydrolysis of lithium oxide by thermogravimetry, calorimetry and in situ FTIR spectroscopy. Journal of Thermal Analysis and Calorimetry 2018, 132 (2), 1055-1064.
    257. Calpa, M.; Rosero-Navarro, N. C.; Miura, A.; Jalem, R.; Tateyama, Y.; Tadanaga, K., Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Applied Materials Today 2021, 22, 100918.
    258. Brédas, J.-L.; Buriak, J. M.; Caruso, F.; Choi, K.-S.; Korgel, B. A.; Palacín, M. R.; Persson, K.; Reichmanis, E.; Schüth, F.; Seshadri, R.; Ward, M. D., An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials 2019, 31 (21), 8577-8581.
    259. Zhang, H.; Yang, Y.; Ren, D.; Wang, L.; He, X., Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials 2021, 36, 147-170.
    260. Zhang, S.; Li, R.; Hu, N.; Deng, T.; Weng, S.; Wu, Z.; Lu, D.; Zhang, H.; Zhang, J.; Wang, X.; Chen, L.; Fan, L.; Fan, X., Tackling realistic Li+ flux for high-energy lithium metal batteries. Nature Communications 2022, 13 (1), 5431.
    261. Hagos, T. M.; Bezabh, H. K.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Hwang, B. J., A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Accounts of Chemical Research 2021, 54 (24), 4474-4485.
    262. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (10), 9955-9963.
    263. Ye, H.; Zhang, Y.; Yin, Y.-X.; Cao, F.-F.; Guo, Y.-G., An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science 2020, 6 (5), 661-671.
    264. Liao, L.; Cheng, X.; Ma, Y.; Zuo, P.; Fang, W.; Yin, G.; Gao, Y., Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode. Electrochimica Acta 2013, 87, 466-472.
    265. Li, H.; Yamaguchi, T.; Matsumoto, S.; Hoshikawa, H.; Kumagai, T.; Okamoto, N. L.; Ichitsubo, T., Circumventing huge volume strain in alloy anodes of lithium batteries. Nature Communications 2020, 11 (1), 1584.
    266. Wan, M.; Kang, S.; Wang, L.; Lee, H.-W.; Zheng, G. W.; Cui, Y.; Sun, Y., Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications 2020, 11 (1), 829.
    267. Jin, S.; Ye, Y.; Niu, Y.; Xu, Y.; Jin, H.; Wang, J.; Sun, Z.; Cao, A.; Wu, X.; Luo, Y.; Ji, H.; Wan, L.-J., Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society 2020, 142 (19), 8818-8826.
    268. Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P.-C.; Wang, J.; Cheng, H.-M.; Cui, Y., Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotechnology 2017, 12 (10), 993-999.
    269. Lin, Y.; Wen, Z.; Liu, J.; Wu, D.; Zhang, P.; Zhao, J., Constructing a uniform lithium iodide layer for stabilizing lithium metal anode. Journal of Energy Chemistry 2021, 55, 129-135.
    270. Wang, J.; Li, H.-W.; Chen, P., Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements. Mrs bulletin 2013, 38 (6), 480-487.
    271. Behrendt, G.; Reichert, C.; Kohlmann, H., Hydrogenation Reaction Pathways in the Systems Li3N–H2, Li3N–Mg–H2, and Li3N–MgH2–H2 by in Situ X-ray Diffraction, in Situ Neutron Diffraction, and in Situ Thermal Analysis. The Journal of Physical Chemistry C 2016, 120 (25), 13450-13455.
    272. Minella, C. B.; Rongeat, C.; Domènech-Ferrer, R.; Lindemann, I.; Dunsch, L.; Sorbie, N.; Gregory, D. H.; Gutfleisch, O., Synthesis of LiNH2 + LiH by reactive milling of Li3N. Faraday Discussions 2011, 151 (0), 253-262.
    273. Kar, T.; Scheiner, S.; Li, L., Theoretical investigation on the mechanism of LiH+NH3→LiNH2+H2 reaction. Journal of Molecular Structure: THEOCHEM 2008, 857 (1), 111-114.
    274. Hu, Y. H.; Ruckenstein, E., Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. The Journal of Physical Chemistry A 2003, 107 (46), 9737-9739.
    275. Andrés, J.; Berski, S.; Contreras-García, J.; González-Navarrete, P., Following the Molecular Mechanism for the NH3 + LiH → LiNH2 + H2 Chemical Reaction: A Study Based on the Joint Use of the Quantum Theory of Atoms in Molecules (QTAIM) and Noncovalent Interaction (NCI) Index. The Journal of Physical Chemistry A 2014, 118 (9), 1663-1672.
    276. Herbst, J.; Hector Jr, L., Energetics of the Li amide/Li imide hydrogen storage reaction. Physical review B 2005, 72 (12), 125120.
    277. Ichikawa, T.; Hanada, N.; Isobe, S.; Leng, H.; Fujii, H., Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System. The Journal of Physical Chemistry B 2004, 108 (23), 7887-7892.
    278. Gregory, D. H., Lithium nitrides, imides and amides as lightweight, reversible hydrogen stores. Journal of Materials Chemistry 2008, 18 (20), 2321-2330.
    279. Ravi, M.; Makepeace, J. W., Lithium–nitrogen–hydrogen systems for ammonia synthesis: exploring a more efficient pathway using lithium nitride–hydride. Chemical Communications 2022, 58 (41), 6076-6079.
    280. Wood, B. C.; Stavila, V.; Poonyayant, N.; Heo, T. W.; Ray, K. G.; Klebanoff, L. E.; Udovic, T. J.; Lee, J. R. I.; Angboonpong, N.; Sugar, J. D.; Pakawatpanurut, P., Nanointerface-Driven Reversible Hydrogen Storage in the Nanoconfined Li–N–H System. Advanced Materials Interfaces 2017, 4 (3), 1600803.
    281. Li, L.; Dai, H.; Wang, C., Electrolyte additives: Adding the stability of lithium metal anodes. Nano Select 2021, 2 (1), 16-36.

    無法下載圖示 全文公開日期 2026/07/17 (校內網路)
    全文公開日期 2026/07/17 (校外網路)
    全文公開日期 2026/07/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE