簡易檢索 / 詳目顯示

研究生: 傅文欽
Wen Chin Fu
論文名稱: 固態氧化物燃料電池電解質微波燒結特性研究及抗還原設計
Investigation of Solid Oxide Fuel Cell electrolyte using microwave sintering and reduction-resistance design
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
段維新
Wei-Hsing Tuan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 116
中文關鍵詞: 抗還原設計微波燒結
外文關鍵詞: reduction-resistance design, Microwave sintering
相關次數: 點閱:280下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)為高溫型燃料電池,特色為功率密度高,其中電解質的離子導電特性扮演重要的角色,常見的電解質材料主要以螢石結構(fluorite structure)為主的氧化鋯基與氧化鈰基為主要的發展材料,故本文以此兩種材料系統作為我們研究探討方向。
    首先對氧化鋯基材料研究,本實驗使用1 mol% 氧化釔穩定氧化鉍(Yttria-stabilized bismuth oxide, YSB)摻雜於氧化釔穩定氧化鋯 (Yttria-stabilized zirconia, YSZ)為電解質材料(以下簡稱為1YBZ),並以微波燒結(Microwave Sintering, MS)的方式來製備電解質試片,希望藉由YSB的添加,可以降低YSZ的燒結溫度,並提升其離子導電率,更希望利用微波燒結來消除m相氧化鋯(monoclinic ZrO2 ,m-ZrO2)的產生。
    實驗結果得到添加1 mol% YSB,可使YSZ的燒結溫度由1500℃降至1100~1200℃;在結構方面,1YBZ的主相仍為立方結構之富YSZ 相,使用傳統高溫爐燒結方式時,YSZ母相會有單斜相ZrO2的產生,而使用微波燒結,不但可以縮短燒結時間,更可以消除單斜相ZrO2的現象;在導電率方面,1YBZ的材料系統,使用MS在燒結溫度1200℃持溫2小時的條件下,800℃的離子導電率為0.019 S/cm,高於為8YSZ(8 mol% Y2O3-92 mol% ZrO2)離子導電率0.013S/cm。在還原方面,1YBZ電解質在40%氫氣還原下7小時功率密度還能維持在40~42mW/cm2之間。
    氧化鈰研究結果方面,由於氧化鈰在低氧分壓及高溫條件下,Ce4+易被還原成Ce3+,造成電解質的效能和應用性降低,故嘗試在氧化鈰基材上面使用網印的方式,塗覆不同漸進層的多層複合(GDC)1-x(YSZ)x結構,除了希望能提升GDC電解質的抗還原特性,更可以解決GDC和YSZ之間的匹配性問題。
    實驗結果可以看出,在微觀結構方面,以漸進層方式製備複合電解質的確可以改善GDC與8YSZ之間熱膨脹係數的缺失。在離子導電性方面,卻因為晶界效應及界面阻抗的影響比GDC大,所以複合電解質的離子導電性較GDC電解質差。最後在還原方面,使用GDC電解質及GDC/(GDC)1-x(YSZ)x複合電解質做成單電池,在800℃、持溫7小時下測量其功率密度,在通入15%的氫氣,且陽極和陰極皆使用網印的方式塗覆純白金膠的條件下,GDC 電解質的單電池功率密度降低的非常快,從21.89 mW/cm2降低至 7.16 mW/cm2;但在GDC基材表面上使用適當的抗還原層改質後的GDC/(GDC)1-x(YSZ)x複合電解質,卻還能使58.49mW/cm2維持在47.30 mW/cm2,此結果印證了複合電解質可以抑制GDC還原的問題。


    Featuring high efficiency of power generation, Solid Oxide Fuel Cell (SOFC) was considered as high-temperature fuel cell, in which the ion conductivity of an electrolyte was one of popular topics in this field. Fluorite-based materials such as doped zirconia and doped ceria caught many researchers attention. This thesis focused on these two materials systems for detailed discussion.
    First, doping 1 mol% Yttria-stabilized Bismuth oxide, YSB, into Yttria-stabilized Zirconia, YSZ, was chosen as the material system, and the microwave sintering, MS, was chosen as sintering method. The purpose of doping YSB was to decrease the sintering temperature of YSZ as well as increase ion conductivity. Furthermore, the generation of m-phase of zirconia was expected to be eliminated after MS. The result showed that the sintering temperature decreased from 1500℃ to 1100~1200℃. In aspect of structure, 1YBZ remained YSZ-rich cubic phase, and the m-phase of zirconia was detected at the matrix of YSZ under furnace heating condition. On the other hand, using MS not only reduced sintering time but also eliminated the m-phase. Moreover, the specimen of the former was sintered at 1200℃for 2 hours; the measured ion conductivity was 0.019 S/cm at 800℃, which is higher than 0.013 for 8YSZ. For reduction resistance, the measured power density of the electrolyte originally was 40mW/cm2. After the exposure to 40% H2 atmosphere for 7 hours, the power density would be maintained to 40~42 mW/cm2.
    Second, according to previous research, ceria-based electrolyte had poor reduction resistance, which was under low oxygen pressure and high temperature condition. The reduction, Ce4+ to Ce3+, should be avoided for stable power density output for long-term operation. In this study, a multilayer structure of (GDC)1-x(YSZ)x was screen-printed onto GDC, called composite GDC, for the purpose of increasing anti-reduction ability of the electrolyte and solving mismatch between the layer and electrolyte. The result showed that the ion conductivity of the composite GDC was poorer than that of GDC only possibly due to the grainboundry effect as well as higher interface impedance. After the exposure to 15% H2 atmosphere for 7 hours , the power density of GDC only decreased drastically from 21.89 mW/cm2 to 7.16 mW/cm2. On the other hand, under the same condition for the composite GDC, the power density remained 47.3 mW/cm2 compared to 58.49 mW/cm2 before the reduction test. This result proved that the method of screen-printing the multilayer structure of (GDC)1-x(YSZ)x onto GDC was a feasible solution.

    目錄 中文摘要 I AbstractIII 誌謝 V 目錄 VII 圖索引 XI 表索引 XVII 第一章 緒論 1 第二章 文獻回顧 3 2-1燃料電池簡介 3 2-2 固態氧化物燃料電池 4 2-3 固態氧化物燃料電池電解質 7 2-3-1固態氧化物燃料電池電解質基本傳導原理8 2-3-2 電解質離子導電性 9 2-3-3氧化鋯電解質結構和導電性能 10 2-3-4氧化鉍電解質結構和導電性能 15 2-4微波燒結 19 2-4-1微波 19 2-4-2燒結 19 2-4-3微波燒結 20 2-4-4微波燒結對材料的發展 22 2-5 微波燒結技術與材料之間的探討 23 2-5-1 微波促進材料燒結的機制 23 2-5-2 影響微波燒結的參數 27 2-5-3 微波燒結應用於電解質材料的研究 30 2-6 添加鉍系於YSZ電解質系統的發展 32 2-7 GDC電解質的發展及還原問題的改良 33 第三章 實驗方法 34 3-1 實驗粉末、材料 34 3-2 實驗儀器規格 35 3-3實驗流程 37 3-4 試片製備 39 3-4-1 粉末製備 39 3-4-2 成型 39 3-4-3 燒結 40 3-5 試片的量測 42 3-5-1 密度之量測 42 3-5-2 X-ray繞射分析 43 3-5-3 SEM 表面影像分析 43 3-5-4 EDS元素分析 44 3-5-5 電性之分析 44 3-6 微波燒結爐與微波感受體(susceptor)的設計47 3-7 試片之實驗數據 48 第四章 微波燒結對YSB摻雜於YSZ的微觀結構及電性之分析49 4-1晶體結構分析49 4-1-1 爐溫燒結對YSB添加於YSZ的晶體結構分析51 4-1-2 微波燒結對YSB添加於YSZ的晶體結構分析59 4-2 微觀結構與材料成分的分析 64 4-2-1 不同燒結方式的微觀結構比較 64 4-2-2 1YBZ材料系統的成分分析 69 4-3 1YBZ材料使用不同燒結方式對離子導電性與活化能的分析75 4-3-1爐溫燒結與微波燒結的電性分析 75 4-3-2不同的持溫時間對活化能的分析 82 4-4 1YBZ電解質單電池的功率密度量測 84 第五章 GDC複合電解質層電性分析及功率密度量測88 5-1 發展GDC複合電解質的動機與實驗目的 88 5-2 複合電解質的熱處理及微觀分析 89 5-3 複合電解質層整體與各層間電性分析及活化能計算94 5-4 GDC複合電解質與GDC電解質的功率密度量測103 第六章 結論 105 未來方向 108 參考文獻 109 圖索引 圖2- 1 三相點(Three phase boundary, TPB)示意圖5 圖2- 2 SOFC工作原理圖6 圖2- 3 圖(a)為典型螢石結構示意圖;圖(b)為氧化鋯摻雜三價陽離子形成氧空缺的示意圖8 圖2- 4 離子導電率對溫度作圖9 圖2- 5 氧化鋯的三個同質異形體 (a) cubic (b) tetragonal (c) monoclinic12 圖2- 6 ZrO2-Y2O3材料系統高Y2O3與低Y2O3添加量的相圖14 圖2- 7 氧化鋯添加不同的相穩定劑與濃度變化在1080K下導電度的變化圖15 圖2- 8 Bi2O3各相的溫度區域17 圖2- 9 Bi2O3各相的導電率隨溫度的變化圖17 圖2- 10 (Y2O3)x(Bi2O3)1-x的離子導電率18 圖2- 11 (Y2O3)x(Bi2O3)1-x在空氣中隨著溫度變化的離子導電率18 圖2- 12 電磁光譜19 圖2- 13 傳統加熱爐和微波加熱爐的比較21 圖2- 14 材料與微波的作用24 圖2- 15 極化機制的圖示26 圖3- 1 1mol% YSB添加於YSZ材料的實驗流程圖37 圖3- 2 GDC複合電解質的實驗流程圖38 圖3- 3 量測密度天秤之示意圖42 圖3- 4 交流阻抗圖譜與其模擬之等效電路圖45 圖3- 5 雲母片與試片示意圖46 圖3- 6 混合型微波燒結爐的整體架構47 圖3- 7 微波感受體的整體架構47 圖4- 1 YSB及8YSZ粉末之X-ray繞射圖50 圖4- 2 (YSB)0.01(YSZ)0.99使用爐溫燒結的X-ray繞射圖52 圖4- 3 (YSB)0.01(YSZ)0.99系統使用爐溫燒結方式,m-ZrO2隨著燒結溫度變化的趨勢圖53 圖4- 4 ZrO2-Y2O3-Bi2O3的三元相圖56 圖4- 5 Bi2O3-Y2O3材料系統低Y2O3添加量的相圖56 圖4- 6 Bi2O3-Y2O3材料系統高Y2O3添加量的相圖57 圖4- 7 YSB與YSZ在升溫過程擴散的示意圖57 圖4- 8 (YSB)0.01(YSZ)0.99使用微波燒結的X-ray繞射圖61 圖4- 9 (YSB)0.01(YSZ)0.99於1000℃使用不同燒結方式及持溫時間之SEM影像比較圖65 圖4- 10 (YSB)0.01(YSZ)0.99於1100℃使用不同燒結方式及持溫時間之SEM影像比較圖66 圖4- 11 (YSB)0.01(YSZ)0.99於1200℃使用不同燒結方式及持溫時間之SEM影像比較圖67 圖4- 12 1YBZ使用爐溫燒結1000℃持溫5hr之EDS成份分析比較圖69 圖4- 13 1YBZ使用爐溫燒結1100℃持溫2hr之EDS成份分析比較圖70 圖4- 14 1YBZ使用爐溫燒結1100℃持溫5hr之EDS成份分析比較圖70 圖4- 15 1YBZ使用爐溫燒結1200℃持溫5hr之EDS成份分析比較圖71 圖4- 16 1YBZ使用微波燒結1000℃持溫3hr之EDS成份分析比較圖71 圖4- 17 1YBZ使用微波燒結1100℃持溫2hr之EDS成份分析比較圖72 圖4- 18 1YBZ使用微波燒結1200℃持溫1hr之EDS成份分析比較圖72 圖4- 19 1YBZ使用微波燒結1200℃持溫2hr之EDS成份分析比較圖73 圖4- 20 1YBZ使用微波燒結1200℃持溫3hr之EDS成份分析比較圖73 圖4- 21 1YBZ爐溫燒結1200℃持溫5hr,在300~800℃量測溫度下之阻抗圖譜。75 圖4- 22 1YBZ微波燒結1200℃持溫0.5hr,在300~800℃量測溫度下之阻抗圖譜。76 圖4- 23 1YBZ微波燒結1200℃持溫1hr,在300~800℃量測溫度下之阻抗圖譜。77 圖4- 24 1YBZ微波燒結1200℃持溫2hr,在300~800℃量測溫度下之阻抗圖譜。78 圖4- 25 1YBZ微波燒結1200℃持溫3hr,在300~800℃量測溫度下之阻抗圖譜。79 圖4- 26 1YBZ使用微波燒結與爐溫燒結,在燒結溫度為1200℃,不同持溫時間下,量測溫度為300~800℃下的電性圖80 圖4- 27 1YBZ使用微波燒結在1200℃下,不同持溫時間與離子導電率、活化能障及預指數因子的變化比較圖 82 圖4- 28 以(a)1YBZ;(b)8YSZ為電解質之單電池功率密度之量測比較圖85 圖4- 29 在800℃下、40%的氫氣,經過還原7hr的處理條件下之功率密度圖86 圖5- 1 不同種類的電解質結構設計: (a) 單層披覆 ;(b) 漸進層披覆87 圖5- 2 經熱處理過後的結果89 圖5- 3 (GDC)1-x(YSZ)x,x= 0, 0.2, 0.4, 0.6, 0.8 和1.0.各成分之間的X-ray繞射圖90 圖5- 4 ZrO2-CeO2相圖90 圖5- 5 (GDC)1-x(YSZ)x隨成分改變之晶格常數變化趨勢圖91 圖5- 6 GDC-YSZ複合電解質的X-ray mapping分析92 圖5- 7 GDC/(GDC)1-x(YSZ)x多層複合電解質和GDC電解質在不同溫度下之阻抗圖95 圖5- 8 (a)在不同溫度下,GDC/(GDC)1-x(YSZ)x複合電解質的晶粒、 晶界及整體電性的Arrhenius圖 (b) GDC 電解質和複合電解質GDC/(GDC)1-x(YSZ)x在不同的溫度下,整體導電性的 Arrhenius 圖(c) GDC 電解質、GDC/(GDC)1-x(YSZ)x複合電解質和YSZ電解質在整體導電率計算下的活化能比較圖96 圖5- 9 (a) 各材料整體導電率的Arrhenius圖 (b) (GDC)1-x(YSZ)x複合電解質層裡,離子導電率、A值和活化能之間的關係……………..100 圖5- 10 在550~650℃時,(GDC)1-x(YSZ)x 針對(a)整體電性vs.不同組成 (b)晶界電性vs.不同組成作圖101 圖5- 11 (a) Pt/ GDC/(GDC)1-x(YSZ)x 複合電解質/ Pt和Pt/ GDC電解質/ Pt 的試片,在800℃、15%的氫氣之還原測試下的功率密度; (b) Pt/ GDC/(GDC)1-x(YSZ)x複合電解質/ Pt和Pt/ GDC電解質/ Pt 的試片,在800℃、15%的氫氣之還原測試下持溫7hr後的功率密度103 表索引 表2- 1 主要燃料電池分類4 表2- 2 SOFC不同組件要求6 表2- 3 純氧化鋯之晶體結構與晶格參數13 表3- 1 各種粉末、藥品之詳細資料35 表3- 2 各實驗儀器之詳細資料35 表3- 3 微波燒結全功率升溫速率41 表3- 4 (YSB)0.01(YSZ)0.99試片整理表41 表3- 5 1YBZ電解質在不同的燒結條件下,密度、相對密度及收縮率的分析48 表4- 1 (YSB)0.01 (YSZ)0.99系統使用爐溫燒結在不同溫度下持溫2小時和5小時的各相含量計算53 表4- 2 (YSB)0.01 (YSZ)0.99 使用微波燒結在不同溫度下持溫0.5、1、2、3小時的各相含量計算62 表4- 3 不同燒結方式、燒結溫度與持溫時間下,Y和Bi的五個取樣點平均之原子含量表74 表4- 4 微波燒結1200℃下,不同的持溫時間與離子導電率、活化能障及預指數因子的變化。82 表4- 5 1YBZ與8YSZ為電解質之燒結參數比較表84

    1.黃鎮江, ”綠色能源”,全華科技圖書,民國98年。
    2.S. M. Haile, "Fuel cell materials and components," Acta Materialia, 51 5981–6000.2003.
    3.J. Fleig, "SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance," Annual Review of Materials Research, 33 361-382.2003.
    4.韓敏芬、彭蘇萍,“固態氧化物燃料電池材料及製備”,科學出版,2004。
    5.S. J. Skinner, "Oxygen ion conductors," Materials Today 6[3] 30-37.2003.
    6.H. Inaba and H. Tagawa, "Ceria-based solid electrolytes," Solid State Ionics, 83 1-16.1996.
    7.D. J. M. Bevan and J. Kordis, "Mixed oxides of the type MO2 (fluorite)--M2O3--I oxygen dissociation pressures and phase relationships in the system CeO2---Ce2O3 at high temperatures," Journal of Inorganic and Nuclear Chemistry, 26[9] 1509-1523.1964.
    8.S. P. Ray, A. S. Nowick, and D. E. Cox, "X-ray and neutron diffraction study of intermediate phases in nonstoichiometric cerium dioxide," Journal of Solid State Chemistry, 15[4] 344-351.1975.
    9.R. D. Shannon and C. T. Prewitt, "Effective ionic radii in oxides and fluorides," Acta Crystallographica Section B, 25[5] 925-946.1969.
    10.H. Yahiro, T. ohuchi, K. Eguchi, and H. Arai, "Electrical properties and microstructure in the system ceria-alkaline earth oxide," Journal of Materials Science, 23 1036-1041.1988.
    11.R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, “Physical, microstructural, and thermomechanical properties of ZrO2 single crystals ,” Advances ceramics, Vol. 12,408-14 (1984).
    12.R. P. Ingel, D. Lewis, B. A. Bender, and R. W. Rice, "Temperature Dependence of Strength and Fracture Toughness of ZrO2 Single Crystals," Journal of the American Ceramic Society, 65[9] c150-c152.1982.
    13.D. Michel, L. Mazerolles, and M. P. Y. Jorba, "Fracture of metastable tetragonal zirconia crystals," Journal of Materials Science, 18[9] 2618-2628.1983.
    14.許崴棋,”異價離子共摻雜對氧化鋯與氧化鈰之晶體結構與導電性質之影響”,台灣科技大學材料科技研究所碩士論文,民國94年。
    15.S. P. S. Badwal, "Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity," Solid State Ionics, 52[1-3] 23-32.1992.
    16.Science and Technology of Zirconia III, S. Somiya, N. Yamamoto, and H. Yanagida (eds.), American Ceramic Society, Westerville, OH, (1998).
    17.M. Yashima, T. Hirose, L. M. Kakihana, Y. Suzuki, and M. Yoshimura, "Size and Charge Effects of Dopant M on the Unit-Cell Parameters of Monoclinic Zirconia Solid Solutions Zr0.98M0.02O2 –δ (M = Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca)," Journal of the American Ceramic Society, 80[1].1997.
    18.J. F. Baumard and P. Abelard, “In Science and Technology of Zirconia II”, N. Claussen, M. Rühle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH , 555 (1984)
    19.T. H. Etsell and S. N. Flengas, "N-type Conductivity in Stabilized Zirconia Solid Electrolytes," Journal of The Electrochemical Society, 119[1] 1-7.1972.
    20.T. Itoh, Y. Ichikawa, N. Hirata, T. Uno, M. Kubo, and O. Yamamoto, "Effect of branching in base polymer on ionic conductivity in hyperbranched polymer electrolytes," Solid State Ionics, 150[3-4] 337-345.2002.
    21.N. M. Sammes, G. A. Tompsett, H. N. Fea., and F. Aldinger, "Bismuth based oxide electrolytes-- structure and ionic conductivity," Journal of the European Ceramic Society, 19[10] 1801-1826.1999.
    22.K. V. Kale, K. M. Jadhav, and G. K. Bichile, "Investigations on a High-conductivity Solid Electrolyte System, Bi2O3–Y2O3," Journal of Materials Science Letters, 18[1] 9-11.1999.
    23.P. Shuka, H.-D. Wiemhöferb, U. Guthc, W. Göpeld, and M. Greenblatta, "Oxide ion conducting solid electrolytes based on Bi2O3," Solid State Ionics, 89[3-4] 179-196.1996.
    24.R. K. Datta and J. P. Meehan, "The System Bi2O3-R2O3 (R=Y, Gd)," Zeitschrift für anorganische und allgemeine Chemie, 383[3] 328-337.1971.
    25.T. Takahashi, H. Iwahara, and T. Arao, "High oxide ion conduction in sintered oxides of the system Bi2O3-Y2O3," Journal of Applied Electrochemistry, 5[3] 187-195.1975.
    26.T. Takahashi and H. Iwahara, "Oxide ion conductors based on bismuthsesquioxide," Materials Research Bulletin, 13[12] 1447-1453.1978.
    27.T. Takahashi, T. Esaka, and H. Iwahara, "Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity," Journal of Applied Electrochemistry, 7 303-308.1977.
    28.D. M. Pozar,” Microwave engineering”, second edition, John Wiley and Sons. Inc., pp.1-55(1998).
    29.W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    30.R. M. German, “Sintering Theory and Practice,” John Wiley & Sons, Inc. (1996).
    31.M. W. Barsoum, “Fundamentals of ceramic,” The McGraw-Hill Companies, New York (1997).
    32.W. H. Sutton, “Microwave Processing of Ceramic materials,” Am. Ceram. Soc. Bull., Vol. 68, No. 2, pp. 376-386 (1989).
    33.M. L. Levinson, U S Pat. No.3585258, 1971/06/15, applied for 1965/10/19.
    34.W. R. Tinga and W. A. G. Voss, “Microwave Power Engineering,” Academic Press, New York (1968).
    35.W. D. Kingery, H. K. Brown and D. R. Uhlmann, “Introduction to Ceramics,” Academic Press, John Wiley & Sons (1975).
    36.黃向東,李建保,謝志鵬, “微波與無機非金屬介質的相互作用”,(1998)。
    37.M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, "Enhanced diffusion in sapphire during microwave heating," Journal of Materials Science, 32 1347-1355.1997.
    38.S. A. Freeman, J. H. Booske, and R. F. Cooper, "Microwave Field Enhancement of Charge Transport in Sodium Chloride," Physical Review Letters, 74[11] 2042.1995.
    39.Birnboin,“Method for producing recombinant immunoglobuline” patent EP0438310
    40.朱玄文,吳一平,徐正達等,“微波燒結技術及其進展”,材料科學與工程, 16 (2), 61~64,(1998)。
    41.L. Skala, V. M. Kenkre, M. W. Weiser, and J. D. Katz, “Estimates for diffusion Barriers and Atomic Potentials in MgO: CNDO/2 Calculations for the Study of Microwave Effects in sintering,” Ibid, pp. 303-308 (1990).
    42.A. J. Berteand and J. C. Badet, “High Temperature Microwave Heating in Refractory Materials,” J. Microwave Power, Vol. 11, pp. 315-320 (1976).
    43.T. T. Meek, C. E. Holcombe, and N. Dykes, "Microwave sintering of some oxide materials using sintering aids," Journal of Materials Science Letters, 6 1060-1062.1987.
    44.C. E. Holcombe and N. L. Dykes, "Importance of “casketing” for microwave sintering of materials," Journal of Materials Science Letters, 9 425-428.1990.
    45.C. E. Holcombe and N. L. Dykes, "Microwave sintering of titanium diboride," Journal of Materials Science, 26 3730-3738.1991.
    46.M. A. Janney, C. L. Calhoun, and H. D. Kimrey, "Microwave Sintering of Solid Oxide Fuel Cell Materials: I, Zirconia-8 mol% Yttria," Journal of the American Ceramic Society, 75[2] 341-346.1992.
    47.D. D. Upadhyaya, A. Ghosh, K. R. Gurumurthy, and R. Prasad, "Microwave sintering of cubic zirconia," Ceramics International, 27[4] 415-418.2001.
    48.D. D. Upadhyaya, A. Ghosh, G. K. Dey, R. Prasad, and A. K. Suri, "Microwave sintering of zirconia ceramics," Journal of Materials Science, 36 4707-4710.2001.
    49.S. A. Nightingale, H. K. Worner, and D. P. Dunne, "Microstructural Development during the Microwave Sintering of Yttria—Zirconia Ceramics," Journal of the American Ceramic Society, 80[2] 394-400.1997.
    50.A. Goldstein, N. Travitzky, A. Singurindy, and M. Kravchik, "Direct microwave sintering of yttria-stabilized zirconia at 2.45GHz," Journal of the European Ceramic Society, 19[12] 2067-2072.1999.
    51.F. T. Ciacchi, S. A. Nightingale, and S. P. S. Badwal, "Microwave sintering of zirconia-yttria electrolytes and measurement of their ionic conductivity," Solid State Ionics, 86-88[Part 2] 1167-1172.1996.
    52.R. Chaim, G. Basat, and A. Kats-Demyanets, "Effect of oxide additives on grain growth during sintering of nanocrystalline zirconia alloys," Materials Letters, 35[3-4] 245-250.1998.
    53.George Endri Kusuma, ”Investigation of Microstructural and Electrical Properties Bi2O3 Added 8YSZ Electrolyte for SOFC ,”台灣科技大學材料科技研究所碩士論文,民國97年。
    54.M. Hirano, T. Oda, K. Ukai, and Y. Mizutani, "Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties," Solid State Ionics, 158[3-4] 215-223.2003.
    55.郭文碩,方冠榮,"含釔氧化鉍對釔安定化氧化鋯離子導體低溫緻密化及導電性質改進之研究",國立成功大學,民國93年。
    56.K. Eguchi, "Ceramic materials containing rare earth oxides for solid oxide fuel cell," Journal of Alloys and Compounds, 250[1-2] 486-491.1997.
    57.T. Inoue, T. Setoguchi, K. Eguchi, and H. Arai, "Study of a solid oxide fuel cell with a ceria-based solid electrolyte," Solid State Ionics, 35[3-4] 285-291.1989.
    58.H. Yahiro, Y. Baba, K. Eguchi, and H. Arai, "High Temperature Fuel Cell with Ceria-Yttria Solid Electrolyte," Journal of The Electrochemical Society, 135[8] 2077-2080.1988.
    59.J. E. Bauerle, "Study of solid electrolyte polarization by a complex admittance method," Journal of Physics and Chemistry of Solids, 30[12] 2657-2670.1969.
    60.A. A. Vecher, P. P. Zhuk, E. N. Naumovich, and T. G. Khodorenko, Ionnye Rasplavy Tverd. Elektrolity, No. 4, 73-78 (1989).
    61.K. Keizer, M. J. Verkerk, and A. J. Burggraaf, "Preparation and properties of new oxygen ion conductors for use at low temperatures," Ceramics International, 11[4] 140-140.1985.
    62.K. Keizer, M. J. Verkerk, and A. J. Burggraaf, "Preparation and properties of new oxygen ion conductors for use at low temperatures," Ceramurgia International, 5[4] 143-147.1979.
    63.H. Kim, "Low temperature sintering of nanosized ceramic powder YSZ-Bismuth Oxide system," pp. 248. In material science and engineering, Vol. Doctor of philosophy. The ohio state university, ohio, 2004.
    64.N. Jiang, E. D. Wachsman, and S.-H. Jung, "A higher conductivity Bi2O3-based electrolyte," Solid State Ionics, 150[3-4] 347-353.2002.
    65.M. I. Zargarova, N. A. Akhmedova, E. S. Kuli-Zade, and N. M. Mustafaev, Zh. Neorg. Khim., 40 [8] 1389-1391 (1995); Russ. J. Inorg. Chem. (Engl. Transl.), 40 [8] 1339-1341 (1995).
    66.N. M. Sammes, G. A. Tompsett, H. N. Fea., andF. Aldinger, "Bismuth based oxide electrolytes-- structure and ionic conductivity," Journal of the European Ceramic Society, 19[10] 1801-1826.1999.
    67.張凱翔,“異價離子共摻雜對氧化鈰之顯微結構與導電性質之影響”,台灣科技大學機械所材料組碩士論文,民國95年。
    68.N.Q. Minh, “Ceramic Fuel Cells,” J. Am. Ceram. Soc. 76 (1993)
    69.F. Tietz, "Thermal expansion of SOFC materials," Ionics, 5[1] 129-139.1999.
    70.H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, and H. Tagawa, "Thermal expansion of Gd-doped ceria and reduced ceria," Solid State Ionics, 132[3-4] 227-233.2000.
    71.F. Meschke, R.W. Steinbrech, in: M. Dokiya, S.C. Singhal (Eds.), Proc. 6th Int. Symp. Solid Oxide Fuel Cells, PV 99-19, The Electrochem. Soc., Pennington, NJ, 1999, p1047.
    72.R. Vassen, R.W. Steinbrech, F. Tietz, D. Sto‥ver, in: P. Stevens (Ed.), Proc. 3rd Eur. SOFC Forum, Oberrohrdorf, Switzerland, 1998, p. 557.
    73.Pol Duwez and Francis Odell, “Observations on the Stabilization of Zirconia,” J. Am. Ceram. Soc., 33 [9] 280 (1950).
    74.A. Trovarelli, “Structural Properties and Nonstoichiometric Behavior of CeO2,” Catalysis by Ceria and Related Materials, 15-50 (2002).
    75.A. Tsoga, A. Gupta, A. Naoumidis, D. Skarmoutsos, and P. Nikolopoulos, "Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells," Ionics, 4[3] 234-240.1998.
    76.A. Tsoga, A. Naoumidis, , A. Gupta, and D. Sto‥ver, , Materials Science Forum 1999, 308–311, 794
    77.C. H. Lee and G. M. Choi, "Electrical conductivity of CeO2-doped YSZ," Solid State Ionics, 135[1-4] 653-661.2000.
    78.J. Kimpton, T. H. Randle, andJ. Drennan, "Investigation of electrical conductivity as a function of dopant-ion radius in the systems Zr0.75Ce0.08M0.17O1.92 (M=Nd, Sm, Gd, Dy, Ho, Y, Er, Yb, Sc)," Solid State Ionics, 149[1-2] 89-98.2002.
    79.V. Butler, C. R. A. Catlow, B. E. F. Fender, andJ. H. Harding, "Dopant ion radius and ionic conductivity in cerium dioxide," Solid State Ionics, 8[2] 109-113.1983.

    QR CODE