簡易檢索 / 詳目顯示

研究生: 鄭鈞澤
Chun-Tse Cheng
論文名稱: 高效及可擴展性氧化銫鎢/石墨型碳氮化物與聚氨酯親/疏水複合膜於表面水蒸發之應用
Highly efficient and scalable Cs0.33WO3@g-C3N4 immobilized polyurethane Janus membranes for interfacial water evaporation
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 許耀基
黃旭曄
鄭國彬
鄭國光
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 76
中文關鍵詞: 親/疏水複合膜光熱轉換水汽蒸發海水淡化廢水處理光催化降解
外文關鍵詞: Janus membrane, photothermal conversion, water evaporation, desalination, sewage treatment, photocatalytic degradation
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水熱法合成氧化銫鎢/石墨型碳氮化物(Cs0.33WO3@g-C3N4)複合材料,並將其與疏水聚氨酯(PU)均勻混合後,塗佈於聚對苯二甲酸乙二醇酯(PET)不織布基材上,並採用相轉換法形成多孔結構。而後,於不織布另一側塗佈親水PU以形成具有相反潤濕性的親/疏水複合膜。在本研究中,親/疏水複合膜的底層為親水PU,可將污水從底部送到上層受熱蒸發;由光熱材料組成的疏水側則作為頂層,可吸收全波長太陽光並將其轉化為熱能。由於多孔結構產生的多重散射,增加了材料的吸光度,並幫助水氣迅速蒸散。其中,20 wt%光熱材料製成的親/疏水複合膜在1個太陽光照下可迅速升溫至98℃,且展現76%的水蒸發效率。另外在染料降解亦達到約96.7%的高移除率,提升了此膜的應用性。此外,親/疏水複合膜的製程工法具有可擴展性,可用於大規模生產,這對於環境議題,如:水汽蒸發、海水淡化、表面光催化及污水處理等實際應用上有重大的影響。


    In this work, cesium tungsten oxide/graphitic carbon nitride (Cs0.33WO3@g-C3N4) hybrids synthesized by the solvothermal method was immobilized into hydrophobic polyurethane (PU) and coated onto polyethylene terephthalate (PET) nonwoven fabric substrate, and the bottom side of the PET was coated with hydrophilic PU to develop Janus membrane with opposite wettability. The porous PU was synthesized by the phase inversion method. In this design, the hydrophilic side of the Janus membrane is used as the bottom layer to pump polluted water from bulk to evaporative region while the hydrophobic composed of photothermal conversion material is used as a top layer to harvest solar light and convert it to heat. The findings reveal that the Janus membranes exhibited outstanding photothermal conversion and water evaporation properties. In particular, the Janus membrane composed of 20 wt% of Cs0.33WO3@g-C3N4 showed excellent photothermal conversion performance by raising the temperature to 98 °C and also showed 76 % water evaporation efficiency under 1 sun illumination. In addition, in the degradation of dyes, high degradation rates of about 96.7% were achieved, respectively, which improved the applicability of the membrane. These superior properties are attributed to porous polyurethane Janus membrane which enables improved the light absorption of photothermal material by multiple scattering of light through porous structure and help the generated water vapors rapidly escape into the air. Moreover, the method of synthesis of the Janus membrane is scalable and can be used for mass production that is very crucial for real application such as water evaporation, desalination, surface photocatalysis, and sewage treatment in environmental remediation.

    摘要 4 Abstract 5 章節目錄 6 圖目錄 9 表目錄 12 1 前言 13 1.1 引言 13 1.2 光熱轉換材料 16 1.2.1 碳質材料 17 1.2.2 貴金屬奈米材料 18 1.2.3 有機高分子材料 19 1.2.4 半導體材料 19 1.3 Cs0.33WO3@g-C3N4混成物光催化機制 21 1.4 蒸發器製作工藝 22 1.4.1 局部水體加熱的重要性 22 1.4.2 光熱層及隔熱層設計 23 1.4.3 Janus結構設計 25 1.4.4 濕式樹脂發泡原理-反相法 26 1.5 研究動機 27 2 實驗 28 2.1 實驗材料 28 2.2 實驗設備 29 2.3 實驗流程 30 2.4 實驗方法 32 2.4.1 g-C3N4製備 32 2.4.2 CsxWO3@g-C3N4混成物製備 33 2.4.3 Janus複合膜-疏水層塗佈 34 2.4.4 Janus複合膜-親水層塗佈 35 2.5 分析測試方法 36 2.5.1 場發射掃描式電子顯微鏡分析 36 2.5.2 X射線繞射儀分析 36 2.5.3 潤濕性測試 37 2.5.4 光熱轉換效能測試 37 2.5.5 太陽能蒸發效能測試 37 2.5.6 太陽能光催化污水處理 38 2.5.7 海水淡化 39 2.5.8 戶外實驗 39 3 結果與討論 41 3.1 Cs0.33WO3@g-C3N4/PU Janus複合膜表徵分析 41 3.2 Janus複合膜疏水面厚度分析 45 3.3 光熱轉換效能分析 47 3.4 太陽能蒸發效能分析 51 3.5 不同層數組成薄膜分析 56 3.6 太陽能光催化汙水處理 59 3.7 海水淡化 64 3.8 戶外實驗 66 3.8.1 河水 66 3.8.2 人工海水 70 4 結論 72 5 參考文獻 73

    1. Hosseinzadeh, A., et al., Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Bioresource Technology, 2020. 316: p. 123967.
    2. Chala, T.F., et al., Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials, 2017. 7(7): p. 191.
    3. Tao, P., et al., Solar-driven interfacial evaporation. Nature energy, 2018. 3(12): p. 1031-1041.
    4. He, W., et al., Structure development of carbon-based solar-driven water evaporation systems. Science Bulletin, 2021. 66(14): p. 1472-1483.
    5. Chen, C., Y. Kuang, and L. Hu, Challenges and opportunities for solar evaporation. Joule, 2019. 3(3): p. 683-718.
    6. Zhang, L., et al., Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating. Advanced Materials, 2015. 27(33): p. 4889-4894.
    7. Huang, X., et al., Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation. RSC advances, 2017. 7(16): p. 9495-9499.
    8. Wang, Y., et al., Structural distortion and electronic states of Rb doped WO 3 by X-ray absorption spectroscopy. RSC advances, 2016. 6(109): p. 107871-107877.
    9. Lee, J.-S., et al., Facile synthesis and structure characterization of hexagonal tungsten bronzes crystals. Journal of Crystal Growth, 2017. 465: p. 27-33.
    10. Li, Y., et al., Z-scheme g-C3N4@ CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs. Applied Catalysis B: Environmental, 2018. 229: p. 218-226.
    11. Chala, T.F., C.-M. Wu, and K.G. Motora, RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis. Journal of the Taiwan Institute of Chemical Engineers, 2019. 102: p. 465-474.
    12. Ge, L., Synthesis and photocatalytic performance of novel metal-free g-C3N4 photocatalysts. Materials Letters, 2011. 65(17-18): p. 2652-2654.
    13. Yu, W., et al., Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Applied Catalysis B: Environmental, 2017. 219: p. 693-704.
    14. Pan, C., et al., Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self‐assembly. Advanced Functional Materials, 2012. 22(7): p. 1518-1524.
    15. Kabeel, A. and S. El-Agouz, Review of researches and developments on solar stills. Desalination, 2011. 276(1-3): p. 1-12.
    16. Neumann, O., et al., Solar vapor generation enabled by nanoparticles. ACS nano, 2013. 7(1): p. 42-49.
    17. Shang, W. and T. Deng, Solar steam generation: steam by thermal concentration. Nature Energy, 2016. 1(9): p. 1-2.
    18. Naseem, S., C.-M. Wu, and K.G. Motora, Novel multifunctional RbxWO3@ Fe3O4 immobilized Janus membranes for desalination and synergic-photocatalytic water purification. Desalination, 2021. 517: p. 115256.
    19. Deka, B.J., et al., Electrospun nanofiber membranes incorporating PDMS-aerogel superhydrophobic coating with enhanced flux and improved antiwettability in membrane distillation. Environmental science & technology, 2019. 53(9): p. 4948-4958.
    20. Afsari, M., H.K. Shon, and L.D. Tijing, Janus membranes for membrane distillation: Recent advances and challenges. Advances in Colloid and Interface Science, 2021. 289: p. 102362.
    21. Lee, J., et al., Development of omniphobic desalination membranes using a charged electrospun nanofiber scaffold. ACS applied materials & interfaces, 2016. 8(17): p. 11154-11161.
    22. Arthanareeswaran, G., S. Velu, and L. Muruganandam, Performance enhancement of polysulfone ultrafiltration membrane by blending with polyurethane hydrophilic polymer. 2011.
    23. Huang, K., et al., Hydrothermal synthesis of gC 3 N 4/CdWO 4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light. CrystEngComm, 2016. 18(34): p. 6453-6463.
    24. Li, G., et al., CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 2016. 183: p. 142-148.
    25. Shi, A., et al., H2 Evolution over g-C3N4/CsxWO3 under NIR light. Applied Catalysis B: Environmental, 2018. 228: p. 75-86.
    26. Darkwah, W.K. and Y. Ao, Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications. Nanoscale research letters, 2018. 13(1): p. 1-15.
    27. Yu, Z., et al., Transparent wood containing Cs x WO 3 nanoparticles for heat-shielding window applications. Journal of Materials Chemistry A, 2017. 5(13): p. 6019-6024.
    28. Li, X., et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proceedings of the National Academy of Sciences, 2016. 113(49): p. 13953-13958.
    29. Zhang, Q., et al., Vertically aligned janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. 2019. 13(11): p. 13196-13207.
    30. Li, S., et al., Integrating a Self-Floating Janus TPC@ CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. 2022.
    31. Wang, Q., et al., Flexible 2D@ 3D Janus evaporators for high-performance and continuous solar desalination. 2022. 525: p. 115483.
    32. Li, L., et al., GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination. 2020. 111: p. 191-197.
    33. Yang, Y., et al., Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination. 2018. 3(5): p. 1165-1171.
    34. Wen, B., et al., Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. 2021. 516: p. 115228.
    35. Zhou, Q., et al., A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. 2021. 592: p. 77-86.
    36. Zhu, Y., et al., Low‐Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Water‐Transfer. 2021. 8(19): p. 2101727.
    37. Wu, S., et al., Multifunctional solar waterways: plasma‐enabled self‐cleaning nanoarchitectures for energy‐efficient desalination. 2019. 9(30): p. 1901286.
    38. Gao, S., et al., Bioinspired Soot‐Deposited Janus Fabrics for Sustainable Solar Steam Generation with Salt‐Rejection. 2019. 3(8): p. 1800117.
    39. Zhang, H., et al., Graphene Oxide–Reduced Graphene Oxide Janus Membrane for Efficient Solar Generation of Water Vapor. 2021. 4(2): p. 1916-1923.
    40. Liu, Z., et al., Self-contained Janus Aerogel with antifouling and salt-rejecting properties for stable solar evaporation. 2021. 13(16): p. 18829-18837.
    41. Li, N., et al., Solar‐driven interfacial evaporation and self‐powered water wave detection based on an all‐cellulose monolithic design. 2021. 31(7): p. 2008681.
    42. Go, K., et al., Janus black cellulose paper for fast volume reduction of liquid pollutant using solar steam generation. 2021. 94: p. 166-172.
    43. Jian, H., et al., A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation. 2021. 264: p. 118459.
    44. Kim, M., et al., Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. 2020. 164: p. 349-356.
    45. Yao, W., et al., Thermal-localized and salt-resistant polyacrylonitrile/polyvinylidene fluoride aerogel for efficient solar desalination. 2022. 532: p. 115751.

    無法下載圖示 全文公開日期 2032/09/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE