簡易檢索 / 詳目顯示

研究生: 言漢娜
Hannah Faye Mercado Austria
論文名稱: 探討氧化石墨烯應用於薄膜分離之功能以處理廢水與海水淡化之研究
Investigation of the Functions of Graphene Oxide in Membrane Separation Applications for the Treatment of Wastewater and Desalination Processes
指導教授: 洪維松
Wei-Song Hung
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
劉英麟
Ying-Ling Liu
李魁然
Kueir-Rarn Lee
張雍
Yung Chang
王大銘
Da-Ming Wang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 83
外文關鍵詞: Graphene oxide, Wastewater treatment, Nanofiltration, Thin-film nanocomposite, Desalination
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界人口的快速增長與工業化的加快,不僅使自然資源枯竭、污染加劇,還產生了一個緊迫的全球性問題:水資源缺乏。薄膜技術是可以解決這些問題的一種永續且極具前景的方法。在許多添加於薄膜的材料中,氧化石墨烯 (graphene oxide, GO) 因為具有許多優勢而脫穎而出,例如: 高機械強度、高表面積以及可以促進協調性的眾多含氧官能基。

    為了可以使用永續的方式解決水資源缺乏與污染的問題,並且回收有價值的資源,本研究有系統的探討GO在製備奈米過濾 (nanofiltration ,NF) 薄膜中的各種功能化和改質,用於不同廢水處理和海水淡化應用。透過調控不同GO薄膜的性質,例如:晶面間距 (d-spacing)、電性、親水性和自由體積,可以將欲處理物質:有毒離子和有害染料從廢水中分離。本研究的第一部分 (第4章),探討在不同pH的環境下,對於GO分散性的影響;此外,也進一步探討這些條件對於GO薄膜交聯的影響。將所製備的薄膜用於重金屬離子的分離,可以對鉛金屬陽離子(Pb2+)有>95%的高截留率,這主要歸因於靜電的交互作用。

    本研究的第二部分 (第 5 章),進一步探討GO作為薄膜選擇層的功能,用來分離各種鹽類與染料,以取得乾淨的水。此部分使用含有不同官能基的各種交聯劑,用於奈米片的特定位置 (邊緣或基面),得以調控GO薄膜的晶面間距(d-spacing)。由GO與二羧酸單體 (dicarboxylic acid monomer) 製備而成的薄膜,通量可以達到6.6 L m-2 h-1 bar-的PWP;對低分子量的染料,如:甲基橙和亞甲基藍,有高截留率(均達到>99.99%的選擇性);對Na2SO4的選擇性約93%,可歸因於靜電的交互作用和尺寸篩分效應。

    本研究的最後部分 (第6章),深入探討GO作為thin-film nanocomposite (TFN) membranes的中間層,可以有效分離鹽類與染料的特質。此章節與前兩章節不同,不再探討GO同時對於鹽類與染料有顯著選擇性的優勢,而是設計了更寬鬆的薄膜結構,得以從紡織廢水中回收和再利用寶貴的資源。GO-TFN LNF membrane有約40 L m-2 h-1 bar-1的超高水滲透性;對低分子量的染料: Disperse Blue 1 (MW = 296.32 Da) 有傑出的截留率 (達到99.97%的選擇性);對於氯化鈉鹽類的保留性極低(低至7.37%)。這種高分離效能顯示其用於處理紡織廢水的可行性。

    總結,本博士論文對於 GO作為薄膜中主要選擇性層或中間層,進行了全面的探討,可以應用在廢水處理和海水淡化。而在各種奈米過濾製程中利用GO,也已驗證其可以永續地解決污染並同時回收資源。


    The rapid growth of the world's population and the increasing pace of industrialization have not only depleted natural resources and escalated pollution but have also brought about a pressing global problem – water scarcity. Membrane technology distinguishes itself as a highly promising and sustainable approach to combat this series of problems, and among the numerous materials utilized as membrane materials, graphene oxide (GO) stands out due to its numerous favorable attributes such as its high mechanical strength, large surface area, and its abundant oxygen-containing functional groups that contribute to its tunability.

    With the aim of addressing water scarcity and pollution in a sustainable manner, while simultaneously recovering valuable resources, this dissertation covers the systematic investigation of the functions and various modifications of GO in fabricating nanofiltration (NF) membranes for different wastewater treatment and desalination applications. Through controlled manipulation of the different properties of GO membranes such as the d-spacing, charge, hydrophilicity, and free volume, the regulated separation of target species such as toxic ions and harmful dyes from effluents can be achieved. The first part of this study (Chapter 4) deals with investigating the effects of dispersing GO in different pH environments on its fundamental properties, and explores the facilitation of crosslinking under such conditions. The resulting membranes were then employed to heavy metal ions separation application where a high Pb2+ rejection of >95% was achieved, which is mainly attributed to electrostatic interactions.

    The second part (Chapter 5) of this study further examines GO's function as a membrane's selective layer in rejecting various salts and dyes to obtain clean water. This part proposes manipulation of GO's d-spacing by targeting specific locations of the nanosheets (edges or basal plane) using different crosslinkers that possess different functional groups. The membrane produced by crosslinking GO with a dicarboxylic acid monomer exhibited a PWP of 6.6 L m-2 h-1 bar-1, a high rejection of low-molecular-weight dyes, methyl orange and methylene blue (both reaching >99.99%), and an Na2SO4 rejection of around 93%, which could be ascribed to both electrostatic interaction and size sieving effects.

    Lastly, the final part of this research (Chapter 6) delves into GO's role as an intermediate layer in thin-film nanocomposite (TFN) membranes that could efficiently fractionate dyes and salts. Unlike the two previous chapters that discussed impressive dyes and salts rejection simultaneously, a looser structure was engineered in this part in able to recover and reuse valuable resources from textile effluents. The resulting GO-TFN loose nanofiltration (LNF) membrane has an ultra-high water permeance of approximately 40 L m-2 h-1 bar-1, an excellent rejection of the low molecular weight dye, Disperse Blue 1 (MW = 296.32 Da), reaching 99.97%, and a very low retention of NaCl salt, as low as 7.37%. This high separation efficiency indicates its feasibility to be applied in textile wastewater treatment.

    In conclusion, this dissertation presents a thorough analysis of the functions of GO (either as a main selective layer or an intermediate layer) in fabricating membranes for wastewater treatment and desalination applications. Herein, the practicality of utilizing GO in various NF processes for sustainably addressing pollution while recovering resources has been proven.

    TABLE OF CONTENTS 摘要 i ABSTRACT iii ACKNOWLEDGEMENTS v LIST OF FIGURES ix LIST OF SYMBOLS AND ABBREVIATIONS xii CHAPTER I 1 Introduction 1 1.1 Background of the Study 2 1.2 Motivation and goals of the study 5 CHAPTER II 7 Literature Review 7 2.1 Graphene-based membranes 8 2.1.1 Basic structure and properties of graphene and graphene oxide 8 2.2 Different fabrication methods of graphene-based membranes 9 2.2.1 Layer-by-layer (LbL) self-assembly technique 9 2.2.2 Spin-coating and electrospraying techniques 10 2.2.3 Vacuum-assisted and pressure-assisted filtration methods 11 2.2.4 Wet-phase inversion method 11 2.2.5 Electrospinning 11 2.2.6 Dip-coating and spray-coating methods 11 2.3 Graphene-based membranes for water purification applications 12 2.4 Graphene oxide membranes' d-spacing 13 2.5 The long-term stability of the GO membranes 14 2.6 Research gaps and this study’s approach to address them 14 CHAPTER III 16 Experimental Section 16 3.1 Materials 17 3.2 Membrane Fabrication Methods 17 3.2.1 pH-tuned GO and GO-PEI (GP) membranes 17 3.2.2 GO-EDA, GO-EGL, and GO-OXA membranes 18 3.2.3 TFC and GO-TFN LNF membranes 18 3.3 Characterizations 20 3.4 Nanofiltration performance of the membranes 20 CHAPTER IV 22 Investigation of the pH-induced changes in the properties of polyethyleneimine-crosslinked graphene oxide membranes for desalination and heavy metal ions separation 22 4.1 Overview 23 4.2 Investigation of the pH-tuned membranes’ surface and cross-sectional morphology 23 4.3 The effects of pH-tuning on the GO and GP membranes’ chemical structure and composition 25 4.4 The effects pH-tuning on the GO and GP membranes’ interlayer spacing 30 4.5 Changes in the surface properties of the GO and GP membranes upon pH modification 31 4.6 Nanofiltration performance of the pH-tuned GO and GP membranes 34 4.6.1 Antifouling property and stability of the pH-tuned GP membranes 37 4.7 The effects of pH-tuning on the free volumes of the pH-tuned GO and GP membranes 38 4.8 Summary 39 CHAPTER V 41 Tailoring the specific crosslinking sites of graphene oxide framework nanosheets for controlled nanofiltration of salts and dyes 41 5.1 Overview 42 5.2 Study of the morphological and surface properties of the composite GO and GOF membranes 42 5.3 Effects of crosslinking on the chemical composition of the GOF membranes 44 5.4 Effects of crosslinking on the d-spacing of the GOF membranes 50 5.5 Nanofiltration performance of the composite GO and GOF membranes 52 5.5.1 Variation of Operating Conditions 54 5.5.2 Stability testing 55 5.5.3 Antifouling property of the composite GO and GOF membranes 56 5.5.4 Chlorine resistance of the composite GO and GOF membranes 57 5.6 Microstructural analysis of the composite GO and GOF membranes 57 5.7. Summary 60 CHAPTER 6 62 Thin film nanocomposite loose nanofiltration membranes with graphene oxide interlayer for textile wastewater treatment 62 6.1 Overview 63 6.2 Influence of GO on the morphological structure of the TFN-LNF membranes 63 6.3 Changes in the chemical structure of the TFN membranes upon GO incorporation 65 6.4 Surface properties of the fabricated TFN membranes 69 6.5 Nanofiltration performance of the TFN-LNF membranes 71 6.5.1 Optimization of GO loading and IP conditions 71 6.5.2 Single dyes and single salts filtration using GO-TFN 74 6.5.3 Dye/Salt Fractionation and Membrane Stability Test 75 6.5.4 Comparison with recently-published works 75 6.6 Summary 77 CHAPTER VII 78 Conclusions and Future Perspectives 78 7.1 Conclusions 79 7.2 Future Perspectives 81 LIST OF PUBLICATION AND AWARDS 84 REFERENCES 88

    [1] V. Kumar, S. Kumar, J.H.P. Américo-Pinheiro, M. Vinthange, F. Sher, Emerging approaches for sustainable management for wastewater, Front. Environ. Sci.m 10 (2023) 1122659.
    [2] The sustainable development goals report 2022. https://unstats.un.org/sdgs/report/2022/Goal-06/, 2022.
    [3] N.S. Kakwani, P.P. Kalbar, Measuring urban water circularity: Development and implementation of a water circularity indicator, Sustain. Prod. Consum., 31 (2022) 723-735.
    [4] X. Yu, Q. Sui, S. Lyu, W. Zhao, J. Liu, Z. Cai, G. Yu, D. Barcelo, Municipal solid waste landfills: an underestimated source of pharmaceutical and personal care products in the water environment, Environ. Sci. Technol., 54(16) (2020) 9757-9768.
    [5] T.O. Ajiboye, O.A. Oyewo, D.C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review, Chemosphere, 262 (2021) 128379.
    [6] R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra, R.N. Bharagava, Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, J. Environ. Chem. Eng., 9(2) (2021) 105012.
    [7] S.P. Bera, M. Godhaniya, C. Kothari, Emerging and advanced membrane technology for wastewater treatment: A review, J. Appl. Microbiol., 62(3-4) (2022) 245-259.
    [8] S. Alzahrani, A.W. Mohammad, Challenges and trends in membrane technology implementation for produced water treatment: A review, J. Water Proc.engineering, 4 (2014) 107-133.
    [9] A. Yusuf, A. Sodiq, A. Giwa, J. Eke, O. Pikuda, G. De Luca, J.L. Di Salvo, S. Chakraborty, A review of emerging trends in membrane science and technology for sustainable water treatment, J. Clean. Prod., 266 (2020) 121867.
    [10] S.F. Anis, R. Hashaikeh, N. Hilal, Microfiltration membrane processes: A review of research trends over the past decade, J. Water Proc.engineering, 32 (2019) 100941.
    [11] A. Zularisam, A. Ahmad, M. Sakinah, A. Ismail, T. Matsuura, Role of natural organic matter (NOM), colloidal particles, and solution chemistry on ultrafiltration performance, Separ. Purif. Technol., 78(2) (2011) 189-200.
    [12] J. Lee, Y. Shin, C. Boo, S. Hong, Performance, limitation, and opportunities of acid-resistant nanofiltration membranes for industrial wastewater treatment, J. Membr. Sci. 666 (2023) 121142.
    [13] W.X. Li, Z. Yang, W.L. Liu, Z.H. Huang, H. Zhang, M.P. Li, X.H. Ma, C.Y. Tang, Z.L. Xu, Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification, J. Membr. Sci., 618 (2021) 118681.
    [14] M.Q. Ma, C. Zhang, C.Y. Zhu, S. Huang, J. Yang, Z.K. Xu, Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance, J. Membr. Sci., 591 (2019) 117316.
    [15] J.J. Han, Q.Y. Zhang, M.Y. Huang, Y. Chen, X. Yan, W.Z. Lang, Two-dimensional WS2 membranes constructed on different substrates for efficient dye desalination, Desalination, 480 (2020) 114380.
    [16] Z.X. Low, J. Ji, D. Blumenstock, Y.M. Chew, D. Wolverson, D. Mattia, Fouling resistant 2D boron nitride nanosheet–PES nanofiltration membranes, J. Membr. Sci., 563 (2018) 949-956.
    [17] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23(29) (2013) 3693-3700.
    [18] B. Borjigin, L. Yu, L. Xu, C. Zhao, J. Wang, Influence of incorporating beta zeolite nanoparticles on water permeability and ion selectivity of polyamide nanofiltration membranes, J. Environ. Sci., 98 (2020) 77-84.
    [19] R.P. Pandey, P.A. Rasheed, T. Gomez, R.S. Azam, K.A. Mahmoud, A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2TX (MXene)/cellulose acetate, J. Membr. Sci., 607 (2020) 118139.
    [20] Y. Xiao, W. Zhang, Y. Jiao, Y. Xu, H. Lin, Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination, J. Membr. Sci., 624 (2021) 119101.
    [21] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356(6343) (2017) eaab0530.
    [22] L.Y. Ng, A.W. Mohammad, C.P. Leo, N. Hilal, Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review, Desalination, 308 (2013) 15-33.
    [23] A. Anand, B. Unnikrishnan, J.Y. Mao, H.J. Lin, C.C. Huang, Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–A review, Desalination, 429 (2018) 119-133.
    [24] Y. Zhang, T.S. Chung, Graphene oxide membranes for nanofiltration, Curr. Opin. Chem. Eng., 16 (2017) 9-15.
    [25] A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81(1) (2009) 109.
    [26] S. Zhang, H. Wang, J. Liu, C. Bao, Measuring the specific surface area of monolayer graphene oxide in water, Mater. Lett., 261 (2020) 127098.
    [27] H.F.M. Austria, T. Subrahmanya, O. Setiawan, J. Widakdo, Y.H. Chiao, W.S. Hung, C.F. Wang, C.C. Hu, K.R. Lee, J.Y. Lai, A review on the recent advancements in graphene-based membranes and their applications as stimuli-responsive separation materials, J. Mater. Chem. A., 9(38) (2021) 21510-21531.
    [28] T. Zhong, J. Li, K. Zhang, A molecular dynamics study of Young’s modulus of multilayer graphene, J. Appl. Phys., 125(17) (2019).
    [29] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters, 8(3) (2008) 902-907.
    [30] R.K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, Y. Nishina, Graphene oxide: the new membrane material, Applied Materials Today 1(1) (2015) 1-12.
    [31] J. Zou, F. Kim, Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures, Nat. Commun., 5(1) (2014) 5254.
    [32] Q. Nan, P. Li, B. Cao, Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination, Appl. Surf. Sci., 387 (2016) 521-528.
    [33] R. Nair, H. Wu, P.N. Jayaram, I.V. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes, Science, 335(6067) (2012) 442-444.
    [34] Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon, 47(15) (2009) 3538-3543.
    [35] S. Xia, M. Ni, T. Zhu, Y. Zhao, N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter, Desalination, 371 (2015) 78-87.
    [36] C.H. Tsou, Q.F. An, S.C. Lo, M. De Guzman, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration, J. Membr. Sci., 477 (2015) 93-100.
    [37] B. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination, 313 (2013) 199-207.
    [38] W. Jang, J. Yun, K. Jeon, H. Byun, PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications, RSC Adv., 5(58) (2015) 46711-46717.
    [39] M. Karunakaran, R. Shevate, M. Kumar, K.-V. Peinemann, CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes, ChemComm., 51(75) (2015) 14187-14190.
    [40] P. Bandyopadhyay, W.B. Park, R.K. Layek, M.E. Uddin, N.H. Kim, H.G. Kim, J.H. Lee, Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film, J. Membr. Sci., 500 (2016) 106-114.
    [41] Y. Lou, G. Liu, S. Liu, J. Shen, W. Jin, A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification, Appl. Surf. Sci., 307 (2014) 631-637.
    [42] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano letters, 8(8) (2008) 2458-2462.
    [43] Y. Jiang, P. Biswas, J.D. Fortner, A review of recent developments in graphene-enabled membranes for water treatment, Environ. Sci. Water Res. Technol., 2(6) (2016) 915-922.
    [44] M. Sun, J. Li, Graphene oxide membranes: Functional structures, preparation and environmental applications, Nano Today, 20 (2018) 121-137.
    [45] K.A. Mahmoud, B. Mansoor, A. Mansour, M. Khraisheh, Functional graphene nanosheets: The next generation membranes for water desalination, Desalination, 356 (2015) 208-225.
    [46] Y. Wei, Y. Zhang, X. Gao, Z. Ma, X. Wang, C. Gao, Multilayered graphene oxide membranes for water treatment: A review, Carbon, 139 (2018) 964-981.
    [47] H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun., 4(1) (2013) 2979.
    [48] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chem. Soc. Rev., 44(15) (2015) 5016-5030.
    [49] G. Zhang, M. Zhou, Z. Xu, C. Jiang, C. Shen, Q. Meng, Guanidyl-functionalized graphene/polysulfone mixed matrix ultrafiltration membrane with superior permselective, antifouling and antibacterial properties for water treatment, J. Colloid Interface Sci., 540 (2019) 295-305.
    [50] G. Lou, Y. Wang, Y. Ma, J. Kou, F. Wu, J. Fan, Reduced graphene oxide-based calcium alginate hydrogel as highly efficient solar steam generation membrane for desalination, Front. Mater. Sci., 15 (2021) 138-146.
    [51] B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science, 343(6172) (2014) 740-742.
    [52] Y. Wei, J. Wang, H. Li, M. Zhao, H. Zhang, Y. Guan, H. Huang, B. Mi, Y. Zhang, Partially reduced graphene oxide and chitosan nanohybrid membranes for selective retention of divalent cations, RSC Adv., 8(25) (2018) 13656-13663.
    [53] B. Feng, K. Xu, A. Huang, Covalent synthesis of three-dimensional graphene oxide framework (GOF) membrane for seawater desalination, Desalination 394 (2016) 123-130.
    [54] F.U. Nigiz, Graphene oxide‑sodium alginate membrane for seawater desalination through pervaporation, Desalination, 485 (2020) 114465.
    [55] C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem., 7(2) (2015) 166-170.
    [56] Y. Ying, L. Sun, Q. Wang, Z. Fan, X. Peng, In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation, RSC Adv., 4(41) (2014) 21425-21428.
    [57] Y. Han, Y. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes, ACS Appl. Mater. Interfaces, 7(15) (2015) 8147-8155.
    [58] J. Shen, M. Zhang, G. Liu, K. Guan, W. Jin, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AIChE Journal, 62(8) (2016) 2843-2852.
    [59] Z. Wang, J. Sun, N. Li, Y. Qin, X. Qian, Z. Xie, Tuning interlayer structure to construct steady dual-crosslinked graphene oxide membranes for desalination of hypersaline brine via pervaporation, Separ. Purif. Technol., 286 (2022) 120459.
    [60] M.Y. Lim, Y.S. Choi, J. Kim, K. Kim, H. Shin, J.J. Kim, D.M. Shin, J.C. Lee, Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine, J J. Membr. Sci., 521 (2017) 1-9.
    [61] H.H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, Fabrication of reduced graphene oxide membranes for water desalination, J. Membr. Sci., 572 (2019) 12-19.
    [62] Y. Qian, X. Zhang, C. Liu, C. Zhou, A. Huang, Tuning interlayer spacing of graphene oxide membranes with enhanced desalination performance, Desalination, 460 (2019) 56-63.
    [63] L. Nie, K. Goh, Y. Wang, J. Lee, Y. Huang, H.E. Karahan, K. Zhou, M.D. Guiver, T.H. Bae, Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration, Sci. Adv., 6(17) (2020) eaaz9184.
    [64] F. Fei, L. Cseri, G. Szekely, C.F. Blanford, Robust covalently cross-linked polybenzimidazole/graphene oxide membranes for high-flux organic solvent nanofiltration, ACS Appl. Mater. Interfaces, 10(18) (2018) 16140-16147.
    [65] H.F.M. Austria, J. Widakdo, O. Setiawan, T.M. Subrahmanya, W.S. Hung, C.F. Wang, C.C. Hu, K.R. Lee, J.Y. Lai, Tailoring the specific crosslinking sites of graphene oxide framework nanosheets for controlled nanofiltration of salts and dyes, J. Clean. Prod., 395 (2023) 136280.
    [66] L. Zhang, B. Chen, A. Ghaffar, X. Zhu, Nanocomposite membrane with polyethylenimine-grafted graphene oxide as a novel additive to enhance pollutant filtration performance, Environ. Sci. Technol., 52(10) (2018) 5920-5930.
    [67] W. Zhang, Q. Huang, S. Liu, M. Zhang, G. Liu, Z. Ma, W. Jin, Graphene oxide membrane regulated by surface charges and interlayer channels for selective transport of monovalent ions over divalent ions, Separ. Purif. Technol., 291 (2022) 120938.
    [68] L. Zhao, S. Zhu, H. Wu, X. Zhang, Q. Tao, L. Song, Y. Song, X. Guo, Deep research about the mechanisms of graphene oxide (GO) aggregation in alkaline cement pore solution, Constr. Build. Mater., 247 (2020) 118446.
    [69] H. Wu, W. Lu, J.J. Shao, C. Zhang, M.B. Wu, B.H. Li, Q.H. Yang, pH-dependent size, surface chemistry and electrochemical properties of graphene oxide, New Carbon Mater., 28(5) (2013) 327-335.
    [70] T. Qiang, S. Wang, Z. Wang, L. Ren, Recyclable 3D konjac glucomannan/graphene oxide aerogel loaded with ZIF-67 for comprehensive adsorption of methylene blue and methyl orange, J. Ind. Eng. Chem., 116 (2022) 371-384.
    [71] C. Kim, S. An, J. Lee, Q. Zeng, J.D. Fortner, Engineering graphene oxide laminate membranes for enhanced flux and boron treatment with polyethylenimine (PEI) polymers, ACS Appl. Mater. Interfaces, 11(1) (2018) 924-929.
    [72] F. Asghar, B. Shakoor, S. Fatima, S. Munir, H. Razzaq, S. Naheed, I.S. Butler, Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation, RSC Adv., 12(19) (2022) 11750-11768.
    [73] M.J. Li, C.-m. Liu, Y.B. Xie, H.B. Cao, H. Zhao, Y. Zhang, The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis, Carbon, 66 (2014) 302-311.
    [74] D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3(2) (2008) 101-105.
    [75] P.S. Parsamehr, M. Zahed, M.A. Tofighy, T. Mohammadi, M. Rezakazemi, Preparation of novel cross-linked graphene oxide membrane for desalination applications using (EDC and NHS)-activated graphene oxide and PEI, Desalination, 468 (2019) 114079.
    [76] J. Wang, C. Zhao, T. Wang, Z. Wu, X. Li, J. Li, Graphene oxide polypiperazine-amide nanofiltration membrane for improving flux and anti-fouling in water purification, RSC Adv., 6(85) (2016) 82174-82185.
    [77] G. Liu, H. Ye, A. Li, C. Zhu, H. Jiang, Y. Liu, K. Han, Y. Zhou, Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions, Carbon, 110 (2016) 56-61.
    [78] M.L. Liu, J.L. Guo, S. Japip, T.Z. Jia, D.D. Shao, S. Zhang, W.J. Li, J. Wang, X.L. Cao, S.P. Sun, One-step enhancement of solvent transport, stability and photocatalytic properties of graphene oxide/polyimide membranes with multifunctional cross-linkers, J. Mater. Chem. A., 7(7) (2019) 3170-3178.
    [79] C.M. Chang, H.T. Chen, S.H. Chuang, H.-C. Tsai, W.S. Hung, J.Y. Lai, Mechanisms of one-dimensional and two-dimensional synergistic thermal responses on graphene oxide-modified PNIPAm framework membranes for control of molecular separation, Separ. Purif. Technol., 266 (2021) 118568.
    [80] Y. Qian, C. Zhou, A. Huang, Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes, Carbon, 136 (2018) 28-37.
    [81] N. Meng, W. Zhao, E. Shamsaei, G. Wang, X. Zeng, X. Lin, T. Xu, H. Wang, X. Zhang, A low-pressure GO nanofiltration membrane crosslinked via ethylenediamine, J. Membr. Sci., 548 (2018) 363-371.
    [82] W.S. Hung, C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing, Chem. Mater., 26(9) (2014) 2983-2990.

    [83] Z. Jia, Y. Wang, Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation, J. Mater. Chem. A., 3(8) (2015) 4405-4412.
    [84] W.S. Hung, Y.L. Lai, P.H. Lee, Y.H. Chiao, A. Sengupta, M. Sivakumar, K.R. Lee, J.Y. Lai, Tuneable interlayer spacing self-assembling on graphene oxide-framework membrane for enhance air dehumidification, Separ. Purif. Technol., 239 (2020) 116499.
    [85] D.K. Mahalingam, S. Wang, S.P. Nunes, Stable Graphene Oxide Cross-Linked Membranes for Organic Solvent Nanofiltration, Ind. Eng. Chem. Res., 58(51) (2019) 23106-23113.
    [86] F.X. Kong, Q. Liu, L.Q. Dong, T. Zhang, Y.B. Wei, J.F. Chen, Y. Wang, C.M. Guo, Rejection of pharmaceuticals by graphene oxide membranes: Role of crosslinker and rejection mechanism, J. Membr. Sci., 612 (2020) 118338.
    [87] A. Kołodziej, E. Długoń, M. Świętek, M. Ziąbka, E. Dawiec, M. Gubernat, M. Michalec, A. Wesełucha-Birczyńska, A Raman Spectroscopic Analysis of Polymer Membranes with Graphene Oxide and Reduced Graphene Oxide, J. Compos. Sci., 5(1) (2021).
    [88] N.K. Saha, S.V. Joshi, Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type, J. Membr. Sci., 342(1) (2009) 60-69.
    [89] J. Wang, X. Gao, J. Wang, Y. Wei, Z. Li, C. Gao, O-(Carboxymethyl)-chitosan Nanofiltration Membrane Surface Functionalized with Graphene Oxide Nanosheets for Enhanced Desalting Properties, ACS Appl. Mater. Interfaces, 7(7) (2015) 4381-4389.
    [90] Z. Zhang, X. Xiao, Y. Zhou, L. Huang, Y. Wang, Q. Rong, Z. Han, H. Qu, Z. Zhu, S. Xu, J. Tang, J. Chen, Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration, ACS Nano, 15(8) (2021), 13178-13187.
    [91] C.S. Lee, M.K. Choi, Y.Y. Hwang, H. Kim, M.K. Kim, Y.J. Lee, Facilitated Water Transport through Graphene Oxide Membranes Functionalized with Aquaporin-Mimicking Peptides, J. Adv. Mater., 30(14) (2018) 1705944.
    [92] T.T. Nguyen, P. Bandyopadhyay, X. Li, N.H. Kim, J.H. Lee, Effects of grafting methods for functionalization of graphene oxide by dodecylamine on the physical properties of its polyurethane nanocomposites, J. Membr. Sci., 540 (2017) 108-119.
    [93] S. Eigler, A. Hirsch, Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists, Angew. Chem., Int. Ed. Engl., 53(30) (2014) 7720-7738.
    [94] H. Shen, N. Wang, K. Ma, L. Wang, G. Chen, S. Ji, Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance, J. Membr. Sci., 527 (2017) 43-50.
    [95] H. Yu, Y. He, G. Xiao, H. Li, X. Mei, Y. Cheng, F. Zhong, L. Zhou, J.Z. Ou, Intercalation of soft PPy polymeric nanoparticles in graphene oxide membrane for enhancing nanofiltration performances, Separ. Purif. Technol., 272 (2021) 118933.
    [96] J.H. Kim, Y. Choi, J. Kang, E. Choi, S.E. Choi, O. Kwon, D.W. Kim, Scalable fabrication of deoxygenated graphene oxide nanofiltration membrane by continuous slot-die coating, J. Membr. Sci., 612 (2020) 118454.
    [97] M. Zhang, K. Guan, Y. Ji, G. Liu, W. Jin, N. Xu, Controllable ion transport by surface-charged graphene oxide membrane, Nat. Commun., 10(1) (2019) 1253.
    [98] Q. Zhang, S. Chen, X. Fan, H. Zhang, H. Yu, X. Quan, A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving, Appl. Catal. B., 224 (2018) 204-213.
    [99] F. Baskoro, C.B. Wong, S.R. Kumar, C.W. Chang, C.H. Chen, D.W. Chen, S.J. Lue, Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions, J. Membr. Sci., 554 (2018) 253-263.
    [100] N. Wang, S. Ji, G. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, J. Chem. Eng., 213 (2012) 318-329.
    [101] N. Zhang, W. Qi, L. Huang, E. Jiang, Z. Li, Y. Luo, X. Zhang, J. Bao, W. Zheng, G. He, A composite membrane of cross-linked GO network semi-interpenetrating in polysulfone substrate for dye removal from water, J. Membr. Sci., 613 (2020) 118456.
    [102] K.S. Spiegler, O. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1(4) (1966) 311-326.
    [103] Y. Song, W. Qin, T. Li, Q. Hu, C. Gao, The role of nanofiltration membrane surface charge on the scale-prone ions concentration polarization for low or medium saline water softening, Desalination, 432 (2018) 81-88.
    [104] M.M.M. Tin, G. Anioke, O. Nakagoe, S. Tanabe, H. Kodamatani, L.D. Nghiem, T. Fujioka, Membrane fouling, chemical cleaning and separation performance assessment of a chlorine-resistant nanofiltration membrane for water recycling applications, Separ. Purif. Technol., 189 (2017) 170-175.
    [105] S.M. Xue, C.H. Ji, Z.L. Xu, Y.J. Tang, R.H. Li, Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer, J. Membr. Sci., 545 (2018) 185-195.
    [106] Y.J. Tang, Z.L. Xu, S.M. Xue, Y.M. Wei, H. Yang, A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM, J. Membr. Sci., 498 (2016) 374-384.
    [107] D. Hua, T.S. Chung, Polyelectrolyte functionalized lamellar graphene oxide membranes on polypropylene support for organic solvent nanofiltration, Carbon, 122 (2017) 604-613.
    [108] B. Li, Y. Cui, S. Japip, Z. Thong, T.S. Chung, Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents, Carbon, 130 (2018) 503-514.
    [109] G.D. Kang, C.J. Gao, W.D. Chen, X.M. Jie, Y.M. Cao, Q. Yuan, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane, J. Membr. Sci., 300(1) (2007) 165-171.
    [110] H.R. Chae, J. Lee, C.H. Lee, I.C. Kim, P.K. Park, Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance, J. Membr. Sci., 483 (2015) 128-135.
    [111] H.M. Colquhoun, D. Chappell, A.L. Lewis, D.F. Lewis, G.T. Finlan, P.J. Williams, Chlorine tolerant, multilayer reverse-osmosis membranes with high permeate flux and high salt rejection, J. Mater. Chem., 20(22) (2010) 4629-4634.
    [112] W. Choi, J. Choi, J. Bang, J.H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces, 5(23) (2013) 12510-9.
    [113] Y.C. Jean, W.S. Hung, C.H. Lo, H. Chen, G. Liu, L. Chakka, M.L. Cheng, D. Nanda, K.L. Tung, S.H. Huang, K.R. Lee, J.Y. Lai, Y.M. Sun, C.C. Hu, C.C. Yu, Applications of positron annihilation spectroscopy to polymeric membranes, Desalination, 234(1) (2008) 89-98.
    [114] S.H. Huang, W.S. Hung, D.J. Liaw, H.A. Tsai, G.J. Jiang, K.R. Lee, J.Y. Lai, Positron annihilation study on thin-film composite pervaporation membranes: Correlation between polyamide fine structure and different interfacial polymerization conditions, Polymer, 51(6) (2010) 1370-1376.
    [115] R.L.G. Lecaros, K.M. Deseo, W.S. Hung, L.L. Tayo, C.C. Hu, Q.F. An, H.A. Tsai, K.R. Lee, J.Y. Lai, Influence of integrating graphene oxide quantum dots on the fine structure characterization and alcohol dehydration performance of pervaporation composite membrane, J. Membr. Sci., 576 (2019) 36-47.
    [116] L. Liu, L. Yu, B. Borjigin, Q. Liu, C. Zhao, D. Hou, Fabrication of thin-film composite nanofiltration membranes with improved performance using β-cyclodextrin as monomer for efficient separation of dye/salt mixtures, Appl. Surf. Sci., 539 (2021) 148284.
    [117] W. Zhao, H. Liu, Y. Liu, M. Jian, L. Gao, H. Wang, X. Zhang, Thin-Film Nanocomposite Forward-Osmosis Membranes on Hydrophilic Microfiltration Support with an Intermediate Layer of Graphene Oxide and Multiwall Carbon Nanotube, ACS Appl. Mater. Interfaces, 10(40) (2018) 34464-34474.
    [118] C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano-and micro-scales of reverse osmosis membranes—A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Membr. Sci., 287(1) (2007) 146-156.
    [119] D. Wu, Y. Huang, S. Yu, D. Lawless, X. Feng, Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride, J. Membr. Sci., 472 (2014) 141-153.
    [120] P. Hu, Z. Xu, C. Jiang, B. Tian, X. Guo, M. Wang, Q.J. Niu, Dual-functional acyl chloride monomer for interfacial polymerization: toward enhanced water softening and antifouling performance, Sep. Purif. Technol., 237 (2020) 116362.
    [121] P. Jin, S. Chergaoui, J. Zheng, A. Volodine, X. Zhang, Z. Liu, P. Luis, B. Van der Bruggen, Low-pressure highly permeable polyester loose nanofiltration membranes tailored by natural carbohydrates for effective dye/salt fractionation, J. Hazard. Mater., 421 (2022) 126716.
    [122] J. Li, J.L. Gong, G.M. Zeng, B. Song, W.C. Cao, S.Y. Fang, S.Q. Tang, Y. Guan, Z.K. Tan, Z.P. Chen, X.Q. Mao, R.L. Zhu, Thin-film composite polyester nanofiltration membrane with high flux and efficient dye/salts separation fabricated from precise molecular sieving structure of β-cyclodextrin, Sep. Purif. Technol., 276 (2021) 119352.
    [123] Y. Feng, X. Meng, Z. Zhang, L. Zhang, Dye retention and desalination behavior of MoS2 doped high-flux β-CD/TDI polyurethane nanofiltration membrane, J. Membr. Sci., 656 (2022) 120643.
    [124] Y. Chen, C. He, High salt permeation nanofiltration membranes based on NMG-assisted polydopamine coating for dye/salt fractionation, Desalination, 413 (2017) 29-39.
    [125] Y.F. Mi, N. Wang, Q. Qi, B. Yu, X.D. Peng, Z.H. Cao, A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination, Separ. Purif. Technol., 248 (2020) 117079.
    [126] Q. Li, Z. Liao, X. Fang, D. Wang, J. Xie, X. Sun, L. Wang, J. Li, Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation, J. Membr. Sci., 584 (2019) 324-332.
    [127] O. Setiawan, Z.G. Abdi, M. Weber, W.-S. Hung, T.-S. Chung, Employing sulfolane as a green solvent in the fabrication of nanofiltration membranes with excellent dye/salt separation performances for textile wastewater treatment, J. Membr. Sci., 685 (2023) 121942.
    [128] J. Zhu, A. Uliana, J. Wang, S. Yuan, J. Li, M. Tian, K. Simoens, A. Volodin, J. Lin, K. Bernaerts, Elevated salt transport of antimicrobial loose nanofiltration membranes enabled by copper nanoparticles via fast bioinspired deposition, J. Mater. Chem. A., 4(34) (2016) 13211-13222.
    [129] J. Lin, W. Ye, M.-C. Baltaru, Y.P. Tang, N.J. Bernstein, P. Gao, S. Balta, M. Vlad, A. Volodin, A. Sotto, P. Luis, A.L. Zydney, B. Van der Bruggen, Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment, J. Membr. Sci., 514 (2016) 217-228.
    [130] L. Huang, Z. Li, Y. Luo, N. Zhang, W. Qi, E. Jiang, J. Bao, X. Zhang, W. Zheng, B. An, G. He, Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation, Separ. Purif. Technol., 256 (2021) 117839.
    [131] Z. Qiu, X. Ji, C. He, Fabrication of a loose nanofiltration candidate from Polyacrylonitrile/Graphene oxide hybrid membrane via thermally induced phase separation, J. Hazard. Mater., 360 (2018) 122-131.
    [132] S. Zhao, H. Zhu, Z. Wang, P. Song, M. Ban, X. Song, A loose hybrid nanofiltration membrane fabricated via chelating-assisted in-situ growth of Co/Ni LDHs for dye wastewater treatment, J. Chem. Eng., 353 (2018) 460-471.
    [133] D. Wandera, S.R. Wickramasinghe, S.M. Husson, Stimuli-responsive membranes, J. Membr. Sci., 357(1) (2010) 6-35.
    [134] S. Darvishmanesh, X. Qian, S.R. Wickramasinghe, Responsive membranes for advanced separations, Curr. Opin. Chem. Eng., 8 (2015) 98-104.
    [135] Z. Liu, W. Wang, R. Xie, X.J. Ju, L.Y. Chu, Stimuli-responsive smart gating membranes, Chem. Soc. Rev., 45(3) (2016) 460-475.
    [136] D. Bhattacharyya, T. Schäfer, S.R. Wickramasinghe, S. Daunert, Responsive membranes and materials, John Wiley & Sons (2012).

    無法下載圖示 全文公開日期 2029/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2034/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE