簡易檢索 / 詳目顯示

研究生: 顏麗敏
Li-Min Yan
論文名稱: 以UV-LED/TiO2程序間接照光還原水溶液中二氧化碳之研究
Photocatalytic Reduction of Carbon Dioxide in Aqueous Phase by UV-LED/TiO2 Process under Periodic Illumination
指導教授: 曾堯宣
Yao-Hsuan Tseng
顧洋
Young Ku
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
劉志成
Jhy-Chern Liu
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 180
中文關鍵詞: 光觸媒催化還原二氧化碳還原間歇照光紫外光發光二極體光子利用率
外文關鍵詞: Photocatalytic reduction, CO2 reduction, Periodic illumination, UV-LED, Photonic efficiency
相關次數: 點閱:304下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用紫外光發光二極體為光源,以間歇照光二氧化鈦光觸媒,提升水溶液中二氧化碳還原效率、光子利用率以及光量子產率。透過BET、XRD、SEM、UV-Vis DRS和界達電位,進行光觸媒的物化特性之分析。在連續操作照光的實驗中,探討各種實驗操作變因(如:水溶液pH值、氧化鎳添加量、初始二氧化碳濃度和光強度)對於光還原二氧化碳之影響。對於間歇照光操作下的實驗,探討照光時間、暗時間、佔空比以及照光週期等操作變因對於光還原二氧化碳的影響。
    研究結果顯示,以過量的氧化鎳添加量進行改質的光觸媒二氧化鈦,會導致光還原效率下降。在總照光時間為60分鐘時,相較於連續照光,利用間歇照光可以有效提升光還原二氧化碳的還原效率、光子利用率、光量子產率以及甲醇產率。間歇操作可以藉由控制暗期補充觸媒表面上反應物,利用控制光期給予適量光能,進而減少電子電洞對的再結合。
    相較於佔空比為1.00 (連續照光),當光觸媒程序操作於佔空比為0.09(間歇照光),甲醇產率從807提升到830 umol gcat–1 hr–1 。此外,在連續照光以及間歇照光下操作之光觸媒還原二氧化碳行為符合Langmuir-Hinshewood動力模式。在間歇照光下進行的實驗,能源使用明顯減少,達到節能的效果。


    The application of periodic illumination with UV-LED for the enhancement of reduction efficiency, photonic efficiency and quantum yield in the process for photocatalytic reduction of CO2 was investigated. The characterizations of photocatalyst were analyzed by Brunauer-Emmett-Teller surface area measurement (BET), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and zeta potential. For the experiment conducted at continuous illumination, the effect of solution pH, different NiO dosage, initial CO2 concentration and light intensity on CO2 reduction were studied in a batch reactor. The effect of periodic illumination, duty cycle and periodic frequency on photocatalytic reduction of CO2 in the aqueous phase was discussed by UV-LED/TiO2 process with the operation of periodic illumination.
    The result showed that excessive NiO dosage would lead to a decrease in photocatalytic performance. The reduction efficiency, photonic efficiency, quantum yield and yield rate were enhanced when the experiment operated with periodic illumination in the total illumination time 60 minutes. The application of periodic illumination could provide the time for the replenishment of surface coverage and result in a decrease of carrier recombination. The yield rate increased from 807 to 830 umol gcat–1 hr–1 for the experiments operated at the duty cycle from 1.00 (continuous illumination) to 0.09 (periodic illumination). Moreover, the photocatalytic reduction of CO2 by UV-LED process under continuous and periodic illumination could be well modeled by the Langmuir-Hinshewood kinetic equation. The electric energy saving increased significantly for the experiment conducted at periodic illumination.

    中文摘要 Abstract Acknowledgments Table of Content List of Figure List of Table List of Symbol Chapter 1 Introduction 1.1 Background 1.2 Objectives and Scope Chapter 2 Literature Review 2.1 Photocatalytic Reduction Reaction 2.1.1 Basic Properties of TiO2 2.1.2 Modification of TiO2 2.1.3 Fundamentals of Photocatalytic Reduction Reaction 2.1.4 Mechanisms and Kinetics of Photocatalytic Reduction Reaction 2.2 Operating Factor Affecting Photocatalytic Reduction in Aqueous Solution 2.2.1 Solution pH 2.2.2 Light Intensity 2.2.3 Photocatalyst Loading 2.2.4 Dimensional Nanostructured of TiO2 2.3 Fundamentals and Applications of Periodic Illumination for Photocatalysis 2.3.1 Concepts of Periodic Illumination for Photocatalysis 2.3.2 Mechanisms and Kinetics of Periodic Illumination for Photocatalysis 2.3.3 Photoreactors Applied to Periodic Illumination for Photocatalysis 2.3.4 Operating Factor Affecting Periodic Illumination for Photocatalysis Chapter 3 Materials and Experiments 3.1 Materials 3.2 Experimental Instruments and Apparatus 3.2.1 Experimental Apparatus 3.2.2 Experimental Instruments 3.3 Experimental Procedures 3.3.1 Experimental Framework 3.3.2 Coating Procedure of TiO2/Ti and NiO-TiO2/Ti 3.3.3 Photocatalytic Reduction of CO2 in Aqueous Phase under Periodic Illumination 3.4 Background Experiments 3.4.1 Dissolved CO2 in Aqueous Solution at Various pH Value 3.4.2 Solubility of CO2 in Aqueous Solution Chapter 4 Results and Discussion 4.1 Photocatalytic Reduction of CO2 in Aqueous Phase under Continuous Illumination 4.1.1 Characterization of TiO2 Modified with Various NiO Dosages 4.1.2 Effect of Solution pH on Different NiO Dosage Modified TiO2 4.1.3 Effect of Initial CO2 Concentration 4.1.4 Effect of Light Intensity 4.2 Photocatalytic Reduction of CO2 in Aqueous Phase under Periodic Illumination 4.2.1 Effect of Periodic Illumination 4.2.2 Effect of Duty Cycle 4.2.3 Effect of Light Intensity 4.2.4 Effect of Periodic Frequency 4.3 Kinetic Analysis, Proposed Mechanisms and Energy Saving of Photocatalytic Reduction of CO2 in Aqueous Phase under Periodic Illumination 4.3.1 Kinetic Analysis 4.3.2 Proposed Mechanism 4.3.3 Electric Energy Saving Chapter 5 Conclusions and Recommendations Reference

    Al-Ekabi, H. and Serpone, N., “Mechanistic implications in surface photochemistry,” Photocatalysis: Fundamentals and Applications, John Wiley & Sons, New York (1988)
    Alijani, M. and Ilkhechi, N. N., “Effect of Ni Doping on the Structural and Optical Properties of TiO2 Nanoparticles at Various Concentration and Temperature,” Silicon, Vol. 36, pp. 2569–2575 (2018)
    Akple, M. S., Low, J., Qin, Z., Wageh, S., Al-Ghamdi, A. A., Yu, J. and Liu, S., “Nitrogen-doped TiO2 Microsheets with Enhanced Visible Light Photocatalytic Activity for CO2 Reduction,” Chin. J. Catal., Vol. 36, pp. 2127–2134 (2015)
    Ananpattarachai, J., Kajitvichyanukul, P. and Seraphin, S., “Visible Light Absorption Ability and Photocatalytic Oxidation Activity of Various Interstitial N-doped TiO2 Prepared from Different Nitrogen Dopants,” J. Hazard. Mater., Vol. 168, pp. 253–261 (2009)
    Bard, A. J., Pearsons, R., Jordan, J., Standard Potentials in Aqueous Solutions, IUPAC–Marcel Dekker Inc. (1985)
    Bolton, J. R. G., Bircher, K. G., Tumas, W. and Tolman, C. A., “Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-driven System, ” Pure Appl. Chem., Vol. 73 , pp. 627–637 (2001)
    Buechler, K. J., Nam, C. H., Zawistowski, T. M., Noble, R.D. and Koval, C. A., “Design and Evaluation of a Novel–Controlled Periodic Illumination Reactor to Study Photocatalysis,” Ind. Eng. Chem. Res., Vol. 38, pp. 892–896 (1999)
    Buechler, K. J., Zawistowski, T. M., Noble, R. D. and Koval, C. A., “Investigation of the Mechanism for the Controlled Periodic Illumination Effect in TiO2 Photocatalysis,” Ind. Eng. Chem. Res., Vol. 40, pp. 1097–1102 (2001)
    Chen, D. and Jordan, E. H., “Sol–gel Synthesis and Characterization of Al2O3–TiO2 Nanocrystalline Powder,” J. Sol–Gel Sci. Technol., Vol. 50, pp. 44–47 (2009)
    Chen, H. W., “Decomposition of o-Cresol in Aqueous Solution by UV-LED/TiO2 Process,” Doctor Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2007)
    Chen, H. W., Ku, Y. and Irawan, A., “Photodecomposition of o-cresol by UV-LED/TiO2 Process with Controlled Periodic Illumination,” chemosphere, Vol. 69, pp. 184–190 (2007a)
    Chen, H. W., Ku, Y. and Wu, C. Y., “Effect of LED Optical Characteristics on Temporal Behavior of o–Cresol Decomposition by UV/TiO2 Process,” J. Chem. Technol. Biotechnol., Vol. 82, pp. 626–635 (2007b)
    Chen, J. Z., Chen, T. H., Lai, L. W., Li, P. Y., Liu, H. W., Hong, Y. Y. and Liu, D. S., “Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO2 Nanocomposite Structure,” J. Phys. Chem. B, Vol. 107, pp. 4273–4286 (2015)
    Chou, Y. C. and Ku, Y., “NO reduction and N2 selectivity under various operating conditions for photo-SCR of NO,” Chem. Eng. J., Vol. 162, pp. 696–701 (2010)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., “Quantum Yields of the Photocatalytic Oxidation of Formate in Aqueous TiO2 Suspensions under Continuous and Periodic Illumination,” J. Phys. Chem. B, Vol. 105, pp. 1351–1354 (2001)
    Cornu, C. J. G., Colussi, A. J., and Hoffmann, M. R., “Time Scales and pH Dependences of the Redox Processes Determining the Photocatalytic Efficiency of TiO2 Nanoparticles from Periodic Illumination Experiments in the Stochastic Regime,” J. Phys. Chem. B, Vol. 107, pp. 3156–3160 (2003)
    Dhakshinamoorthy, A., Navalon, S., Corma, A. and Garcia, H., “Photocatalytic CO2 Reduction by TiO2 and Related Titanium Containing Solids,” Energy Environ. Sci., Vol. 5, pp. 9217–9233 (2012)
    Di Paola, A., García-López, E., Marcì, G. and Palmisano, L., “A Survey of Photocatalytic Materials for Environmental Remediation,” J. Hazard. Mater., Vol. 211–212, pp. 3–29 (2012)
    Dillert, R., Engel, A., Grobe, J., Lindner, P. and Bahnemann, D. W., “Light Intensity Dependence of the Kinetics of the Photocatalytic Oxidation of Nitrogen(II) Oxide at the Surface of TiO2,” Phys. Chem. Chem. Phys., Vol. 15, pp. 20876–20886 (2013)
    Ding, Z., Lu, G. Q. and Greenfield, P. F., “Role of the Crystallite Phase of TiO2 in Heterogeneous Photocatalysis for Phenol Oxidation in Water,” J. Phys. Chem. B, Vol. 104, pp. 4815–4820 (2000)
    Duonghong, D., Borgarello, D. and Graetzel, M., “Dynamics of Light–Induced Water Cleavage in Colloidal Systems,” J. Am. Chem. Soc., Vol. 103, pp. 4685–4690 (1981)
    Fisher, J., Egerton, T. A., “Titanium Compounds, Inorganic,” Kirk-Othmer Encyclopaedia of Chemical Technology, Wiley, New York (2001)
    Fogler, H. S., “Elements of Chemical Reaction Engineering: Chapter 10: Steps in a Catalytic Reaction,” Pearson, United State (2006)
    Foster, N. S., Koval, C. A., Sczechowski, J. G. and Noble, R. D., “Investigation of Controlled Periodic Illumination Effects on Photo-Oxidation Processes at Titanium Dioxide Films Using Rotating Ring Disk Photoelectrochemistry, ” J. Electroanal chem., Vol. 406 , pp. 213–217 (1996)
    Fox, M. A. and Dulay, M. T., “Heterogeneous Photocatalysis,” Chem. Rev., Vol. 93, pp. 341–357 (1993)
    Friedmann, D., Mendive, C. and Bahnemann, D., “TiO2 for Water Treatment: Parameters Affecting the Kinetics and Mechanisms of Photocatalysis,” Appl. Catal. B: Environ., Vol. 99, pp. 398–406 (2010)
    Fujishima, A., Hashoimoto, K. and Watanabe, T., “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999)
    Ganesh, I., Gupta, A. K., Kumar, P. P., Sekhar, P. S. C., Padmanabham, G. and Sundararajan, G., “A Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications,” Sci. World J., Vol. 2012, pp. 1–16 (2012)
    Gattrell, M., Gupta, N. and Co, A., “A Review of the Aqueous Electrochemical Reduction of CO2 to Hydrocarbons at Copper,” J. Electroanal. Chem., Vol. 594, pp. 1–19 (2006)
    Gong, J., Wang, T. and Chang, X., “CO2 Photo-Reduction: Insights into CO2 Activation and Reaction on Surfaces of Photocatalysts,” Energy Environ. Sci., Vol. 9, pp. 2177–2196 (2016)
    Graetzel, M., Frank, J., “Interfacial Electron–Transfer Reactions in Colloidal Semiconductor Dispersions: Kinetic Analysis,” J. Phys. Chem., Vol. 86, pp. 2964–2967 (1982)
    Grela, M. A. and Colussi, A. J., “Kinetics of stochastic charge transfer and recombination events in semiconductor colloid relevance to photocatalysis efficiency,” J. Phys. Chem., Vol. 100, pp. 18214–18221 (1996)
    Hamill, N. A., Weatherley, L.R. and Hardacre, C., “Use of a Batch Rotating Photocatalytic Contactor for the Degradation of Organic Pollutants in Wastewater,” Appl. Catal., B, Vol. 30, pp. 49–60 (2001)
    Hanaor, D. A. H. and Sorrell, C. C., “Review of the Anatase to Rutile phase Transformation,” J. Mater. Sci., Vol. 46, pp. 855–874 (2011)
    He, Z. Q., Jiang, L. X., Han, J., Wen, L. N., Chen, J. M., and Song, S., “Activity and Selectivity of Cu and Ni Doped TiO2 in the Photocatalytic Reduction of CO2 with H2O under UV-light Irradiation,” Asian J. Chem., Vol. 26, pp. 4759–4766 (2014)
    Herrmann, J. M., “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants,” Catal. Today, Vol. 53, pp. 115–126 (1999)
    Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol. 95(1), pp. 69–96 (1995)
    Hosseini, S. and Amoozadeh A., “Nano-TiO2-P25-SO3H as a New and Robust Photo-Catalyst: The Acceleration Effect of Selective Oxidation of Aromatic Alcohols to Aldehydes under Blue LED Irradiation,” J. Photochem. Photobiol., A, Vol. 364, pp. 516–523 (2018)
    Hou, W. M., “Optical Fiber Photoelectrochemical Reactor for the Decomposition of Gaseous Isopropanol in Air Stream by UV/TiO2 Process,” Doctor Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2013)
    Hou, W. M. and Ku, Y., “Photocatalytic Decomposition of Gaseous Isopropanol in a Tubular Optical Fiber Reactor under Periodic UV–LED Illumination,” J. Mol. Catal. A: Chem., Vol. 374–375, pp. 7–11 (2013)
    Hung, C. H. and Yuan, C., “Reduction of Azo–Dye via TiO2–Photocatalysis,” J. Chin. Inst. Environ. Eng., Vol. 10, pp. 209–216 (2000)
    Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., and Thurnauer, M. C., “Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed–Phase TiO2 using EPR,” J. Phys. Chem. B, Vol. 107, pp. 4545–4549 (2003)
    Irie, H., Watanabe, Y. and Hashimoto, K., “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders,” J. Phys. Chem. B, Vol. 107, pp. 5483–5486 (2003)
    Jacoby, W. A., Blake, D. M., Noble, R. D. and Koval, C. A., “Kinetics of the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis,” J. Catal., Vol. 157, pp. 87–96 (1995)
    Kalantari, K., Kalbasia, M., Sohrabi, M. and Royaee, S. J., “Synthesis and Characterization of N-doped TiO2 Nanoparticles and their Application in Photocatalytic Oxidation of Dibenzothiophene under Visible Light,” Ceram. Int., Vol. 42, pp. 14834–14842 (2016)
    Kashiwaya, S., Aymonier, C., Majimel, J., Olivier, C., Klein, A., Jaegermann, W. and Toupance, T., “Supercritical CO2-assisted Deposition of NiO on (101)-anatase-TiO2 for Efficient Facet Engineered Photocatalysts,” New J. Chem., Vol. 42, pp. 18649–18658 (2018)
    Katsumata, K., Okazaki, S., Cordonier C. E. J., Shichi, T., Sasaki, T. and Fujishima, A., “Preparation and Characterization of Self-Cleaning Glass for Vehicle with Niobia Nanosheets,” ACS Appl. Mater. Interfaces, Vol. 2, pp. 1236–1241 (2010)
    Kesselman, M. J., Shreve, G. A., Hoffmann, M. R. and Lewis, N. S., “Flux–Matching Conditions at TiO2 Photoelectrodes: Is Interfacial Electron Transfer to O2 Rate-Limiting in the TiO2–Catalyzed Photochemical Degradation of Organics,” J. Phys. Chem., Vol. 98 (50), pp. 13385–13395 (1994)
    Kim, S. B. and Hong, S. C., “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Appl. Catal., B, Vol. 35, pp. 305–315 (2002)
    Kočí, K., Obalová, L. and Šolcová, O., “Kinetic Study of Photocatalytic Reduction of CO2 over TiO2,” Chem. Process Eng., Vol. 31, pp. 395–407 (2010)
    Kormann, C., Bahnemann, K., Awaga, K., Murayama, M., Mori T., Sunada K., Bandow, S. and Bandow, S., “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions,” Environ. Sci. Technol., Vol. 25, pp. 494–500 (1991)
    Kondo, Y., Yoshikawa, H., Choi, W. and Hoffmann, M. R., “Preparation, Photocatalytic Activities, and Dye–Sensitized Solar-Cell Performance of Submicron-Scale TiO2 Hollow Spheres,” Langmuir, Vol. 24, pp. 547–550 (2008)
    Korovin, E., Selishchev, D., Besov, A. and Kozlov, D., “UV-LED TiO2 Photocatalytic Oxidation of Acetone Vapor: Effect of High Frequency Controlled Periodic Illumination,” Appl. Catal., B, Vol. 163, pp. 143–149 (2015)
    Ku, S. C., “Effect of Periodic Illumination on Photocatalytic Decomposition of Bisphenol A in Aqueous Solutions Using UV-LEDs,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2012)
    Ku, Y. and Hou, W. M., “Photocatalytic Decomposition of Gaseous Isopropanol in a Tubular Optical Fiber Reactor under Periodic UV-LED Illumination,” J. Mol. Catal. A, Vol. 374–375, pp. 7–11 (2013)
    Ku, Y., Li, W. H. and Wang, W. Y., “Photocatalytic Reduction of Carbonate in Aqueous Solution by UV/TiO2 Process,” J. Mol. Catal. A: Chem., Vol. 212, pp. 191–196 (2004)
    Ku, Y., Lin, C. N. and Hou, W. M., “Characterization of Coupled NiO/TiO2 Photocatalyst for the Photocatalytic Reduction of Cr(VI) in Aqueous Solution,” J. Mol. Catal. A: Chem., Vol. 349, pp. 20–27 (2011)
    Ku, Y. Tseng K. Y and Wang W. Y., “Decomposition of Gaseous Acetone in an Annular Photoreactor Coated with TiO2 Thin Film,” Water Air Soil Pollut., Vol. 168, pp. 313–323 (2005)
    Ku, Y., Shiu, S. C. and Wu, H. C., “Decomposition of Dimethyl Phthalate in Aqueous Solution by UV–LED/TiO2 Process under Periodic Illumination,” J. Photochem. Photobiol., A, Vol. 332, pp. 299–305 (2017)
    Lehn, J. M. and Ziessel, R., “Photochemical Generation of Carbon Monoxide and Hydrogen by Reduction of Carbon Dioxide and Water under Visible Light Irradiation,” Proc. Natl. Acad. Sci., Vol. 79, pp. 701–704 (1982)
    Leng, W. H., Zhu, W. C., Ni, J., Zhang, Z., Zhang, J. Q. and Cao, C. N.,“Photoelectrocatalytic destruction of organics using TiO2 as photoanode with simultaneous production of H2O2 at the cathode,” Appl. Catal., A, Vol. 300, pp. 24–35 (2016)
    Li, B., Niu, W. C., Cheng, Y. W., Gu J. J., Ning P. and Guan, Q. Q., “Preparation of Cu2O Modified TiO2 Nanopowder and Its Application to the Visible Light Photoelectrocatalytic Reduction of CO2 to CH3OH,” Chem. Phys. Lett., Vol. 700, pp. 57–63 (2018)
    Li, H., Li, C., Han, L., Li, C. and Zhang, S., “Photocatalytic Reduction of CO2 with H2O on CuO/TiO2 Catalysts,” Energy Sources Part A, Vol. 38, pp. 420–426 (2016)
    Liang, R., Lena, C. M., Fong, L. C., Arlos, M. J., Leeuwen, J. V., Shahnam E., Peng, P., Servos, M. R. and Zhou, Y. N., “Photocatalytic Degradation using One-Dimensional TiO2 and Ag-TiO2 Nanobelts under UV-LED Controlled Periodic Illumination,” J. Environ. Chem. Eng., Vol. 5, pp. 4365–4373 (2017)
    Lin, C. N., “Synthesis of p-n Junction Photocatalyst NiO/TiO2 by Sol-gel Method for Enhancement of Photocatalytic Activity,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2009)
    Linsebigler, A. L., Lu, G. and Yates, J. T., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results,” Chem. Rev, Vol. 95, pp. 735–758 (1995)
    Low, J., Cheng, B., and Yu, J., “Surface Modification and Enhanced Photocatalytic CO2 Reduction Performance of TiO2,” Appl. Surf. Sci., Vol. 392, pp. 658–686 (2017)
    Ma, C. M., Shen, Y. S., and Lin, P. H., “Photoreduction of Cr(VI) Ions in Aqueous Solutions by UV/TiO2 Photocatalytic Processes,” Int. J. Photoenergy, Vol. 10 (2012), Article ID 381971, 7 pages (2012)
    Mahmodi, G., Sharifnia, S., Madani, M. and Vatanpour, V., “Photoreduction of Carbon Dioxide in the Presence of H2, H2O and CH4 over TiO2 and ZnO Photocatalysts,” Sol. Energy, B, Vol. 97, pp. 186–197 (2013)
    Meng, X., Ouyang, S., Kako, T., Li, P., Yu, Q., Wang, T. and Ye, J., “Photocatalytic CO2 Conversion over Alkali Modified TiO2 without Loading Noble Metal Cocatalyst,” Chem. Commun., Vol. 50, pp. 11517–11519 (2014)
    Mo, J., Zhang, Y., Xu, Q., Lamson, J. J.and Zhao, R., “Photocatalytic Purification of Volatile Organic Compounds in Indoor Air: A Literature Review,” Atmos. Environ., Vol. 43, pp. 2229–2246 (2009)
    Nadarajan, R., Bakar, W. A., Ali, R. and Ismail, R., “Photocatalytic Degradation of 1,2-Dichlorobenzene using Immobilized TiO2/SnO2/WO3 Photocatalyst under Visible lLight: Application of Response Surface Methodology,” Arabian J. Chem., Vol. 11, pp. 34–47 (2018)
    Nakata, K. and Fujishima, A., “TiO2 Photocatalysis: Design and Applications,” J. Photochem. Photobiol. C: Photochem. Rev., Vol. 13, pp. 169–189 (2012)
    Ola, O. and Maroto-Valer, M. M., “Review of Material Design and Reactor Engineering on TiO2 Photocatalysis for CO2 Reduction,” J. Photochem. Photobiol. C: Photochem. Rev., Vol. 24, pp. 16–42 (2015)
    Ollis, D., Pelizzetti, E. and Serpone, N., “Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25, pp. 1522–1529 (1991)
    Parveen, B., ul-Hassan, M., Khalid, Z., Riaz, S. and Naseem, S., “Room-temperature Ferromagnetism in Ni-doped TiO2 Diluted Magnetic Semiconductor Thin Films,” J. Appl. Res. Technol., Vol. 15, pp. 132–139 (2017)
    Pastrana-Martínez, L. M., Silva, A. M. T., Fonseca, N. N. C., Vaz, J. R., Figueiredo, J. L. and Faria, J. L., “Photocatalytic Reduction of CO2 with Water into Methanol and Ethanol Using Graphene Derivative–TiO2 Composites: Effect of pH and Copper(I) Oxide,” Top. Catal., Vol. 59, pp. 1279–1291 (2016)
    Peill, N. J. and Hoffmann, M. R., “Mathematical Model of a Photocatalytic Fiber-optic Cable Reactor for Heterogeneous Photocatalysis,” Environ. Sci. Technol., Vol. 32, pp. 398–404 (1998)
    Pougin, A., Dilla, M. and Strunk, J., “Identification and Exclusion of Intermediates of Photocatalytic CO2 Reduction on TiO2 under Conditions of Highest Purity,” Phys.Chem.Chem.Phys., Vol. 18, pp. 10809–10817 (2016)
    Qin, G., Zhang, Y., Ke, X., Tong, X., Sun, Z., Liang, M. and Xue, S., “Photocatalytic Reduction of Carbon Dioxide to Formic Acid, Formaldehyde, and Methanol using Dye-sensitized TiO2 Film,” Appl. Catal., B, Vol. 129, pp. 599–605 (2013)
    Qin, S., Xin, F., Liu, Y., Yin, X. and Ma, W., “Photocatalytic Reduction of CO2 in Methanol to Methyl Formate over CuO–TiO2 Composite Catalysts,” J. Colloid Interface Sci., Vol. 35, pp. 257–261 (2011)
    Qu, J., Zhang, X., Wang, Y. and Xie, C., “Electrochemical Reduction of CO2 on RuO2/TiO2 Nanotubes Composite Modified Pt Electrode,” Electrochim. Acta, Vol. 35, pp. 3576–3580 (2005)
    Raj, K. J. A. and Viswanathan, B., “Effect of Surface Area, Pore Volume and Particle Size of P25 Titania on the Phase Transformation of Anatase to Rutile,” Indian J. Chem., Sect A, Vol. 48, pp. 1378–1382 (2009)
    Rajalakshmi, K., Jeyalakshmi, V., Krishnamurthy, K. R. and Viswanathan, B., “Photocatalytic Reduction of Carbon Dioxide by Water on Titania: Role of Photophysical and Structural Properties,” Indian J. Chem., Sect A, Vol.51A pp. 411–419 (2012)
    Rauf, M. A., Meetani, M. A. and Hisaindee, S., “An Over Review on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals,” Desalin., Vol. 276, pp. 13–27 (2011)
    Saquib, M. and Muneer, M., “TiO2-Mediated Photocatalytic Degradation of a Triphenylmethane Dye (Gentian Violet), in Aqueous Suspensions,” Dyes Pigm., Vol. 56, pp. 37–49 (2003)
    Sczechowski, J. G., Koval, C. A. and Noble, R. D., “Evidence of Critical Illumination and Dark Recovery Times Increasing the Photoefficiency of Aqueous Heterogeneous Photocatalysis,” J. Photochem. Photobiol., A, Vol. 74 , pp. 273–278 (1993)
    Sczechowski, J. G., Koval, C. A. and Noble, R. D., “A Taylor Vortex Reactor for Heterogeneous Photocatalysis,” Chem. Eng. Sci., Vol. 50, pp. 3163–3173 (1995)
    Selvaratnam, B. and Koodali, T. R., “TiO2-MgO Mixed Oxide Nanomaterials for Solar Energy Conversion,” Catal. Today, Vol. 168, pp. 253–261 (2009)
    Serpone, N., “Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis, ” J. Photochem. Photobiol. A: Chem., Vol. 104, pp. 1–12 (1997)
    Shabana, Y. A., El Maradnya, A. A. and Al Farawatia, R. K., “Photocatalytic Reduction of Nitrate in Seawater using C/TiO2 Nanoparticles,” J. Photochem. Photobiol., A, Vol. 328, pp. 114–121 (2016)
    Shiu, S. C., “Photocatalytic Decomposition of Dimethl Phthalate by UV-LED/TiO2 Process under Periodic illumination,” Master Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2013)
    Shifu, C., Wei, Z., Wei, L. and Sujuan, Z., “Preparation, Characterization and Activity Evaluation of p-n junction Photocatalyst p–ZnO/n–TiO2 ,” Appl. Surf. Sci., Vol. 255, pp. 2478–2484 (2008)
    Sharma, A. and Lee, B. K., “Photocatalytic Reduction of Carbon Dioxide to Methanol using Nickel-Loaded TiO2 Supported on Activated Carbon Fiber,” Catal. Today, Vol. 298, pp. 158–167 (2017)
    Slamet, Nasution, H. W., Purnama, E., Riyani, K. and Gunlazuardi, J., “Effect of Copper Species in a Photocatalytic Synthesis of Methanol from Carbon Dioxide over Copper-doped Titania Catalysts,” World Appl. Sci. J, Vol. 6, pp. 112–122 (2009)
    Song, G. X., Xin, F., Chen, J. S. and Yin, X. H., “Photocatalytic Reduction of CO2 in Cyclohexanol on CdS–TiO2 Heterostructured Photocatalyst,” Appl. Catal., A, Vol. 473, pp. 90–95 (2014)
    Spurr, R. A. and Myers, W., “Quantitative Analysis of Anatase–Rutile Mixtures with an X–Ray Diffractometer, ” Anal. Chem., Vol. 29, pp. 760–762 (1957)
    Sun, Z. and Zhoa, W., “Pore Diameter Control in Anodic Titanium and Aluminium Oxides,” J. Mater. Chem., Vol. 21, pp.357–362 (2011)
    Subramanian, M. and Kannan, A., “Photocatalytic Degradation of Phenol in a Rotating Annular Reactor,” Chem. Eng. Sci., Vol. 65, pp. 2727–2740 (2010)
    Sun, B., Zhou, G., Gao, T., Zhanga, H., and Yua, H., “NiO Nanosheet/TiO2 Nanorod-constructed p-n Heterostructures for Improved Photocatalytic Activity,” Appl. Surf. Sci., Vol. 364, pp. 332-331 (2016)
    Tahir, M., and Amin, N. S., “Photocatalytic Reduction of Carbon Dioxide with Water Vapors over Montmorillonite Modified TiO2 Nanocomposites,” Appl. Catal., B, Vol. 142–143, pp. 512–522 (2013)
    Tan, S. S., Zou, L. and Hu, E., “Kinetic Modelling for Photosynthesis of Hydrogen and Methane through Catalytic Reduction of Carbon Dioxide with Water Vapour,” Catal. Today, B, Vol. 131, pp. 125–129 (2008)
    Tasbihi, M., Kočí, K., Edelmannová, M., Troppová, I., Reli, M. and Schomäcker, R., “Pt/TiO2 Photocatalysts Deposited on Commercial Support for Photocatalytic Reduction of CO2,” J. Photochem. Photobiol., A, Vol. 366, pp. 72–80 (2018)
    Tokode, O. I., Prabhu, R., Lawton, L. A. and Robertson, P. K. J., “Effect of Controlled Periodic–Based Illumination on the Photonic Efficiency of Photocatalytic Degradation of Methyl Orange,” J. Catal., Vol. 290, pp. 138–142 (2012)
    Tokode, O. I., Prabhu, R., Lawton, L. A. and Robertson, P. K. J., “Mathematical Modeling of Quantum Yield enhancements of Methylorange Photooxidation in Aqueous TiO2 Suspensions under Controlled Periodic UV LED Illumination,” Appl. Catal., B, Vol. 156–157, pp. 398–403 (2014a)
    Tokode, O. I., Prabhu, R., Lawton, L. A. and Robertson, P. K. J., “The Effect of pH on the Photonic Efficiency of the Destruction of Methyl Orange under controlled Periodic Illumination with UV-LED Sources,” Chem. Eng. J., Vol. 246, pp. 337–342 (2014b)
    Tokode, O. I., Prabhu, R., Lawton, L. A. and Robertson, P. K. J., “Controlled Periodic Illumination in Semiconductor Photocatalysis,” J. Photochem. Photobiol., A, Vol. 319–320, pp. 96–106 (2016)
    Uddin, Md. T., Nicolas, Y., Olivier, C., Jaegermann, W., Rockstroh, N., Junge, H. and Toupance, T., “Band Alignment Investigations of Heterostructure NiO/TiO2 Nanomaterials Used as efficient Heterojunction Earth-abundant Metal Oxide photocatalysts for Hydrogen Production,” Phys. Chem. Chem. Phys., Vol. 19, pp. 19279–19288 (2017)
    Upadhya, U. and Ollis, D. F., “Simple Photocatalysis Model for Photoefficiency Enhancement via Controlled Periodic Illumination,” J. Phys. Chem. B, Vol. 101, pp. 2625–2631 (1997)
    Vincent, G. Marquaire, P. M. and Zahraa, O., “Abatement of Volatile Organic Compounds Using An Annular Photocatalytic Reactor: Study of Gaseous Acetone,” J. Photoch. Photobio. A: Chem., Vol. 197, pp. 177–189 (2008)
    Wahyuni, E. T., Kuncaka A. and Sutarno, S., “Application of Photocatalytic Reduction Method with TiO2 for Gold Recovery” Am. J. Appl. Chem., Vol. 3, pp. 207–211 (2015)
    Wang, M., Hu, Y., Han, J., Guo, R., Xiong, H. and Yin, Y. “TiO2/NiO hybrid shells: p–n Junction Photocatalysts with Enhanced Activity under Visible Light,” J. Mater. Chem. A, Vol. 3, pp. 20727–20735 (2015)
    Wang, W. N., An, W. J., Ramalingam, B., Mukherjee, S., Niedzwiedzki, D. M., Gangopadhyay, S. and Biswas, P., “Size and Structure Matter: Enhanced CO2 Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on TiO2 Single Crystals,” J. Am. Chem. Soc., Vol. 134, pp. 11276–11281 (2012)
    Wang, W. Y., “Photoelectrochemical Properties of Titanium Dioxide and Decomposition of Dyes in Photocatalytic Membrane Reactors,” Doctor Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2006)
    Wang, W. Y. and Ku, Y., “Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV-LED Radiation” Water Res., Vol. 40, pp. 2249–2258 (2006)
    Warren, B. E., “X-ray Diffraction,” Dover Publications Inc., New York, US (1990)
    Wei, T. Y. and Wan, C. C., “Heterogeneous Photocatalytic Oxidation of Phenol with Titanium Dioxide Powders,” Ind. Eng. Chem. Res, Vol. 30, pp. 1293–1300 (1991)
    Wood, D. and Tauc, J., “Weak Absorption Tails in Amorphous Semiconductors,” Phys. Rev. B, Vol. 5, pp. 3144–3151 (1972)
    Xiang, L. Q. and Zhao, X. P., “Wet-Chemical Preparation of TiO2-Based Composites with Different Morphologies and Photocatalytic Properties,” J. Nanomater., B, Vol. 7, pp. 310–317 (2017)
    Xiong, P. and Hu, J. G., “Degradation of Acetaminophen by UVA/LED/TiO2 Process,” Sep. Purif. Technol., A, Vol. 91, pp. 89–95 (2012)
    Xiong, P. and Hu, J. G., “Decomposition of Acetaminophen (Ace) using TiO2/UVA/LED System,” Catal. Today, Vol. 282, pp. 48–56 (2017)
    Xu, Z. and Yu, J., “Visible–Light–Induced Photoelectrochemical Behaviors of Fe–Modified TiO2 Nanotube Arrays,” Nanoscale., Vol. 3, pp. 3138-3144 (2011)
    Xue, L. M., Zhang, F. H., Fan, H. J. and Bai, X. F., “Preparation of C Doped TiO2 Photocatalysts and their Photocatalytic Reduction of Carbon Dioxide,” Adv. Mater. Res., Vol. 183–185, pp. 1842–1846 (2011)
    Yahaya, A. H., Gondal, M. A. and Hameed, A., “Selective Laser Enhanced Photocatalytic Conversion of CO2 into Methanol. Chem. Phys. Lett., Vol. 48, pp. 206–212 (2004)
    Yang, L. and Liu, Z., “Study on Light Intensity in the Process of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy,” Energy Convers. Manage., Vol. 48, pp. 882–889 (2007)
    Yu, S. L., “Reduction of Cr(VI) in Aqueous Solution by Photoelectrocatalytic Process,” Doctor Dissertation of National Taiwan University of Science and Technology, Taiwan Taipei (2007)
    Zhan, Y. Y., Zhang, Y., Li, Q. M. and Du, X. Z., “A Novel Visible Spectrophotometric Method for the Determination of Methanol using Sodium Nitroprusside as Spectroscopic Probe,” J. Chin. Chem. Soc., Vol. 57, pp. 230–235 (2010)
    Zhang, J., Zhoa, F., Liu, J. M. and Yu, J., “New Understanding of the Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2,” Phys. Chem. Chem. Phys., Vol. 16, pp. 20382–20386 (2014)
    Zhao, H. L., Chen, J., Rao, G. Y., Deng, W. and Li, Y., “Enhancing Photocatalytic CO2 Reduction by Coating an Ultrathin Al2O3 Layer on Oxygen Deficient TiO2 Nanorods through Atomic Layer Deposition,” Appl. Surf. Sci., Vol. 404, pp. 49–56 (2017a)
    Zhao, X. r., Cao, Y. Q., Chen, J., Zhu, L., Qian, X., Li, A. D. and Wu, D., “Photocatalytic Properties of Co3O4–Coated TiO2 Powders Prepared by Plasma–Enhanced Atomic Layer Deposition,” Nanoscale Res. Lett., Vol. 12, pp. 497–505 (2017b)
    Zhao, Z. H., Fan, J. M., Wang, J. and Li, R. F., “Effect of Heating Temperature on Photocatalytic Reduction of CO2 by N–TiO2 Nanotube Catalyst,” Catal. Commun., Vol. 21, pp. 32–37 (2012)
    Zhou, R. and Guzman, M. I., “CO2 Reduction under Periodic Illumination of ZnS,” J. Phys. Chem. C, Vol. 118, pp. 11649–11656 (2014)
    Zhou, X., Gupta, K., Bersani, M., Darr, J. A., Shearing, P. R. and Brett, D. J. L., “Electrochemical Reduction of Carbon Dioxide on Copper-based Nanocatalysts using the Rotating Ring-disc Electrode,” Electrochim. Acta, Vol. 118, pp. 1037–1044 (2018)

    無法下載圖示 全文公開日期 2024/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE