簡易檢索 / 詳目顯示

研究生: 周揚震
Yiang-Chen Chou
論文名稱: 以選擇性光觸媒催化程序還原氣相中氮氧化物之研究
Selective Reduction of NO in Air Streams by Photocatalytic Process with Ammonia over TiO2
指導教授: 顧洋
Young Ku
口試委員: 申永順
none
曾堯宣
Yao-Hsuan Tseng
白曛綾
none
吳紀聖
none
蔣本基
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 226
中文關鍵詞: 選擇性光觸媒催化還原程序氮氧化物還原陣列式二氧化鈦奈米管光觸媒陽極氧化光電流
外文關鍵詞: Photo-SCR, NO reduction, TiO2 nanotube arrays, Anodization, Induced photocurrent
相關次數: 點閱:342下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的是在常溫下以選擇性光觸媒催化程序還原氣相氮氧化物,並探討各項實驗操作變因(如:光強度、光波長、反應滯留時間、以及氣體進樣中氮氧化物濃度、氨氣濃度、相對濕度)對氮氧化物還原效率、氮氣選擇率、以及光量子產率之影響。實驗結果顯示:當使用光強度3.73 mW/cm2之紫外光(光波長365nm)進行選擇性光觸媒還原氮氧化物反應時,可達到50%的氮氧化物還原效率及90%之氮氣選擇率,當進料氣體中相對濕度增加時,光觸媒表面的活性位置會因被水分子佔據而不利反應之進行,此外氮氧化物還原效率會隨著入射光強度提高而增加,光量產率卻會隨著光強度增加而逐漸減小。研究結果亦發現,在含氧的環境下進行選擇性光催化還原氮氧化物反應時,會在光觸媒催化過程中發生氨氣氧化生成氮氧化物反應,當使用較短波長之紫外光進行選擇性光觸媒催化還原氮氧化物反應時,會在反應過程中因氨氣氧化反應生成較高濃度之氮氧化物,因而降低選擇性光觸媒催化還原反應之氮氧化物還原除效率及光量子產率。
    本研究亦以陽極氧化法在含氟化物的電解液中製備陣列式二氧化鈦奈米管光觸媒,探討電解液的組成對陣列式二氧化鈦奈米管表面型態之影響,並以場發式電子顯微鏡、X-射線繞射光譜儀以及定電位/恆電流儀對光觸媒之表面形態(管長、管徑)、結晶型態以及受紫外光之光電流強度進行分析。實驗結果指出,以乙二醇電解液進行陽極氧化可製備出較高排列秩序之陣列式二氧化鈦奈米管光觸媒,以超音波震盪法將所製備之二氧化鈦奈米管光觸媒進行後處理,可有效去除覆蓋於奈米管上之氧化層。二氧化鈦奈米管之管徑僅受電解電壓之影響(電解電壓越大管徑越大),管長則隨著電解時間增加而逐漸增加,直至電化學氧化及氟離子蝕刻速率達動態平衡後逐漸趨於穩定管長。當以600度的溫度鍛燒陣列式二氧化鈦奈米管光觸媒所生成之結晶相態,二氧化鈦奈米管光觸媒之光電流強度及氮氧化物還原效率會高於其他鍛燒溫度之觸媒。


    Photoassisted selective catalytic reduction (photo-SCR) of NO with ammonia over TiO2 under various operating conditions was investigated at room temperature in this study. Effects of UV light intensity, UV wavelength, inlet concentrations of O2, NO, NH3 and H2O, and retention time of inlet stream on the performance of NO reduction were discussed in this study. Experimental results indicated that approximately 90% of N2 selectivity and 50% of NO reduction efficiency can be achieved in this study for experiments conducted under the UV365 light intensity of 3.73mW/cm2. Both NO reduction efficiency and N2 selectivity were decreased for NO reduction by the photo-SCR with the presence of water molecules. The increase of UV light intensity enhanced the reduction of NO; however, the photonic efficiencies of NO reduction and N2 formation were decreased with increasing UV light intensity. NO formation was observed to occur during the course of photo-SCR over TiO2 in the presence of oxygen. Lower NO reduction efficiencies and quantum yields were observed for experiments conducted with UV254 illumination as compared to those conducted with UV365 illumination because more NO molecules were formed by the oxidation of NH2 radicals by oxygen anion radicals. The formation of NO molecules by photocatalytic oxidation of ammonia was taken into consideration to the reaction mechanism of photo-SCR in this study.
    The highly-ordered TiO2 nanotube arrays (TNTs) were fabricated by anodization in glycerol or ethylene glycol electrolytes containing fluoride ions and water. The surface dimension, phase formation and lattice parameters of TNTs were determined by the field-emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD), respectively. The induced photocurrent intensity of TNTs was measured by a potentialstat/galvanostat. Experimental results revealed that the well-defined and highly ordered TNTs were formed by anodization in glycerol or ethylene glycol electrolytes. The length of nanotube was continually increased with anodization time until the rates of electrochemical oxidization of Ti foil and chemical dissolution of TiO2 film reached dynamically equilibrium. TNTs fabricated in ethylene glycol electrolyte showed the smoother morphology as compared to those fabricated in glycerol electrolyte. The sonication treatment with the sonicated durations longer than 20 minutes sufficiently removed the irregular oxide layer formed at the top of TNTs. TNTs annealed at 600 oC was found to induce the highest photocurrent and to exhibit the preeminent performance of NO reduction because of the crystallization of anatase and rutile phases.

    Table of Content Page Chinese Abstract...........................................................................................................Ⅰ English Abstract...................................................................................................……Ⅲ Acknowledgment.........................................................................................................Ⅴ Table of Content...........................................................................................................Ⅶ List of Figures..........................................................................................................ⅩⅠ List of Tables............................................................................................................ⅩⅦ List of Symbols........................................................................................................ⅩⅨ Chapter 1 Introduction...........................................................................................................1 1.1 Background……………………………………………………………….. 1 1.2 Objectives and scope………………………………………………………3 2 Literature Review………………………………………………………………..5 2.1 Photolysis and photocatalysis………………………….……….………….6 2.1.1 Fundamental of photolysis and photocatalysis……………….........6 2.1.2 Reaction kinetics of photocatalysis………..………….…………...7 2.1.3 Operating factors affecting photocatalysis…………….………....12 2.2 NOx abatement for a stationary emission source………………………...19 2.2.1 NOx source for a stationary emission source…………………….19 2.2.2 NOx control technologies for a stationary emission source……...24 2.2.3 NOx abatement by the photocatalytic process…………………....31 2.3 TiO2 nanotube arrays……………..............................................................42 2.3.1 Basic properties of TiO2………………………………………….42 2.3.2 Fabrication methods of TiO2 nanotube arrays……………………44 2.3.3 Operating factors affecting fabrication of TiO2 nanotube arrays by anodization……….………….…………..……………………46 2.3.4 Application of TiO2 nanotube arrays to the photocatalytic process…………..………..………..………..……..……………..52 3 Materials and Experiments………..………..………..………..………..………55 3.1 Materials………..………..………..………..………..………..……….....55 3.2 Photocatalytic system and apparatus……………………………………..56 3.3 Experimental procedures………………………………………………....62 3.3.1 Experimental framework………………………………………....62 3.3.2 Coating procedure of TiO¬2……………………………………….64 3.3.3 Preparation of TiO2 nanotube arrays……………………………..64 3.3.4 Background experiments…………………………………………67 3.3.5 Photoassisted selective catalytic reduction of NO……………….79 4 Results and Discussion…………………………………………………………85 4.1 Effects of operating conditions on the photo-SCR of NO under 365nm UV illumination…………………………………………………………..86 4.1.1 Photo-SCR of NO with ammonia over TiO¬2 without UV illumination………………………………………………………86 4.1.2 Effect of inlet NO concentration on the photo-SCR of NO……...89 4.1.3 Effect of inlet oxygen concentration on the photo-SCR of NO….93 4.1.4 Effect of UV light intensity on the photo-SCR of NO…………...97 4.1.5 Effect of inlet ammonia concentration on the photo-SCR of NO………………………………………………………………102 4.1.6 Effect of inlet water content on the photo-SCR of NO…………104 4.1.7 Effect of retention time on the photo-SCR of NO………………110 4.1.8 Reaction kinetic of the photo-SCR of NO………………………114 4.2 Effects of NO formation by photocatalytic oxidation of ammonia on the reduction of NO by photo-SCR under 254 and 365 nm UV illuminations………………………………………….............................129 4.2.1 Photocatalytic oxidation of ammonia over TiO2 in the presence of oxygen.…….………………………………………………...130 4.2.2 Comparison of the NO reduction by photo-SCR under 254 and 365 nm UV illuminations…………………………………..136 4.2.3 Photonic efficiency of the photo-SCR of NO with 254 and 365 nm UV illuminations……………………………………………150 4.2.4 Reaction mechanism of the photo-SCR of NO with the consideration of NO formation by photocatalytic oxidation of ammonia……………………………………………………..156 4.3 Application of TiO2 nanotube arrays for the photo-SCR of NO………..159 4.3.1 Fabrication of TiO2 nanotube arrays by anodization in glycerol electrolyte………..………..………..………..………..………...159 4.3.2 Fabrication of TiO2 nanotube arrays by anodization in ethylene glycol electrolyte………………………………………………..167 4.3.3 Characterizations of TiO2 nanotube arrays annealed under various annealing temperatures…………………………………175 4.3.4 NO reduction by photo-SCR over TiO2 nanotube arrays annealed at various temperatures….............................................179 4.3.5 Kinetic study of the photo-SCR of NO over TiO2 nanotube arrays............................................................................................182 5 Conclusions and Recommendations……………………………………..........189 Reference……………………………………………………………………………195 Appendix……………………………………………………………………………207 Vita………………………………………………………………………………….219

    Albu, S.P., D. Kim and P. Schmuki, “Growth of Aligned TiO2 Bamboo-type Nanotubes and Highly Ordered Nanolace,” Angew. Chem. Int. Ed., Vol. 47, pp. 1916-1919 (2008).
    Al-ekabi, H. and N. Serpone, “Mechanistic Implications in Surface Photochemistry,” In: N. Serpone and E. Pelizzetti (Eds.) Photocatalysis Fundamentals and Applications, John Wiley & Sons, Inc, New York (1989).
    Alivov, Y., Z. Y. Fan and D. Johnstone, “Titanium Nanotubes Grown by Titanium Anodization,” J. Appl. Phys., Vol. 106, art. no. 034314 (2009).
    Amama, P.B., K. Itoh and M. Murabayashi, “Photocatalytic Degradation of Trichloroethylene in Dry and Humid Atmospheres: Role of Gas-phase Reactions,” J. Mol. Catal. A: Chem., Vol. 217(1-2), pp. 109-115 (2004).
    Awitor, K.O., S. Rafqah, G. Géranton, Y. Sibaud, P.R. Larson, R.S.P. Bokalawela, J.D. Jernigen and M.B. Johnson, “Photo-catalysis using Titanium Dioxide Nanotube Layers,” J. Photochem. Photobiol., A, Vol. 199, pp. 250-254 (2008).
    Bakardjieva, S., J. Šubrt, V. Štengl, M. J. Dianez and M. J. Sayagues, “Photoactivity of Anatase–Rutile TiO2 Nanocrystalline Mixtures Obtained by Heat Treatment of Homogeneously Precipitated Anatase,” Appl. Catal B: Environ., Vol. 58, pp. 193-202 (2005).
    Bosch, H. and F. Janssen, “Formation and Control of Nitrogen Oxides,” Catal. Today, Vol. 2(4), pp. 369-531 (1988).
    Bowering, N, G.S. Walker and P.G. Harrison, “Photocatalytic Decomposition and Reduction Reactions of Nitric Oxide over Degussa P25,” Appl. Catal. B: Environ., Vol. 62, pp. 208216 (2006).
    Broden, G., T.N. Rhodin, C. Bruker, R. Benbow and Z. Hurych, “Synchrotron Radiation Study of Chemisorptive Bonding of CO on Transition Metals-polarization Effect on Ir(100),” Surf. Sci., Vol. 59, pp. 593-611 (1976).
    Cai, Q., M. Paulose, O.K. Varghese and C.A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” J. Mater. Res., Vol. 20, pp. 230-236 (2005).
    Chan, Y.C.., J.N. Chen and M.C. Lu, “Intermediate Inhibition in the Heterogeneous UV-catalysis using a TiO2 Suspension System,” Chemosphere, Vol. 45, pp. 29-35 (2001).
    Cho, S.M., “Properly Apply Selective Catalytic Reduction for NOx Removal,” Chem. Eng. Prog, Vol. 90, pp. 39-45(1994).
    Chou, Y.C. and Y. Ku, “NO Reduction and N2 Selectivity by Photo-SCR under Various Operating Conditions,” Chem. Eng. J., Vol. 162(2), pp. 696-701 (2010).
    Chuang, C.C., J.S. Shiu and J.L. Lin, “Interaction of Hydrazine and Ammonia with TiO2,” Phys. Chem. Chem. Phys., Vol. 2, pp. 2629-2633 (2000).
    Cohn, G.., D. Steele and H. Andersen, “Nitric Acid Tail Gas Abatment,” U.S. Patent 2975025 (1961).
    Crawford, G.A., N. Chawla, K. Das, S. Bose and A. Bandyopadhyay, “Microstructure and Deformation Behavior of Biocompatible TiO2 Nanotubes on Titanium Substrate,” Acta Biomater., Vol. 3 , pp. 359-367 (2007).
    Curtin, T., “Selective Catalytic Reduction of NOx,” In: V.H. Grassian (Ed..) Environmental Catalysis, Taylor & Francis Group, London (2005).
    Devahasdin, S., C. Fan, J.K. Li and D.H. Chen, “TiO2 Photocatalytic Oxidation of Nitric Oxide: Transient Behavior and Reaction Kinetics,” J. Photochem. Photobio. A, Vol. 156, pp. 161-170 (2003).
    Doong, R.A., C.H. Chen, R.A. Maithreepala and S.M. Chang, “The Influence of pH and Cadmium Sulfide on the Photocatalytic Degradation of 2-Chlorophenol in Titanium Dioxide Suspensions,” Water Res., Vol. 35 (12), pp. 2873-2880 (2001).
    Environmental Protection Administration, “Emission standard of air contamination for stationary emission source,” No. 0980162925 (2010).
    Fabregat-Santiago, F., E.M. Barea, J. Bisquert, G..K. Mor, K. Shankar and C.A. Grimes, “High Carrier Density and Capacitance in TiO2 Nanotube Arrays Induced by Electrochemical Doping,” J. Am. Chem. Soc., Vol. 130, pp. 11312-11316 (2008).
    Fujishima, A., K. Hashoimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Application,” BKC, Inc., Tokyo (1999).
    Garcia-Bordeje, E., J.L. Pinilla, M.J. Lazaro and R. Moliner, “NH3-SCR of NO at Low Temperatures over Sulphated Vanadia on Carbon-coated Monoliths: Effect of H2O and SO2 Traces in the Gas Feed,” Appl. Catal., B, Vol. 66, pp. 281-287 (2006).
    Ghicov, A., H. Tsuchiya, J.M. Macak and P. Schmuki, “Annealing Effects on the Photoresponse of TiO2 Nanotubes,” Phys. Status Solidi A, Vol. 203, pp. R28-R30 (2006).
    Gong, D., C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen and E.C. Dickey, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” J. Mater. Res., Vol. 16, pp. 3331-3334 (2001).
    Hassan, F.M.B., H. Nanjo, H. Tetsuka, M. Kanakubo, T. Aizawa, M. Nishioka, T. Ebina and A.M. Bond, “Formation of Self-ordered TiO2 Nanotubes by Electrochemical Anodization of Titanium in 2-Propanol/ NH4F,” J. Electrochem. Soc., Vol. 156, pp. K227-K232 (2009).
    Halasi, G., A. Kecskeme´ti and F. Solymosi, “Photocatalytic Reduction of NO with Ethanol on Ag/TiO2,” Catal. Lett., Vol. 135(1-2), pp. 16-20 (2010).
    Heck, R.M., R.J. Farrauto, S.T. Gulati, “Reduction of NOx,” In: Catalytic Air Pollution Control: Commercial Technology, John Wiley & Sons, Inc., New Jersey, USA (2009).
    Hoyer, P., “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, Vol. 12, pp. 1411-1413. (1996).
    Huang, B.R. D. Jin and D. Ye, “Low Temperature SCR of NO with NH3 Over Carbon Nanotubes Supported Vanadium Oxides,” Catal. Today, Vol. 126, pp. 279-283 (2007).
    Jin, R., Z. Wu, Y. Liu, B. Jiang and H. Wang, “Photocatalytic Reduction of NO with NH3 using Si-doped TiO2 Prepared by Hydrothermal Method,” J. Hazard. Mater., Vol. 161(1), pp. 42-48 (2009).
    Kasuga, T., M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, Vol. 14, pp. 3160-3163. (1998).
    Khan, M.A., H.T. Jung and O.B. Yang, “Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes,” J. Phys. Chem. B, Vol. 110, pp. 6626-6630 (2006).
    Kim, S. B., H.T. Hwang and S.C. Hong, “Photocatalytic Degradation of Volatile Organic Compounds at the Gas-Solid Interface of a TiO2 Photocatalyst,” Chemosphere, Vol. 48 (4), pp. 437-444 (2002).
    Kim, E.Y., J.H. Park and G.Y. Han, “Design of TiO2 Nanotube Array-based Water-splitting Reactor for Hydrogen Generation,” J. Power Sources, Vol. 184, pp. 284-287 (2008).
    Kim, S.B. and S.C. Hong, “Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Appl. Catal., B, Vol. 35, pp. 305-315 (2002).
    Ku, Y., C.M. Ma and Y.S. Shen, “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2-coated Nonwoven Fiber Textile, ” Appl. Catal., B, Vol. 34, pp. 181-190 (2001).
    Ku Y, Z.R. Fan, Y.C. Chou and W.Y. Wang, “Characterization and Induced Photocurrent of TiO2 Nanotube Arrays Fabricated by Anodization,” J. Electrochem. Soc., Vol. 157 (6), pp. H671- H675 (2010a).
    Ku Y, Z.R. Fan, Y.C. Chou and W.Y. Wang, “Effects of TiO2 Nanotube Arrays Dimension on the Acid Red 4 Degradation in Aqueous Solution by Photocatalytic Process,” Water Sci. Technol., Vol. 61, pp. 2943-2949 (2010b).
    Lee, W., R. Ji, U. Gosele and K. Nielsch, “Fast fabrication of long-range ordered porous alumina membranes by hard anodization,” Nat. mater., Vol. 5, pp. 741-747 (2006)
    Liang, H.C. and X.Z. Li, “Effects of Structure of Anodic TiO2 Nanotube Arrays on Photocatalytic Activity for the Degradation of 2,3-Dichlorophenol in Aqueous Solution,” J. Hazard. Mater., Vol. 162, pp. 1415-1422(2009).
    Lim, T.H., S.M. Jeong, S.D. Kim nad J. Gyenis “Photocatalytic Decomposition of NO by TiO2 Particles,” J. Photochem. Photobio. A: Chem., Vol. 134, pp. 209-217 (2000).
    Lin, Y.M., Y.H. Tseng, J.H. Huang, C.C. Chao, C.C. Chen and I. Wang, “Photocatalytic Activity for Degradation of Nitrogen Oxides over Visible Light Responsive Titania-Based Photocatalysts,” Environ. Sci. Technol., Vol. 40, pp. 1616-1621 (2006).
    Ma, C.M., Y. Ku, Y.C. Chou and F.T. Jeng, “Performance of Tubular-type Optical Fiber Reactor for Decomposition of VOCs in Gaseous Phase,” J. of Environ. Eng. & Manag., Vol. 18 (6), pp. 363-369 (2008).
    Ma, C.M., Y. Ku, Y.L. Kuo, Y.C. Chou and F.T. Jeng, “Effects of Silver on the Photocatalytic Degradation of Gaseous Isopropanol,” Water, Air, Soil Pollut., Vol. 197, pp.313-321 (2009).
    Macák, J.M., H. Tsuchiya, A. Ghicov and P. Schmuki, “Dye-sensitized Anodic TiO2 Nanotubes,” Electrochem. Commun., Vol. 7, pp. 1133-1137 (2005a).
    Macák, J.M., H. Tsuchiya, L. Taveira, S .Aldabergerova and P. Schmuki, “Smooth Anodic TiO2 Nanotubes,” Angew. Chem. Int. Ed., Vol. 44, pp. 7463-7465 (2005b).
    Macák, J.M. and P. Schmuki, “Anodic Growth of Self-organized Anodic TiO2 Nanotubes in Viscous Electrolytes,” Electrochim. Acta, Vol. 52, pp. 1258-1264 (2006).
    Macák, J.M., M. Zlamal, J. Krysa and P. Schmuki, “Self-organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts. Small 3, Vol. 2, pp. 300-304 (2007).
    Macák, J.M., H. Hildebrand, U. Marten Jahns and P. Schmuki, “Mechanistic Aspects and Growth of Large Diameter Self-organized TiO2 Nanotubes,” J. Electroanal. Chem., Vol. 621, pp. 254-266 (2008).
    Macedo, L.C., D.A.M. Zaia, G.J. Moore and H. de Santana, “Degradation of Leather Dye on TiO2: a Study of Applied Experimental Parameters on Photoelectrocatalysis,” J. Photochem. Photobiol., A, Vol. 185, pp. 86-93 (2007).
    Matsuda, S., H. Hatano and A. Tsutsumi, “Ultrafine Particle Fluidization and Its Application to Photocatalytic NOx Treatment,” Chem. Eng. J., Vol. 82, pp.183-188 (2001).
    Mohseni, M. and A. David, “Gas Phase Vinyl Chloride (VC) Oxidation Using TiO2-based Photocatalysis, ” Appl. Catal., B, Vol. 46, pp. 219-228 (2003).
    Mor, G.K., O.K. Varghese, M. Paulose and C.A. Grimes, “Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films,” Adv. Funct. Mater., Vol. 15, pp. 1291-1296 (2005).
    Mor, G.K., O.K. Varghese, M. Paulose, K.G. Ong and C.A. Grimes, “Fabrication of Hydrogen Sensors with Transparent Titanium Oxide Nanotube-array Thin Films as Sensing Elements,” Thin Solid Films, Vol. 496, pp. 42-48 (2006a)
    Mor, G.K., K. Shankar, M. Paulose, O.K. Varghese and C.A. Grimes, “Use of Highly-ordered TiO2 Nanotube Arrays in Dye-sensitized Solar Cells,” Nano. Lett., Vol. 6, pp. 215-218 (2006b)
    Mor, G.K., O.K. Varghese, M. Paulose, K. Shankar and C.A. Grimes, “A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications,” Sol. Energy Mater. Sol. Cells, Vol.90, pp. 2011-2075 (2006c).
    Mor, G.K., H.E. Prakasam, O.K. Varghese, K. Shankar and C.A. Grimes, “Vertically Oriented Ti–Fe–O Nanotube Array Films: Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis,” Nano. Lett., Vol. 7, pp. 2356-2364 (2007).
    Ohno, T., K. Tokieda, S. Higashida and M. Matsumura, “Synergism between Rutile and Anatase TiO2 Particles in Photocatalytic Oxidation of Naphthalene,” Appl. Catal. A: General, Vol. 244, pp. 383-391 (2003).
    Ollis, D.F., E. Pelizzetti and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25, pp. 1523-1529 (1991).
    Ou, H.H. and S.L. Lo, “Review of Titania Nanotubes Synthesized Via the Hydrothermal Treatment: Fabrication, Modification, and Application,” Sep. Purif. Technol., Vol. 58, pp. 179-191 (2007).
    Paramasivam, I., J.M. Macak, T. Selvam and P. Schmuki, “Electrochemical Synthesis of Self-organized TiO2 Nanotubular Structures using an Ionic Liquid (BMIM-BF4),” Electrochim. Acta, Vol. 54, pp. 643-648 (2008).
    Pinaeva, L.G., A.P. Suknev, A.A. Budneva, E.A. Paukshtis and B.S. Bal’zhinimaev, “On the Role of Oxygen in the Reaction of NO Reduction by NH3 over Monolayer V2O5-TiO2 Catalyst,” J. Mol. Catal. A: Chem., Vol. 112, pp. 115-124 (1996).
    Popat, K.C., L. Leoni, C.A. Grimes and T.A. Desai, “Influence of Engineered Titania Nanotubular Surfaces on Bone Cells,” Biomaterials, Vol. 28, pp. 3188-3197 (2007).
    Rahman, M.Y.A., M.M. Salleh, I.A. Talib and M. Yahaya, “Effect of Surface Roughness of TiO2 Films on Short-circuit Current Density of Photoelectrochemical Cell of ITO/TiO2/ PVC-LiClO4/graphite,” Curr. Appl Phys., Vol. 5, pp. 599-602 (2005).
    Ramis, G., G. Busca, V. Lorenzelli and P. Forzatti, “Fourier Transform Infrared Study of the Adsorption and Coadsorption of Nitric Oxide, Nitrogen Dioxide and Ammonia on TiO2 Anatase,” Appl. Catal., Vol. 64, pp.243-257 (1990).
    Rideh, L., A. Wehrer, D. Ronze and A. Zoulalian, “Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous Suspension: Modeling of Reaction Rate,” Ind. Eng. Chem. Res., Vol. 36, pp. 4712-4718 (1997).
    Rivera, A.P., K. Tanaka and T. Hisanaga, “Photocatalytic Degradation of Pollutant over TiO2 in Different Crystal Structures,” Appl. Catal. B: Environ., Vol. 3, pp. 37-44 (1993).
    Roy, S., M.S. Hegde, N. Ravishankar and G. Madras, “Creation of Redox Adsorption Sites by Pd2+ Ion Substitution in NanoTiO2 for High Photocatalytic Activity of CO Oxidation, NO Reduction, and NO Decomposition,” J. Phys. Chem. C, Vol. 111, pp. 8153-8160 (2007a).
    Roy, S.C., M. Paulose and C.A. Grimes, “The Effect of TiO2 Nanotubes in the Enhancement of Blood Clotting for the Control of Hemorrhage.” Biomater., Vol. 28, pp. 4667-4672 (2007b).
    Roy, S., M.S. Hegde and G. Madras, “Catalysis for NOx Abatement,” Appl. Energy, Vol. 86, pp. 2283-2297 (2009).
    Sano, T., N. Negishi, K. Koike, K. Takeuchi and S. Matsuzawa, “Preparation of a Visible Light-responsive Photocatalyst from a Complex of Ti4+ with a Nitrogen-containing Ligand,” J. Mater. Chem., Vol. 14, pp. 380-384 (2004).
    Serpone, N., “Relative Photonic Efficiencies and Quantum Yields in Heterogeneous Photocatalysis,” J. Photochem. Photobiol., A, Vol. 104 (1-3), pp 1-12 (1997).
    Shankar, K., G.K. Mor, M. Paulose, O.K. Varghese and C.A. Grimes, “Effect of Device Geometry on the Performance of TiO2 Nanotube Array-organic Semiconductor Double Heterojunction Solar Cells,” J. Non-Cryst. Solids, Vol. 354, pp. 2767-2771 (2008).
    Shi, Z., E. Sigman, M.M. Ghosh, “Photolysis of 2-chlorophenol Dissolved in Surfactant Solutions,” Environ. Sci. Technol., Vol. 31, pp. 3581-3587 (1997).
    Su, I.H. and J.C.S. Wu, “Photo Selective Catalytic Reduction of Nitric Oxide with Propane at Room Temperature,” Catal. Commun., Vol. 10, pp. 1534-1537 (2009).
    Tanaka, T., K. Teramura and T. Funabiki, “Photoassisted Selective Catalytic Reduction of NO with Ammonia in the Presence of Oxygen at Low Temperature,” Phys. Chem. Chem. Phys., Vol. 2, pp. 2681-2682 (2000).
    Tanaka, T., K. Teramura, K. Arakaki and T. Funabiki, “Photoassisted NO reduction with NH3 over TiO2 photocatalyst,” Chem. Commun., pp. 2242-2743 (2002).
    Tan, S.S., L. Zou, E. Hu, “Photocatalytic Reduction of Carbon Dioxide into Gaseous Hydrocarbon using TiO2 Pellets,” Catal. Today, Vol. 115, pp. 269-273 (2006).
    Teramura, K., T. Tanaka and T. Funabiki, “Photoassisted Selective Catalytic Reduction of NO with Ammonia in the Presence of Oxygen over TiO2,” Langmuir, Vol. 19, pp. 1209-1214 (2003).
    Teramura, K., T. Tanaka, S. Yamazoe, K. Arakaki and T. Funabiki, “Kinetic Study of Photo-SCR with NH3 over TiO2,” Appl. Catal. B: Environ., Vol. 53, pp. 29-36 (2004).
    Topsoe, N.Y., H. Topsoe and J.A. Dumesic, “Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia. I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies,” J Catal., Vol. 151 (1), pp. 226-240 (1995).
    Tseng, Y.H., C.S. Kuo, C.H. Huang, Y.Y. Li, P.W. Chou, C.L. Cheng and M.S. Wong, “Visible-Light-Responsive Titania-based Photocatalyst with Mixed Crystal Lattice and its Activity for Oxidation of Nitrogen Oxides,” Nanotechnology , Vol. 17, pp. 2490-2497 (2006).
    Varghese, O.K., D. Gong, M. Paulose, K.G. Ong and C.A. Grimes, “Hydrogen Sensing using Titania Nanotubes,” Sens. Actuators.: B, Vol. 93, pp. 338-344 (2003).
    Varghese, O.K., M. Paulose, T.J. LaTempa and C.A. Grimes, “High-rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels,” Nano Lett., Vol. 9, pp. 731-737 (2009).
    Venkatachalam, N., M. Palanichamy and V. Murugesan, “Sol-gel Preparation and Characterization of Alkaline Earth Metal Doped Nano TiO2: Efficient Photocatalytic Degradation of 4-Chlorophenol,” J. Mol. Catal. A: Chem., Vol. 273, pp. 177-185 (2007).
    Wang, Y.Q., G.Q. Hu, X.F. Duan, H.L. Sun and Q.K. Xue, “Microstructure and Formation Mechanism of Titanim Dioxide Nanotubes,” Chem. Phys. Lett., Vol 365, pp. 427-431 (2002).
    Wang, C.C., C.K. Lee, M.D. Lyu and L.C. Juang, “Photocatalytic Degradation of C.I. Basic Violet 10 using TiO2 Catalysts Supported by Y zeolite: an Investigation of the Effects of Operational Parameters,” Dyes Pigm., Vol. 76, pp. 817-824 (2008).
    Wang, D., Y. Liu, B. Yu, F. Zhou and W. Liu, “TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-electrical/Catalytic Performance,” Chem. Mater., Vol. 21, pp. 1198-1206 (2009a).
    Wang, N., X. Li, Y. Wang, X. Quan and G. Chen, “Evaluation of Bias Potential Enhanced Photocatalytic Degradation of 4-chlorophenol with TiO2 Nanotube Fabricated by Anodic Oxidation Method,” Chem. Eng. J., Vol. 146, pp. 30-35 (2009b).
    Winter, E.R.S., “The Catalytic Decomposition of Nitric Oxide by Metallic Oxides,” J. Catal., Vol. 22, pp. 158-170 (1971).
    Wong, C.C. and W. Chu, “The Direct Photolysis and Photocatalytic Degradation of Alachlor at Different TiO2 and UV Sources,” Chemosphere, Vol. 50, pp. 981-987 (2003).
    Xiao, P., D. Liu, B.B. Garcia, S. Sepehri, Y. Zhang and G. Cao, “Electrochemical and Photoelectrical Properties of Titania Nanotube Arrays Annealed in Different Gases,” Sens. Actuators, B, Vol. 134, pp. 367-372(2008).
    Yamazoe, S., T. Okumura, K. Teramura and T. Tanaka, “Development of the Efficient TiO2 Photocatalyst in Photoassisted Selective Catalytic Reduction of NO with NH3,” Catal. Today, Vol. 111, pp. 266-270 (2006).
    Yamazoe, S., T. Okumura, Y. Hitomi, T. Shishido and T. Tanaka, “Mechanism of Photo-Oxidation of NH3 over TiO2: Fourier Transform Infrared Study of the Intermediate Species,” J. Phys. Chem. C, Vol. 111, pp. 11077-11085 (2007).
    Yamazoe, S., Y. Masutani, K. Teramura, Y. Hitomi, T. Shishido and T. Tanaka, “Promotion Effect of Tungsten Oxide on Photo-assisted Selective Catalytic Reduction of NO with NH3 over TiO2,” Appl. Catal., B, Vol. 83, pp. 123-130 (2008a).
    Yamazoe, S., Masutani, Y., T. Shishido and T. Tanaka, “Metal Oxide Promoted TiO2 Catalysts for Photo-assisted Selective Catalytic Reduction of NO with NH3,” Res. Chem. Intermed., Vol. 34 (5-7), pp. 487-494 (2008b).
    Yamazoe, S., Y. Hitomi, T. Shishido and T. Tanaka, “Kinetic Study of Photo-oxidation of NH3 over TiO2,” Appl. Catal., B, Vol. 82, pp. 67-76 (2008c).
    Yu, Y.H., Y.T. Pan, Y.T. Wu, J. Lasek and J.C.S.Wu, “Photocatalytic NO Reduction with C3H8 Using a Monolith Photoreactor,” Catal. Today, paper in press (2011) (DOI: 10.1016/j.cattod.2011.01.024).
    Zhang, J, T. Ayusawa, M. Minagawa, K. Kinugawa, H. Yamashita and M. Matsuoka, “Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System: The Role of Pretreatment and Reaction Conditions in the Photocatalytic Efficiency,” J. Catal., Vol. 198, pp. 1-8 (2001).
    Zhao, J.L., X.X. Wang, R. Chen and L. Li, “Fabrication of Titanium Oxide Nanotube Arrays by Anodic Oxidation,” Solid State Commun., Vol. 134, pp. 705-710 (2005).

    QR CODE